
INTRODUCTION AND OVERVIEW





Chapter 1SUPERSYMMETRY: WHY ANDHOW
1.1 History and MotivationWe �rst give a brief fatual aount of the history [1.1℄ of supersymmetry, leaving a morepedagogial development to later setions and hapters. This has evidently been a historyof experimenters hasing a theoretially driven idea. The notion of a symmetry transforma-tion between fermioni and bosoni modes emerged [1.2℄ in onnetion with string theory.However, this was onstruted on a two dimensional world sheet rather than in the realworld of 3 + 1 dimensions. N=1 supersymmetry in the latter (in terms of superharges thattake fermions into bosons and vie versa) was �rst proposed and formulated as a gradedLie algebra by Golfand and Likhtman [1.3℄ in 1971. Akulov and Volkov [1.4℄ later gave anonlinear realization of it together with the idea of spontaneous breakdown. Finally, in 1974,Wess and Zumino [1.5℄ as well as Salam and Strathdee [1.5℄ onstruted �eld theories withsupersymmetry (f. Ch.5) and the subjet immediately attrated attention on a large sale.Supersymmetry was shown by Haag, L=opuza�nsky and Sohnius (f. Ch.3) to be the onlypossible extension of the known spaetime symmetries of partile interations. Several im-portant results were derived on the more onvergent ultraviolet behavior of supersymmetri�eld theories, exploiting the anellation between fermioni and bosoni loops. In partiular,a theorem on the nonrenormalization of superpotential terms (f. Ch.6) was proved [1.6℄.Salar �eld theories are generially not natural in the sense of Weinberg, Susskind and 'tHooft [1.7℄. But it beame lear after a while that supersymmetri �eld theories, despiteontaining salar �elds, are natural [1.8℄.The four momentum operator P � is essential to an algebrai formulation of supersymme-try. As elaborated in Ch.3, if a superharge, arrying spin 1=2, takes a boson to a fermion orvie versa, the antiommutator between two superharges with arbitrary spinorial ompo-nents must be proportional to P �. If the vauum is annihilated by a superharge, a vanishingenergy for it is then ensured. In exat supersymmetry, P � and P 2 � P �P� ommute withthe superharge and one is led to mass degenerate supermultiplets of states di�ering in spinby 1=2. Sine no suh mass degeneray has been seen1 among partiles ourring in Nature,1There were early attempts to put a photon and a neutrino together in a supermultiplet. It soon beame3



4 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWsupersymmetry must be a badly broken symmetry. The intra-supermultiplet mass splitting,harateristially denoted as Ms, then beomes a sale of some signi�ane. A question ofimmediate interest arises in onsequene: what is the order of magnitude of Ms? A relatedissue onerns the existene of spartiles, i.e. superpartners of the known partiles. Thelatter annot make up omplete supermultiplets by themselves. Therefore eah partile ina broken supersymmetri world must have a new superpartner whih we all a spartile.A spartile is typially heavier than the orresponding partile by a mass di�erene O(Ms)and is lying yet undisovered. Furthermore, the appliation of naturalness arguments [1.8℄to the weak sale (� 100 GeV), generated in the SM by an unnatural salar �eld setor, hassuggested [1.9℄ that2 Ms <�O(TeV) and that spartiles should be disovered in forthominghigh energy aelerator experiments probing these energies. The highly suessful Stan-dard Model (SM) of partile interations has been minimally extended [1.10℄ to inlude allthese spartiles and is now alled the Minimal Supersymmetri Standard Model (MSSM).Our aim in this book is to develop this theme onretely to the extent that its links withexperiments, now being onduted or planned, beome lear.There have already been major experimental e�orts to searh for spartiles, undertakenall through the 1980's and 1990's. The prodution and deays of spartiles are uniquelyharaterized by large (more than tens of GeV) missing transverse energy at least in R-parityonserving supersymmetri senarios where the undeteted lightest supersymmetri partile(LSP) arries it away. Early hints at the beginning of the eighties in the UA1 experiment,performed at the S�PPS mahine at CERN, did not materialize into believable signals butwere later identi�ed with more mundane proesses of the Standard Model. Afterwards, theLEP e+e� storage ring at CERN and the Tevatron �pp ollider at Fermilab have been heavilydeployed in searhes for spartiles, but without any suess so far. The same an be said forsearhes in ep ollision experiments performed at HERA. The four LEP experimental groups,ALEPH, DELPHI, L3 and OPAL, as well as the two major experimental ollaborations at theTEVATRON, CDF and D0=, have published the strongest experimental lower bounds on themasses of numerous spartiles; they have also established exlusion zones in parameter spaesof various supersymmetri extensions of the Standard Model (Ch.15). The TEVATRONexperiments are being extended to RUN II with higher integrated luminosity. Two majorollaborations in the Large Hadron Collider (LHC), being built at CERN, ATLAS and CMS,are preparing dediated experiments whih will probe spartiles in the TeV mass range. Theexploration of spartiles has been stated as a major goal in proposals for e+e� linear olliderswith CM energies in the range 500 GeV{1.5 TeV, now being pursued vigorously. There arealso nonaelerator experiments trying to detet the very weakly interating LSP pervadingthe universe as old dark matter (Ch.16). Thus we are in for another deade of intenseexperimental ativity full of exiting possibilities.One ritiism, frequently levelled against the supersymmetry idea skethed above, is thelear that the superharge, being the generator of a spaetime symmetry, must ommute with all generatorsof internal symmetries, e.g. eletroweak symmetry. Thus all members of a supermultiplet must have identialinternal symmetry properties. Suh is not the ase between the photon and any of the three known neutrinos.2Suh a statement is far from obvious. Ms ould very well be of the order of other possible sales inPhysis. These inlude the redued Plank sale MPl � (8�GN )�1=2 ' 2:4� 1018 GeV and the speulatedgrand uni�ation saleMU � 2�1016 GeV. As we shall see later, the above onlusion, reahed on the basisof naturalness arguments, is quite a deep statement.



