Standard Model at the LHC (Lecture 1: Theoretical Recap)

M. Schott (CERN)

 290 \blacksquare

2 / 33

Content

- [Quantum Electron Dynamics](#page-4-0)
- [Quantum Chromo Dynamics](#page-11-0)
- [Weak Interaction](#page-18-0)
- [Collisions at the LHC Predictions](#page-28-0)

Goal of this lecture series

- The discovery of the Higgs-Boson (?) at the LHC was one of the mile-stones in modern particles physics
- • We want to discuss,
	- how do we measure physics at the LHC
	- how did we discover the new particle at the LHC
	- how can we test the Standard Model of particle physics at the LHC 3 / 33

Overview

Lecture 1: Theoretical Recap of the Standard Model

 $4 \Box$ \rightarrow $4 \Box$ \rightarrow $4 \Box$ \rightarrow $4 \Box$ $4 \Box$ $4 \Box$ $4 \Box$

- Lecture 2: The LHC Detectors and Data Analysis
- Lecture 3: Measuring Production Cross-Sections
- Lecture 4: The Higgs Boson
- **Lecture 5: Precision Measurements**

Basic Concepts

The Standard Model of particle physics is a

- relativistic Quantum Field Theory
- **•** Gauge Theory

The most simplest part of the Standard Model describes the interaction of electrical charged particle

• Quantum Electro Dynamics (QCD)

Basic Approach

- Define symmetry group
- $\bullet \rightarrow$ deduce Lagragian density which is invariant/symmetric in the corresponding group

5 / 33

o Derive Feynman rules

Quantum Electro Dynamics

The QED Lagrangian is invariant under $U(1)$ -group transformations

$$
\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\Psi}(i\partial - m)\Psi + e\bar{\Psi}\gamma^{\mu}\Psi A_{\mu}
$$

Expressed for experimentalists

$$
{}^{\mu} \wedge \cdots \wedge {}^{\mu} \qquad {}
$$

We have here

• the Dirac-Spinor Ψ (4-components) which describes the matter field

6 / 33

- the field-strength tensor $F_{\mu\nu}$
- A the electromagnetic four-potential

How to make predictions from theory

We have now a nice Lagrangian, but it doesnt predict so far anything. It would be nice if we could at least calculate something which we can confirm in a measurement later on, e.g. the process $e^+e^- \rightarrow \gamma \rightarrow \mu^+\mu^-$

- Idea: Measure the rate and the distribution of $\mu^+\mu^-$ in dependence of the collision energy.
- Calculate a cross-section!
	- Relation of Rate and cross-section and how to measure a cross-section: Lecture 3

7 / 33

• here: predict/calculate a cross-section

Calculating a cross-section

Cross Section σ given by

$$
\sigma = \frac{|M_{\mathit{fi}}|^2}{\mathit{flux}} \times (\mathit{phasespace})
$$

- flux given by experiment
- phase space : 'easy' QM consideration
- \bullet M : matrix element
	- contains fundamental physics process
	- interpret as probability from initial to final state

Feynman Rules for QED

In quantum field theories the Feynman diagrams are obtained from the Lagrangian by Feynman Rules.

- Propagator factor for each internal line (i.e. each internal virtual particle)
- Dirac Spinor for each external line (i.e. each real incoming or outgoing particle)
- Vertex factor for each vertex

Concept

The matrix element is the product of all factors

Back to our simple Cross-Section

Draw Feynman Diagram

• Construct Matrix Element

$$
-iM = [\bar\nu(p_2) i e \gamma^\mu u(p_1)] \frac{-ig_{\mu\nu}}{q^2} [\bar u(p_3) i e \gamma^\mu v(p_4)]
$$

