Standard Model at the LHC (Lecture 5: Discovery of the Higgs Boson)

M. Schott (CERN)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ~ り < @

Content

- **1** Production and Decay of the Higgs Boson
- **2** $H \rightarrow \gamma \gamma$ channel
- **3** $H \rightarrow ZZ$ channel
- **5** Combination of all channels
- **6** Measurement of Higgs Properties

Production of the Higgs Boson

Since all properties of the SM(!) Higgs-Boson are known except of its mass, we can predict very precisely its production and decay rates at the LHC.

Production of the Higgs Boson at the LHC

- Gluon fusion
- WW,ZZ fusion
- Higgs-radiation with W and Z
- Higgs-Bremsstrahlung from top

Dominant process at the LHC is gluon fusion

2/25

Signal and Background Rates

- Large cross-sections for the Higgs-Boson production at the LHC
 - One Higgs boson in every 1 000 000 000 000 proton-proton collisions
- Even larger background rates

<ロト<部ト<差ト<差ト<差ト 4/17

Decay of the Higgs Boson

Higgs-Decay depends on the mass of the Higgs-Boson

- ZZ
- WW
- bb
- o ⊤tau
- $\gamma\gamma$
- ...

<ロト<問ト<臣ト<臣ト 5/17

Combined Higgs Production and Decay

<ロト < 部 > < 差 > < 差 > 差 2000 6/17

How to discover a new particle (1/2)

- Discovery is a significant deviation from your background-only hypothesis
 - new peak in a mass-distribution
 - more events than expected in some kinematic distribution
- For discovery: You only need to know which background you expect
- For exclusion: You also need a signal shape

"This could be the discovery of the century. Depending, of course, on how far down it goes."

(日) (四) (王) (日) (日) (日)

How to discover a new particle (2/2)

'Poor-mans' approach of an discovery:

- ignore all systematic uncertainties
- just look at the statistics

Estimation of significance (S)

- N_S = number of measured events
- N_B = number of expected background events

•
$$S = \frac{N_S}{\sqrt{N_B}}$$

If significance S is larger than 5, then we call it a discovery ($p < 2.87 \cdot 10^{-7})$

<ロト<問ト<臣ト<臣ト 8/17

$H \rightarrow \gamma \gamma$ channel (1/2)

Signal

• two high energetic photons

Background

- irreducible: $\gamma\gamma$ (30pb)
 - need good mass resolution
- reducible
 - γ, jet and jet, jet
 - Try to distinguish photons and jets in the detector
 - Seperate photons and jets e.g. through the form to of the electromagnetic shower

<ロ> < 部 > < 言 > < 言 > 言 9/17

$H \rightarrow \gamma \gamma$ channel (2/2)

Event Selection

- photons with $E_T 25, 35 GeV$
- Calculate invariant mass of the two photons

Background Estimation

• Sideband method: 4th order polynomial

$H \rightarrow ZZ$ channel (1/2)

Event Signature

- $H \rightarrow ZZ^* \rightarrow I^+I^-I^+I^-$
 - four leptons in the final state (only e, μ)

Background: very small ZZ, Zbb, tt

- irreduzibel: Standard Model ZZ
- reduzibel: Â tt, Zbb

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

$H \rightarrow ZZ$ channel (2/2)

Reduction of reducible Background

- Isolation of Leptons
- B-Tagging

Reduction of irreducible Background

• Requirement of Z-Boson mass constraint

Event Selection

- most energetic lepton:
 p_T20GeV
- 2nd most energetic lepton:
 p_T15GeV
- 3rd most energetic lepton:
 p_T10GeV
- the sector of the sector

H ightarrow WW channel (1/2)

Event Signature

- two high energetic leptons $(e\mu)$
 - oppositely charged
- missing energy due to neutrinos

Main Backgrounds

- WW-Production
- tŦ
- W+Jets
- Z+Jets

$H \rightarrow WW$ channel (2/2)

Estimate WW Background

- set invariant mass-cut m_{ll}80GeV
- Estimate W+Jets Background
 - Fake-Faktor method
- Estimate $t\bar{t}$ Background
 - Use b-tagged jets distribution!

12/17

Combination of all channels

We can combine now this information to a single significance

- Combination of $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$
- Do not forget the 'look-elsewhere' effect

The discovery of a new particle

 5.9σ excess Mass of the new particle $m_H = 126.0 \pm 0.4 \pm 0.4 GeV$

15/17

How do we know that it is the SM Higgs Boson?

It is clear that we found a new particle! But is it the Higgs-Boson?

Not a Spin-1 particle!

Young-Landau theorem: Spin-1 particles cannot couple to a pait of massless spin 1 particles

Which spin does it have?

Flat distribution on the Higgs rest-system: other spin-hypothesis change the angle-distribution

16/17

Measure futher Quantum Numbers

- CP Quantum Numbers
- Determination of couplings
- Determination of cross-sections and decay-rates
- Precision measurement of m_{top} and m_W

Summary of Lecture 5

We discovered a new particle at the LHC, which is at the right mass to be the Standard Model Higgs-Boson! To be sure, we need to do lots of work in the comming years in Experimental High Energy Physics! Very fascinating times are coming!

< 🗆

200