1.1. HISTORY AND MOTIVATION 5\inelegane" in postulating one new state for every known partile. But extended symmetryonsiderations did lead physiists in the past to postulate new partiles whih were subse-quently disovered. An example, whih we elaborate here, is the extension of nonrelativistiquantum eletrodynamis of the eletron to over Lorentz invariane. Suh an extension re-quires the existene of the positron, as an be understood from the standpoint of divergenes.We know that the lassial self energy of an eletron of radius re, namelyEl:self = 35(e2=4�re)in rationalized units, is linearly divergent as re ! 0. One an guess [1.11℄ that this alulationbeomes unreliable for radii less than the \lassial eletron radius" R0 � 35(e2=4�me) '1:7 fm for whih Elself equals the rest energy of the eletron. In the diagrammati languageof old fashioned perturbation theory [1.12℄, this ontribution is given by Fig.1.1a | the solid,wiggly and dashed lines standing for the eletron, the photon and a time slie respetively.
1.1 (a) 1.2 (b)Fig.1.1. Eletron self energy diagrams in old fashioned perturbation theory.Of ourse, in a relativisti quantum desription of the eletron, it has been possibleto probe re far below R0 (indeed below 10�3 fm). This is beause the linear divergene,mentioned earlier, gets ured here by the presene of the positron. Owing to the latter, thereis also3 Fig.1-1b now. In this ontribution the eletron annihilates the positron, reated ina pair from a vauum utuation, while the remaining eletron goes out. As a result, thereis an intrinsi unertainty in the eletron's position of the order of its Compton wavelengthre � 1=me. The linear divergene anels in the sum of these two ontributions and the selfenergy beomes [1.13℄ Equant:self = 3e2me16�2 ln(mere) :The expression for Eself is still logarithmially divergent as re ! 0, but this mild divergene4an be easily takled within the renormalization program. One postulates a bare mass ofthe eletron whih is also logarithmially divergent, owing to a ounterterm inserted in theLagrangian, so that the renormalized mass m = mbare + Eself is �nite.3This reasoning has been highlighted by H. Murayama, hep-ph/9410285, ibid/0002242.4The mildness of this divergene an be seen as follows. Even if re is replaed by the smallest lengthknown in Physis, namely the Plank length �Pl =M�1Pl , the above expression beomes only 10% of the restenergy of the eletron.



6 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWThe anellation of the linear divergene is really a onsequene of hiral symmetry. Thelatter refers to an invariane under the transformation of the eletron �eld  e ! ei'5 e(with ' being a real parameter), whih beomes a symmetry of relativisti eletrodynamisin the limit when me ! 0. Taking this limit in whih Eself ! 0 enhanes the symmetry ofthe theory whih then inludes hiral invariane. This makes the smallness of the mass ofthe eletron natural in the sense of Weinberg, Susskind and 't Hooft [1.7℄ sine the eletronis proteted by this symmetry from aquiring a huge mass due to self energy orretions.Aording to those authors, a small parameter in a theory is natural if, and only if, settingit to zero enhanes the symmetry of the system. Being a symmetry breaking parameter, itssmallness then gets proteted against large radiative orretions by the onerned symmetry.Indeed, this riterion an be extended to the theory itself. In the modern Wilsonian view,every Lagrangian density L should be de�ned with a uto� � and should be written asL(�), keeping renormalization in mind. � represents the highest energy sale upto whihL(�) is the appropriate Lagrangian density and an be pereived as the energy sale wherenew physis omes into play. Now, a Lagrangian density L(�) is \natural" upto and belowthe energy sale � if any set of small parameters fÆng, appearing in L(�), is assoiated withsome approximate symmetry of L(�) whih is exatly reovered in the Æn ! 0 limit. In thisase quantum orretions { haraterized by the sale � { will also vanish as fÆng ! 0 andwill remain small for nonvanishing but small fÆng.In order to make the above disussion more quantitative, let us write the tree levelLagrangian density of the low energy theory as Ltree = Xn ÆnOn. Here the fOng are aset of general operators, indexed by nonnegative integers n with Æn as the orrespondingoeÆients, while the summation overs all suh n that our. The inlusion of quantume�ets, haraterized by the sale �, then leads to the following general form for the lowenergy e�etive Lagrangian density5:Le� =Xn;i n;i(Æn)i�[(i�1)(dn�4)℄On : (1.1)In (1.1) the summation over nonnegative integers i an, in priniple, go from zero to in�nity;however, in pratie, only a few terms matter. Moreover, dn is the mass dimension of theoperator On and n;i are dimensionless oeÆients whih an depend only logarithmiallyon �. Sine we take the low energy tree level Lagrangian density to be renormalizable,Æn = 0 whenever On has dn > 4. For suh operators, the sum over i in (1.1) ollapses to thesingle term with i = 0 and (1.1) desribes the usual expansion of the low energy e�etiveLagrangian density with higher dimensional operators suppressed by appropriate powers of��1. These latter terms are irrelevant to any disussion of naturalness, sine they disappearwhen �!1.Turning to operators with dn � 4, we an distinguish two ases. (1) A small oeÆientÆn is \naturally small" only if n;o = 0, sine then the orresponding oeÆient will remainsmall in the full e�etive low energy Lagrangian density as well. As already noted above,in all known examples, a symmetry is needed to ensure that n;o vanishes to all orders in5There ould be additional terms in (1.1) involving powers of produts of di�erent Æn's, but they do nothange the disussion in substane.