• Get Predictions

$$
\frac{d\sigma}{d\Sigma}=\frac{\alpha^2}{4s}(1+cos^2\theta)
$$

$$
\sigma = \frac{4\pi\alpha^2}{3s}
$$

 $\left\langle 10 + \left\langle 10^2 + \left\langle 12 + \left\langle 12\right\rangle \right\rangle \right\rangle \right. + \left\langle 20 + \left\langle 12\right\rangle \right\rangle \right\langle 10 + \left\langle 12\right\rangle \right)$ $\left\langle 10 + \left\langle 10^2 + \left\langle 12 + \left\langle 12\right\rangle \right\rangle \right\rangle \right. + \left\langle 20 + \left\langle 12\right\rangle \right\rangle \right\langle 10 + \left\langle 12\right\rangle \right)$ $\left\langle 10 + \left\langle 10^2 + \left\langle 12 + \left\langle 12\right\rangle \right\rangle \right\rangle \right. + \left\langle 20 + \left\langle 12\right\rangle \right\rangle \right\langle 10 + \left\langle 12\right\rangle \right)$

Compare to measurements

- **•** Measurement of $e^+e^-\to \gamma\to \mu^+\mu^-$ at √ $\overline{s} = 29$ GeV
- **Q** Lowest order cross section calculation provides a good description of the data

Reminder

- It is not always so easy, because this was only lowest order
- Higher order calculations are rather tricky (and we need theoreticians to do them)

 $11'/33$ $11'/33$

Quantum Chromo Dynamics (1/2)

The strong interaction should explain

- why quarks are bound in hadrons
- **o** the nuclear-force

The theory of the strong interaction, Quantum Chromodynamics (QCD), is very similar to QED but with 3 conserved (colour) charges.

 $12 / 33$ $12 / 33$

- quarks carry colour charge
- anti-quarks carry anti-charge
- The force is mediated by massless gluons
- \bullet SU(3) symmetry group

Quantum Chromo Dynamics (2/2)

The gauge symmetry determines the exact nature of the interaction as it predicts the Feynman rules.

$$
``\text{mean}^{''} \text{ = } ``\text{---}'' \text{ = } ``\text{space}'' \text{ = } ``\text{row}'' \text{ = } ``\text{new}'' \text{ = } ``\text{new}'' \text{ = } ``\text{new}''
$$

We have now new two vertices: The gluon self-interactions! It is believed (!), that they give rise to the confinement:

- no color charge directly observed
- only colour singlet states can exist as free particles

Important experimental consequence

quarks/gluons cannot be directly detected, as they will "hadronize", i.e. "transform" to a bunch of hadrons

Hadronization

Consider a quark and anti-quark produced in electron positron annihilation

- initially quarks separate at high velocity
- Colour flux tube forms between quarks
- Energy stored in the flux tube sufficient to produce qq pairs
- Process continues until quarks pair up into jets of colourless hadrons

This process is called hadronisation. It is not (yet) calculable, but we have good approximations. The set of \mathbb{R}^3 is \mathbb{R}^3 and \mathbb{R}^3 is \mathbb{R}^3 and \mathbb{R}^3

Running Couplings (1/4)

In QED, the 'bare' charge of an electron is screened by virtual e^+e^- pairs.

- **•** behaves like a polarizable dielectric
- In terms of Feynman diagrams:

- Add matrix element amplitudes: $M = M_1 + M_2 + ...$
- **•** Giving an infinite series which can be summed

$$
\alpha(Q^2) = \alpha(Q_0^2)/[1 - \frac{\alpha(Q_0^2)}{3\pi}ln(Q^2/Q_0^2)]
$$

 $10 \times 15 \times 15 \times 15 = 15/33$ $10 \times 15 \times 15 \times 15 = 15/33$

Running Couplings (2/4)

- QED Coupling becomes infinite at $Q \sim 10^{26}$ GeV, but this is 'far' away
- The QED coupling increases rather slowly
	- atomic physics:
		- $1/\alpha = 137.036$
	- HEP physics: $1/\alpha = 127.4$

Important

- \bullet (1/137) is a small number
- $\bullet \rightarrow$ Perturbation Theory can be applied in our calculations

Running Couplings (3/4)

Things are different at QCD. Lets look again at the Feynman diagrams

- now we have boson loops which lead to negative interference
- **•** the sum can be smaller than the original diagram alone

$$
\alpha_{S}(Q^{2}) = \alpha_{S}(Q_{0}^{2})/[1+B_{>0} \cdot \frac{\alpha_{S}(Q_{0}^{2})}{3\pi}ln(Q
$$