1.1. HISTORY AND MOTIVATION 7perturbation theory. Illustrative examples are gauge symmetries \proteting" gauge ou-plings and hiral symmetries \proteting" fermion masses or Yukawa ouplings. (2) On theother hand, if n;o 6= 0, there is no reason to assume Æn to be small or zero in the tree levellow energy Lagrangian density; suh a hoie would be \unnatural". This may not lead toserious problems for operators with dn = 4. In this ase our argument only shows that thenatural sale forXi n;i(Æn)i should be at least Æn+O(�=�), � being (4�)�1 times the squareof some (typially gauge) oupling strength. Thus even if, at the tree level, Æn is hosen inmagnitude to be muh less than O(�=�), the oeÆient of On in Le� will naturally beomeof that order. An example is the quarti Higgs self oupling in the SM whih is \naturally"at least O(10�2) in Le� . (In this partiular ase, however, the experimental lower bound onthe mass of the physial Higgs boson leads to a muh stronger lower limit). The problem of\naturalness" beomes really severe only for operators with dimension dn < 4. As shown in(1.1), the orresponding oeÆients in the low energy e�etive Lagrangian density divergelike �4�dn if n;0 6= 0. The lowest dimensional relevant operator in the SM is the Higgs massterm, whih has dimension two. Sine the relevant oeÆient is not proteted by a symme-try, we expet it to reeive quadratially divergent quantum orretions. In the next setionwe shall show expliitly that suh divergenes do indeed our in the SM. An exorbitantdegree of �ne tuning between the bare mass and the radiative orretion beomes neessaryto keep the renormalized Higgs mass near the weak sale. We shall then show in x1.3 howsupersymmetry removes this quadrati divergene (i.e. makes the orresponding n;o vanish)and solves the problem by proteting the renormalized Higgs mass.Let us return to the question of the mass of the eletron. On dimensional grounds, onemight naively expet me to grow like � after loop orretions. As already noted, it doesnot do so. The fat that it grows instead as ln(�=me) is beause of hiral symmetry whihmakes me a \naturally small" parameter of the theory. Notie that hiral symmetry an beformulated only within a relativisti framework where a positron is obligatory. The existeneof a new partile here is therefore linked to the greater onvergene of the theory at shortdistanes (or high energies) and is ultimately related to a symmetry. A similar motivation anbe given for supersymmetry. Supersymmetry, or more spei�ally the existene of spartilesuperpartners with masses near the weak sale, ures the problem of quadrati divergenesthrough anellations between fermioni and bosoni loops. This an be understood on thebasis of symmetries as follows. Supersymmetry links boson masses to fermion masses, whihare \proteted" by hiral symmetry6. The weak sale MW an then be naturally hosento be many orders of magnitude below the Plank sale MP l or the hypothetial sale MUof grand uni�ation and kept proteted. Operatively, the nonrenormalization theorem ofsupersymmetry (f. Ch.6) provides this protetion. Thus supersymmetry holds the key tothe stability and naturalness of the weak sale vis-�a-vis MU or MP l. This really is the raisond'être for the extension of the phenomenologially suessful Standard Model of partileinterations to the Minimal Supersymmetri Standard Model to whih a large part of thisbook will be devoted. In the next setions we shall illustrate this main argument throughexpliit alulations at the one loop level.6We note in passing that supersymmetry also allows one to \naturally" hoose arbitrarily small, evenvanishing, salar self ouplings, by relating them either to gauge or to Yukawa ouplings.



8 CHAPTER 1. SUPERSYMMETRY: WHY AND HOW1.2 Quadrati Divergene and UnnaturalnessWe illustrate the problem of the quadrati divergene in the Higgs setor of the SM throughan expliit alulation. The example studied is that of the two point funtion (inversepropagator) of the Higgs salar at vanishing external momentum, omputed at the one looplevel. This quantity is roughly �i times the squared salar mass appearing in the Lagrangian.This partiular objet has been hosen sine its alulation is simple and yet suÆes tohighlight the problem. Let � be the SM neutral Higgs �eld with v = q(1=p2GF ) ' 246GeV de�ned to be p2h�i so that the shifted physial �eld h is given by<e � = 1p2(h+ v) : (1.2)Take f to be a generi matter fermion �eld (of one speies) with a Yukawa oupling to � viathe term (we follow the onventions of Bjorken and Drell [1.14℄)L �ff� = ��f �fLfR�+ h::= � �fp2h �ff � �fvp2 �ff; (1.3)where fL;R are left, right hiral omponents of f . Thus, on aount of spontaneous symmetrybreaking, the fermion develops a tree level mass mf = �fv=p2.Let us now proeed to ompute the one loop f - �f ontribution to the salar two pointfuntion, as illustrated in Fig.1.2. We have
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Fig.1.2. Fermioni loop ontribution to the salar two point funtion.�fhh(0) = (�1) Z d4k(2�)4Tr��i �fp2� ik=�mf ��i �fp2� ik=�mf= �2�2f Z d4k(2�)4 k2 +m2f(k2 �m2f )2= �2�2f Z d4k(2�)4 " 1k2 �m2f + 2m2f(k2 �m2f )2# : (1.4)The �rst term in the �nal RHS of (1.4) is quadratially divergent and is moreover independentof the salar mass mS. First of all, this divergene is very severe. Suppose the integral is



1.2. QUADRATIC DIVERGENCE AND UNNATURALNESS 9ut o� by a � parameter whih is then set equal to the Plank mass MP l ' 2:4 � 1018GeV, the highest sale known in physis. Then the one loop orretion to m2S would be 30orders of magnitude larger than m2S itself sine mS is restrited [1.15℄, by the requirement ofperturbative unitarity in the amplitudeW+W� !W+W�, to be� O (1 TeV). Furthermore,the orretion (1.4) being independent of mS is an indiation of the fat that mS is anunnatural parameter in the SM. Setting mS = 0 does not inrease the symmetry of thattheory. That means that there exists no symmetry in the SM whih protets the Higgsmass. For simpliity, we have dealt with only the fermion antifermion loop ontributionto the Higgs self energy and ignored the gauge boson loop and (self-oupled) Higgs loopontributions. Eah of the latter ontains a quadrati divergene and has the same problemas above7.Of ourse, one ould simply renormalize suh quadrati divergenes away in the same waythat logarithmi divergenes are disposed of. But the legay of the severity of the quadratidivergene would still remain. Thus the residual �nite orretion in (1.4) would be or orderm2f�2f=(8�). Suh a orretion would be managably small for a standard model fermion likethe top quark. However, the SM is expeted to give way to a more fundamental theory, e.g.a Grand Uni�ed one [1.16℄ unifying all fores in it, at a high energy sale MU � 1016 GeV.In this ase the leading ontribution will ome from a fermion-antifermion pair whih anouple to h and have the highest mass, with mf expeted to be O(MU), ausing the looporretion to the salar mass squared, i.e. Æm2S, to be O(M2U). One would have to do anunnatural amount of �ne tuning (1 in 1026) between the bare salar mass squared m2S;0 andthe renormalization Æm2S in order to keep the renormalized mass squaredm2S = m2S;0 + Æm2S (1.5)to less than a (TeV)2. The argument an be ampli�ed through the onsideration of quartisalar ouplings.To make the above disussion more onrete, let us take the Grand Unifying group to be[1.16℄ SU(5) with � (H; �H) representing Higgs �elds in the 24 (5,�5) representation. Whilethe mass of � is expeted to be O(MU), that of the weak doublet parts of H and �H should beof O(MW ). At the tree level, the unifying sale MU is generated via MU = gUh�i, where gUis the uni�ed gauge oupling strength. The one loop e�etive ation ontains an interationterm � �H�2H, from the graph of Fig.1.3, where the wiggly lines represent gauge bosons ofthe SU(5) theory. If we take momentum sales at the two external H and � lines to be oforder MW and MU respetively, we shall have�(M2W ) � �(M2U) + g4U16�2 ln M2UM2W : (1.6)The indued mass of all omponents of H is �h�i2. Even if � is taken to be very small at the7In priniple, one an anel the total one loop quadrati divergenes by expliitly anelling bosoni andfermioni ontributions through some postulated relation between the boson and fermion masses. However,beause suh a anellation is `aidential', rather than being enfored by a symmetry, it will not work inhigher loop order.