• Prediction: $\alpha_{\mathcal{S}}$ decreases with Q^2

 $17/35$ $17/35$

Running Couplings (4/4)

- At low Q^2 , i.e. small energy
	- α as \approx 1
	- cannot use perturbation theory
	- QCD calculations at low energies are so difficult, e.g. properties hadrons, hadronisation of quarks to jets
- At high $Q^2 \approx m_Z^2$ we find
	- \bullet α s ≈ 0.12
	- Asymptotic freedom (Nobel Prize for Physics, 2004)
	- Can use perturbation theory here
		- **•** perturbative QCD (pQCD)

SM Predictions at the LHC

Test calculations of pQCD

The Weak Force: Fermi Theory

The Weak force accounts for many decays in particle physics

 \bullet neutron decay, muon decay, ...

The Fermi-Theory is inspired by QED:

- QED Matrix element for $pe \rightarrow pe$
	- $M = (\bar{p}\gamma^\mu p)\frac{e}{q^2}(\textit{bare}\gamma_\mu e)$
	- coupling strength e is only parameter of theory
- Fermi Theory for neutron decay $n \to pe^- \bar{v}_e$
	- $M = (\bar{n}\gamma^{\mu}p)G_F(\bar{v}_e\gamma^{\mu}e)$
	- \bullet Fermi-Contant G_F

The Weak Force: Parity Violation

- We know from the Wu Experiment that the weak-force violates parity
- Only the left-handed components of particles and right-handed components of antiparticles participate in weak interactions in the Standard Model

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 20^{\circ}/33^{\circ} \\ 3 & 3 & 3 & 3 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 20^{\circ}/33^{\circ} \\ 3 & 3 & 3 & 3 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 20^{\circ}/33^{\circ} \\ 3 & 3 & 3 & 3 \end{array}$

- Need to modify the Fermi theory only a little bit
	- $M = (\bar{n}\gamma^\mu(1-\gamma^5)\rho)G_F(\bar{\nu}_e\gamma^\mu(1-\gamma^5)e)$
	- This operator only involves e^-_L , ν_L or (e^+_R, ν_R)

The Weak Force: The Weak Current (1/2)

Fermi Theory breaks down at high energies \rightarrow introduce Weak Charged Current Propagator

- The charged-current Weak interaction is different from QED and QCD in that it is mediated by massive W-bosons (80.3 GeV)
- This results in a more complicated form for the propagator:

$$
\frac{1}{q^2}\rightarrow \frac{1}{q^2-m^2}
$$

 \bullet In addition the sum over W boson (spin 1) polarization states modifies the numerator

$$
\frac{-i[g_{\mu\nu}-q_\mu q_\nu/m_W^2]}{q^2-m_W^2}
$$

• This results to the matrix element

$$
M_{fi}=[\frac{g_W}{2}\bar{\Psi}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)\Psi]\frac{-i[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2]}{q^2-m_W^2}[\frac{g_W}{2}\bar{\Psi}\frac{1}{2}\gamma^{\nu}(1-\gamma^5)\Psi]
$$

The Weak Force: The Weak Current (2/2)

In the limit $(q^2\ll m_W^2)$ we get back the Fermi-Theory Matrix Element. This gives us the relation

$$
\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}
$$

Still usually use G_F to express strength of weak interaction as the is the quantity that is precisely determined in muon decay

Weak Current Summary

- Weak interaction is of form Vector-Axial-vector (V-A): $\frac{-ig_W}{\sqrt{g}}$ 2 1 $\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$
- Consequently only LH chiral particle states and RH chiral anti-particle states participate in the weak interaction
- Maximal Parity Violation
- At low q^2 : only weak because of the large m_W

The Weak Force as Gauge Theory

Problem: Production of W-Bosons in e^+e^- collisions

Cross-Section rises with \sqrt{s} and violates unitarity Idea: Introduce new Boson, which interfers negatively

 $|M_\gamma w w + M_Z w w + M_\nu w w|^2 < | + M_\gamma w w + M_\nu w w|^2$

This only works when couplings of Z, γ and W are related.