10 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWtree level, �(M2W ) beomes O(g4U) after the one loop orretion. Without an extreme �ne
H

Σ Σ

HFig.1.3. One loop graph for the �H�2H vertex in an SU(5) Grand Uni�ed theory.tuning of �(M2W ), the indued mass of the weak sale Higgs doublet will then be at anunaeptably large level. Moreover, the �ne tuning would be very di�erent in di�erentorders of perturbation theory. This, basially, is the gauge hierarhy problem arising out ofthe radiative instability of salar masses: the latter like to be lose to the highest mass salein the theory.1.3 Naturalness, Nonrenormalization, SupersymmetryLoops indued by other salar �elds, ontributing to the Higgs two point funtion, an alsobe onsidered. Let us onstrut a toy model [1.17℄ by introduing to the system of x1.2 twoadditional omplex salar (\sfermion") �elds ~fL; ~fR with the following oupling to the Higgs�eld: L ~f ~f� = ~�f j�j2(j ~fLj2 + j ~fRj2) + (�fAf� ~fL ~f ?R + h::)= 12~�fh2(j ~fLj2 + j ~fRj2) + v~�fh(j ~fLj2 + j ~fRj2)+ hp2(�fAf ~fL ~f ?R + h::) + � � � : (1.7)In the seond step of (1.7), we have rewritten, by means of (1.2), the interation in terms ofthe h-�eld and have displayed only the h-dependent terms. The oeÆient of the last RHSterm is, in fat, arbitrary; the fator �f , multiplying the new unknown oupling strengthAf , has been put in only by onvention. (1.7) makes the following additional ontributionto the two point funtion via the loops of Fig.1.4:� ~fhh(0) = �~�f Z d4k(2�)4  1k2 �m2~fL + 1k2 �m2~fR!+(~�fv)2 Z d4k(2�)4 " 1(k2 �m2~fL)2 + 1(k2 �m2~fR)2#+j�fAf j2 Z d4k(2�)4 1k2 �m2~fL 1k2 �m2~fR : (1.8)



1.3. NATURALNESS, NONRENORMALIZATION, SUPERSYMMETRY 11
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h h h h h hFig.1.4. Sfermion loop ontributions to Higgs self energyOnly the �rst line in (1.8), whih omes from the leftmost diagram of Fig.1.4, ontains aquadrati divergene. This, however, an be anelled with that in the fermioni ontribution(1.4), i.e. �fhh(0) + � ~fhh(0) beomes free of any quadrati divergene, provided the followingoupling onstant equality is obeyed: ~�f = ��2f : (1.9)Note that the inequality ~�f < 0 is required in (1.7) to keep the Hamiltonian bounded frombelow. Another important point to note is that the above anellation of the quadratidivergene is independent of the masses m ~fL , m ~fR or the oupling strength Af .Now that the quadrati divergene has disappeared from �fhh(0)+� ~fhh(0), the remaininglogarithmi ones an be anelled by ontributions from logarithmially in�nite ountert-erms introdued in the Lagrangian density as part of the renormalization proedure. Inthe MS renormalization sheme8 [1.18℄, one an replae the logarithmi divergene in ourloop integrals by the logarithm of the square of the renormalization sale �. Utilizingthe B0-funtion of Passarino and Veltman, we an then make [1.19℄ the following types ofreplaements:Z d4ki�2 � 1k2 �m21 � 1k2 �m22� � (m21 �m22)B0(0; m21; m22)m21�1� ln m21�2 ��m22 �1� ln m22�2 � ; (1.10a)Z d4ki�2 1(k2 �m2)2 ! � ln m2�2 : (1.10b)8A aveat is in order here. The MS sheme was originally proposed with dimensional regularization whihhas a problem in supersymmetry sine the numbers of bosons and fermions do not math as one goes o� fourdimensions. For supersymmetri loop omputations, one needs to adopt the modi�ed dimensional redutionor DR sheme where the momentum integrals are evaluated in ontinued dimensions and the subtration isperformed as in MS, but the Dira algebra in the numerator is done stritly in four dimensions. A moreextensive disussion of the DR sheme will ome in Ch.6.



12 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWThe onsequent expression for the sum of (1.4) and (1.8) an be simpli�ed by hoosingm ~fL = m ~fR = m ~f : (1.11)The hoies (1.9) and (1.11) as well as the substitutions (1.10) lead to the result:�fhh(0) + � ~fhh(0) = i �2f16�2"� 2m2f �1� ln m2f�2 � + 4m2f ln m2f�2+2m2~f  1� ln m2~f�2 !� 4m2f ln m2~f�2 � jAf j2 ln m2~f�2 #:(1.12)Thus, if along with (1.11), we also require the relationsmf = m ~f ; (1.13a)A ~f = 0 ; (1.13b)we will have �fhh(0) + � ~fhh(0) = 0 : (1.14)Eq. (1.14) an be restated as follows. If the fermion Yukawa oupling strength squaredequals the quarti oupling between the Higgs and the salars ~fL;R, if the masses of thefermion f and of the salars ~fL;R are idential and if the Af parameter is zero, the entireone loop renormalization of the Higgs self energy �hh(0) vanishes.We are now ready to give a supersymmetri interpretation of the above. In an exatlysupersymmetri theory, the two salars ~fL;R are the left and right superpartners (sfermions) ofthe fermion f . Moreover, the oupling strength equality (1.9), the mass equalities (1.11) and(1.13a) and the required null value of the (supersymmetry breaking) parameter Af (1.13b)are all ensured by supersymmetry. Indeed, with these onditions, the vanishing of therenormalization of the Higgs self energy holds in all perturbation orders as a onsequene ofthe nonrenormalization theorem (f. x6.7) valid in supersymmetri theories. This is theessene of naturalness due to supersymmetry. The naturalness aspet is also made lear bythe introdution of a ertain kind of small supersymmetry breaking, namely that the breakingis on�ned to the masses mf and m ~f being di�erent and to Af being nonzero but does nothange the oupling equality (1.9). These are spei� instanes of parameters typial of softlybroken supersymmetry, i.e. as oeÆients of supersymmetry breaking operators of massdimension less than four in the Hamiltonian. Suppose we haraterize this supersymmetrybreaking in terms of two small parameters Af and Æ, withÆ2 = m2~f �m2f : (1.15)(Here we have hosen to maintain9 (1.11) while relaxing (1.13) via a small mass splitting.)Thus Æ haraterizes the mass splitting within the f - ~f supermultiplet. With the assumption9In a more general disussion, one ould introdue another supersymmetry breaking mass parameter,splitting mfL and mfR , whih would then enter the RHS of (1.16). But the basi onlusion would still bethe same.



1.3. NATURALNESS, NONRENORMALIZATION, SUPERSYMMETRY 13that jÆj; jAf j � mf , we an approximate ln(m2~f=�2) ' ln(m2f=�2)+Æ2=m2f and rewrite (1.12)as �fhh(0) + � ~fhh(0) ' �i �2f16�2 �4Æ2 + (2Æ2 + jAf j2) ln m2f�2 �+O(Æ4; jAf j2Æ2) : (1.16)Hene the one loop renormalization of the Higgs self energy is linearly proportional10 to thesmall supersymmetry breaking parameters Æ2 and jAf j2, restriting the orretion to one ofmodest magnitude, though mf may be quite large.Thus the introdution of the superpartners ~fL;R with the interations of (1.7) has servedtwo purposes: (1) the quadrati divergene in the salar self energy is anelled; (2) thesalar mass is shielded from large loop orretions involving heavy partiles so long as themass splitting between the heavy fermion and boson superpartners is itself of the orderof the salar mass. This then is a toy model example of how naturalness is restored bysupersymmetry in the salar setor of the SM. We have on�ned ourselves here to disussingfermion and sfermion loop ontributions to the Higgs self energy. But the same onlusionsfollow mutatis mutandis if loop ontributions from gauge bosons and their superpartners areombined or Higgs bosons and their superpartners are added together.
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HFig.1.5. Additional one loop graph for the �H�2H vertex in the supersymmetri SU(5) theory.Returning to the disussion, given at the end of x1.2, of the supersymmetri SU(5) GrandUni�ed Theory, there will now be a new one loop diagram ontributing to the �H�2H vertexin addition to Fig.1.3. This is shown in Fig.1.5 where the solid lines represent appropriatefermioni superpartners of SU(5) gauge bosons and �-�elds. The two graphs anel in theleading terms and the quarti oupling strengths � at those two di�erent sales are nowrelated by �(M2W ) � �(M2U) lnM2WM2U :10The persistene of the renormalization sale � in (1.16) need not worry us sine the LHS is not aphysially measurable quantity.



14 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWHene the previous hierarhial instability does not materialize and the problem of the ra-diative instability of the gauge hierarhy is solved11 [1.20℄ as a onsequene of the nonrenor-malization theorem of supersymmetry (f. Ch.6). The earlier additive term in the RHS of(1.6), proportional to g4U , has got anelled. The multipliative logarithmi fator omes inthe following way. The salar quarti oupling is a oupling in the superpotential (f. Ch.5).Sine the latter is not renormalized (f. Ch.6), the renormalization of suh a oupling has tobe balaned by the wavefuntion renormalizations of the multiplying super�elds. Owing todimensional reasons, the latter an at most have a logarithmi dependene on the two masssales. The same must then be true of �. These issues will beome muh learer after thedisussion in x6.6.In our introdution and overview, as given in this hapter, we have tried to provide amotivation for softly broken supersymmetry other than just its mathematial beauty. Itis needed as a stabilizer of the weak sale MW . The latter is radiatively unstable in theStandard Model; the instability of the Higgs mass mh arues via the Higgs VEV to MW .Stabilization within the Standard Model an be ahieved only by �ne tuning. As a result,despite its logial onsisteny and impressive experimental support, the Standard Model isan unnatural theory. Supersymmetry with soft breaking makes the theory radiatively stableand natural, provided the spartiles are not muh heavier than a few TeV.