Electroweak Unification (1/2)

Start again with Gauge-Principle and construct a lagrangian density which is invariant under

$$
\Psi \to e^{-\alpha(x)\sigma/2}\Psi
$$

- \bullet σ are generators of SU(2) symmetry (3 Pauli-Matrices)
- Thee generators \rightarrow 3 gauge bosons W_1, W_2, W_3
- associated charge of weak-interaction: Weak Isospin I_W
	- charged weak interaction couples only to LH components of particles $(I_W = 1/2)$

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 24/33 \\ & & & & & 24/33 & & \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 24/33 \\ & & & & & 24/33 & & \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 24/33 \\ & & & & & 24/33 & & \end{array}$

- for RH components of particles: $I_W = 0$
- \bullet It turns out that W_3 has to be a neutral
	- Is this the Z-Boson? No!

Electroweak Unification (2/2)

- **•** In nature we observe two neutral spin-1 gauge-bosons: γ and Z
- \bullet W_3 has not the right properties to be Z (left-handed/right-handed couplings)
- 'Usual' idea of theoreticial: Require again a new symmetry
	- \bullet U(1) symmetry with new Charge Y (weak hypercharge)
	- New neutral Gauge Boson (Spin-1): B

Interpret the physical fields Z and γ as linear combinations of B and W_3 (very adhoc, but it works!)

$$
A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W
$$

$$
Z_{\mu} = -B_{\mu} \cos \theta_W + W^3_{\mu} \sin \theta_W
$$

The weak-hypercharge Y is then given by $Y = 2Q - 2I_{\frac{3}{2}}^3$ $Y = 2Q - 2I_{\frac{3}{2}}^3$

Why do we need the Higgs-Boson?

This here is just a reminder!

- explicit mass terms for W and Z bosons (like $\sim m_W W^2)$ would break the gauge-invariance of the theory
	- no renormalization possible \rightarrow theory looses its predictivity
- \bullet L only gauge-invariant when gauge-bosons are massless
- W and 7 Boson have a mass

Idea

- introduce Higgs-field
- scalar field, Spin 0
- electricm neutral but $Y = 1/2$

[2](#page-32-0)6 / 33

Properties of the Higgs Boson

- Higgs-Field couples to W and Z Bosons ($Y = 1/2$) \rightarrow gives effective masses for W^{\pm} and Z
- Higgs-Field does not couple to γ
- Also fermion masses can be described (but not predicted) through the coupling of the Higgs-field with fermions
- All properties of the Higgs-Field/Boson in the Standard Model are determined - except the Higgs-Boson mass m_H

Summary of the electroweak sector

The Electroweak Unification with the Higgs mechanism has predictive power

Electroweak Predictions

$$
m_W = \left(\frac{\pi \alpha_{em}}{\sqrt{2} G_F}\right)^{1/2} \frac{1}{\sin \theta_W}
$$

$$
m_Z = \frac{m_W}{\cos \theta_W}
$$

- Only 3 out of the 5 parameters in the electroweak sector $(\alpha_{\sf em},\mathsf{G}_\mathsf{F},\mathsf{m}_\mathsf{W},\mathsf{m}_\mathsf{Z},\mathsf{sin}^2\theta_W)$ are indepedent
- **•** Prediction of a new particle, associated to the excitations of the Higgs-Field: The Higgs-Boson!

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 28 / 33 \\ \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 28 / 33 \\ \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Box \rightarrow & 4 \quad \Xi \rightarrow & \Xi & 28 / 33 \\ \end{array}$

Proton-Proton Collisions (1/3)

We know know how to calculate cross-sections for electron-positron collisions

• What about proton-proton collisions?

Colliding protons are not like protons at rest. When 2 protons move towards eachother, the quarks on each side start interacting

- **•** Emitting gluons
- Gluons can split up in quarks and anti-quarks
- Resulting in a complex 'soup' of gluons and quarks of all flavours!