11This is a far ry, however, from explaining the origin of the hierarhy, namely the ratio of the magnitudesof the weak and the uni�ation sales within a supersymmetri grand uni�ed framework.
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Chapter 8BASIC STRUCTURE OF THEMSSM
8.1 Brief Review of the Standard ModelWe disuss in this hapter the minimal extension of the Standard Model (SM) [8.1℄ that isneeded to inorporate softly broken N=1 global supersymmetry in the latter. This is alledthe Minimal Supersymmetri Standard Model (MSSM) [8.2℄. The pre�x \minimal" is usedto distinguish from nonminimal extensions whih we shall ome to in Ch.14. In order tosupersymmetrize the SM, we need (f. Chs. 1,3) to introdue for every partile a superpart-ner. The latter di�ers from the former in spin by half and in mass generally by some positiveamount O(Ms), but with all other internal quantum numbers kept idential. In the SM allmatter �elds (pertaining to quarks and leptons) are spin half fermioni �elds while gaugebosons have spin one. The superpartners of the former annot have spin one. Sine theyare supposed to be matter �elds, they are not gauge bosons while the only known onsistentrelativisti �eld theories of spin one partiles are those of gauge bosons. Thus superpartnersof matter fermions are taken to be spin zero salars and are desribed, along with the latter,by hiral super�elds. These salars are alled sfermions and they an be lass�ed into salarleptons or sleptons and salar quarks or squarks. Similarly, sine even at the lassial level,the only onsistent interating �eld theory of spin 3=2 partiles has to inlude [8.3℄ gravity,the superpartner �elds of the SM gauge bosons are hosen to have spin 1=2; they are alledgauginos. Gauge bosons and gauginos are desribed by vetor super�elds. Gauginos anbe further lassi�ed into the strongly interating gluinos as well as the eletroweak zino(orresponding to the Z boson) and winos (orresponding to the W bosons). Spin zeroHiggs bosons are desribed, along with their spin half superpartners (alled higgsinos), byhiral super�elds. We shall later see that eletroweak symmetry breaking mixes the EWgauginos with the higgsinos making physial harginos and neutralinos.To begin with, let us set up the notation by briey summarizing some basi ingredientsof the SM itself. The gauge symmetry group is SU(3)C � SU(2)L � U(1)Y , with subsriptsC;L; Y referring respetively to olor, left hirality and weak hyperharge. All matter (quarkand lepton) �elds are fermion �elds with left hiral ones transforming as doublets and righthiral ones as singlets of SU(2)L. The hyperharge Yf of eah fermion �eld is related to its161



162 CHAPTER 8. BASIC STRUCTURE OF THE MSSMeletromagneti harge Qf and the third omponent of its left hiral weak isospin T f3L byQf = T f3L + Yf2 : (8.1)The eletroweak gauge transformation properties of the left hiral, right hiral fermion �eldsfL = 12(1� 5)f , fR = 12(1 + 5)f are:fL(x)! e�igY �Y (x)Y=2 e�ig2~�2(x)�~�=2fL(x) ; (8.2a)fR(x)! e�igY �Y (x)Y=2fR(x) ; (8.2b)where gY , �Y (x) and g2, ~�2(x) are the U(1)Y and SU(2)L gauge ouplings, funtions respe-tively. Moreover, Y is the hyperharge operator and the Pauli matries ~� at in the weakisospin doublet representation spae.Fields for the three generations (generation index i = 1; 2; 3) of leptons and quarks, alongwith the dimension of the orresponding SU(2)L representation and the Y quantum numberare listed below.`iL = � �iei �L ; i:e: `1L = � �ee��L ; `2L = � �����L ; `3L = � ���� �L : (2;�1) ;e1R = e�R; e2R = ��R; e3R = ��R : (1;�2);qiL = � uidi �L ; i:e: q1L = � ud�L ; q2L = � s�L ; q3L = � tb�L : �2; 13� ; (8.3)u1R = uR; u2R = R; u3R = tR : �1; 43� ;d1R = dR; d2R = sR; d3R = bR : �1;�23� :The olor gauge transformations of quark (q) and lepton (`) �elds are:qL;R(x)! e�igs�as(x)�a=2qL;R(x); `L;R(x)! `L;R(x) ; (8.4)with gs, �as being the SU(3)C gauge oupling, funtions and �a being the Gell-Mann SU(3)lambda matries ating in the triplet (3) representation spae. The quark �elds of (8.4)transform as olor triplets (3) of SU(3)C whereas the lepton �elds of (8.3) are olor singlets.The SU(2)L singlet right hiral fermion �elds an be onverted into left hiral ones by hargeonjugation. For instane, u CR = (uC)L is suh a �eld with TLf = 0, Y = �43 and transformingas a olor antitriplet (�3). Again, e�R = (e+L)C and so on.The gauge �elds ga� (a = 1; � � � ; 8), ~W� andB� transform aording to the adjoint represen-tations of SU(3)C , SU(2)L and U(1)Y respetively. The eight gluons ga are always masslesswhile the three SU(2)L gauge bosons W1;2;3 and the one U(1)Y gauge boson B are masslessonly in the limit of exat eletroweak symmetry. At the weak sale, the SU(2)L � U(1)Yeletroweak (EW) symmetry gets spontaneously broken to U(1)em. The unbroken symmetry