[2](#page-32-0)9 / 33

 $\bullet \rightarrow$ need to know structure of the proton

Proton-Proton Collisions (2/3)

The parton density functions (describing the structure of the proton) cannot be predicted

- they need to be measured
- the proton a priori can contain: $u, \bar{u}, d, bard, s, bars, g, ...$
- \bullet It has to remain a (u,u,d) hadron overall, implying so-called "sum-rules": e.g. $\int [u(x) - \overline{u}(x)]dx = 2, ...$
- **o** here: x=momentum fraction carried by a parton over the total hadron energy

Proton-Proton Collisions (3/3)

On basic level, we expect to have the interaction of a quark and anti-quark

But we can only collide hadrons. A quark is "picked" in each hadron, carrying a momentum fraction x of the hadron energy.

$$
\sigma = \sum_{q} \int dx_1 dx_2 q(x_1) \overline{q}(x_2) \sigma_{q\overline{q} \to l^+l^-}(x_1, x_2, s)
$$

 $\begin{array}{ccc} 31 & 33 & 33 \end{array}$ $\begin{array}{ccc} 31 & 33 & 33 \end{array}$ $\begin{array}{ccc} 31 & 33 & 33 \end{array}$

Hence we have to "unfold" the proton PDFs in each of our cross-section calculations.

How to get cross-sections as experimentalist

- Do I have to calculate these cross-sections every day? No!
- In every days life we use computer programs (event generators) which are doing this for us
	- provide not only cross-sections, but also distributions of particles which are produced in collisions

Event Generators

- Step 1: Hard subprocess: Described by Matrix Element
- Step 2: Decay of Resonances
- Step 3: Initial and Final State radiation
- Step 4: Multi-Parton Interactions
- Step 5: Hadronization
- Check out: Mad-Graph: http://madgraph.hep.uiuc.edu/

 $\begin{array}{ccc} 3 & 2 & 3 & 3 \\ 4 & 5 & 3 & 3 & 3 \\ 5 & 3 & 3 & 3 & 3 \\ 6 & 3 & 3 & 3 & 3 \\ 7 & 8 & 3 & 3 & 3 \\ 8 & 9 & 3 & 3 & 3 \\ 9 & 9 & 3 & 3 & 3 \\ 10 & 10 & 10 & 10 & 3 \\ 11 & 11 & 11 & 11 & 3 \\ 12 & 12 & 12 & 12 & 3 & 3 \\ 13 & 13 & 13 & 13 & 3 & 3 \\ 14 & 13 & 12 & 13 & 3 & 3 \\ 15 & 13$ $\begin{array}{ccc} 3 & 2 & 3 & 3 \\ 4 & 5 & 3 & 3 & 3 \\ 5 & 3 & 3 & 3 & 3 \\ 6 & 3 & 3 & 3 & 3 \\ 7 & 8 & 3 & 3 & 3 \\ 8 & 9 & 3 & 3 & 3 \\ 9 & 9 & 3 & 3 & 3 \\ 10 & 10 & 10 & 10 & 3 \\ 11 & 11 & 11 & 11 & 3 \\ 12 & 12 & 12 & 12 & 3 & 3 \\ 13 & 13 & 13 & 13 & 3 & 3 \\ 14 & 13 & 12 & 13 & 3 & 3 \\ 15 & 13$ $\begin{array}{ccc} 3 & 2 & 3 & 3 \\ 4 & 5 & 3 & 3 & 3 \\ 5 & 3 & 3 & 3 & 3 \\ 6 & 3 & 3 & 3 & 3 \\ 7 & 8 & 3 & 3 & 3 \\ 8 & 9 & 3 & 3 & 3 \\ 9 & 9 & 3 & 3 & 3 \\ 10 & 10 & 10 & 10 & 3 \\ 11 & 11 & 11 & 11 & 3 \\ 12 & 12 & 12 & 12 & 3 & 3 \\ 13 & 13 & 13 & 13 & 3 & 3 \\ 14 & 13 & 12 & 13 & 3 & 3 \\ 15 & 13$

Summary of Lecture 1

We have just revisited the basic theoretical concepts of the SM * Calculating Cross-Sections at the LHC * Jets Hadronization * Predictions of the Electroweak Sector \rightarrow Next Lecture: How do we measure proton-proton collisions