8.1. BRIEF REVIEW OF THE STANDARD MODEL 163group at energies lower than the weak sale is thus SU(3)C � U(1)em. This spontaneoussymmetry breakdown is driven by an SU(2)L doublet of salar Higgs �elds � = ��+�0 � withY = 1 and is signaled by a real nonzero vauum expetation value (VEV) for this �eld,arising from the minimization of the Higgs potential term V (�) and given byh�i = 1p2 � 0v� : (8.5)While the photon  remains massless, the weak bosons W� and Z aquire masses thoughthe VEV v in (8.5). The latter is related to the masses MW;Z and the ouplings g2;Y as wellas to the Fermi onstant GF byMW = 12g2v; MZ = 12qg2Y + g22 v; v = � 1p2GF �1=2 ' 246 GeV: (8.6)The �elds W�� , Z� and A�, whih are mass eigenstates, are given respetively in terms ofthe �elds ~W� and B�, introdued earlier, asW �;� = 1p2(W �1 � iW �2 ) ; (8.7a)Z� = g2pg2Y + g22W �3 � gYpg2Y + g22B�= � sin �WB� + os �WW �3 ; (8.7b)A� = os �WB� + sin �WW �3 ; (8.7)with e = g2 sin �W = gY os �W : (8.8)The nonzero VEV, introdued in (8.5), is also responsible in the SM for generatingfermion masses through Yukawa interation terms haraterized by oupling strengths f andgeneration indies1 i; j. For the latter, we an write:L1Y = �f e?ij `iL�ejR � f d?ij qiL�djR + h:: (8.9)in ase of \down type" right hiral fermions (ejR; djR) andL2Y = �fu?ij qiL�CujR + h:: (8.10)for \up type" right hiral fermions ujR. The omplex onjugate f ? has been hosen herefor onveniene in later supersymmetri generalization (f. 8.33) and i; j are summed onrepetition. Furthermore, �C = i�2�? = � �0?����1We shall not use here the type subspae formalism, introdued in Ch.5, with both supersripts andsubsripts. Thus all generation indies will heneforth be subsripts.



164 CHAPTER 8. BASIC STRUCTURE OF THE MSSMis the \harge onjugated" Higgs doublet �eld. Note that leptoni ouplings are absent from(8.10) sine there is no �R. The substitution of (8.5) into (8.9) and (8.10) leads to thefermion mass terms. Suppose, for a set of Dira fermions  i, we de�ne the mass matrix mijby writing the fermion mass term in the Lagrangian density asLFMT = � � iLmij Rj + h::� :Then one an write the harged lepton, down type quark, up type quark mass matries [8.1℄in generation spae as(me)ij = 1p2f e?ij v = meiÆij; (md)ij = 1p2f d?ij v; (mu)ij = 1p2fu?ij v ; (8.11)the �rst being brought into a real diagonal form without loss of generality on aount ofthe assumed masslessness2 of the neutrinos. However, the up type and down type quarkmass matries do not have this advantage and an be put into real diagonal forms only bybiunitary transformations. Thus if the mass eigenstate left, right u- and d-quark �elds areunitarily transformed to the orresponding avor eigenstate ones by UuL , UuR and UdL ,UdR , the quark mass matries transform as(UuyLmuUuR )ij = [m(D)u ℄ij � muiÆij ; (8.12a)(UdyLmdUdR )ij = [m(D)d ℄ij � mdiÆij : (8.12b)In (8.12) m(D)u and m(D)d are the physial real diagonal mass matries for up and down typequarks respetively.Baryon number B and lepton type numbers Le;�;� (and hene lepton number L � Le +L� + L� ) are onserved in the SM. These `aidental' global symmetries are a onsequeneof the partile ontent and the gauge group. As will be disussed in more detail later,the situation is quite di�erent for the MSSM. The latter an aommodate several typesof renormalizable interations whih violate some or all of these symmetries. For the timebeing, let us nonetheless restrit ourselves to a version of the MSSM where these symmetriesare onserved by the assumption of R-parity invariane (f. x4.5).8.2 Super�elds of the MSSMWe now proeed to introdue a hiral super�eld for every hiral fermion of the SM. Apartfrom these hiral fermions and auxiliary �elds, suh super�elds will ontain new salar �elds.For the �rst generation, these salar �elds an be enumerated as~̀1L = � ~�~e��L ; ~e1R = ~eR; ~q1L = � ~u~d�L ; ~u1R = ~uR; ~d1R = ~dR : (8.13)2An important example of a term that violates the lepton number symmetry is a Majorana neutrinomass. Sine neutrino masses an be introdued without signi�antly altering the spei� supersymmetriaspets of partile phenomenology, we postpone a detailed disussion of this point to Ch.14.



8.2. SUPERFIELDS OF THE MSSM 165Here ~̀1L are alled left sleptons (more spei�ally, left seletron and sneutrino) while ~eR isalled the right seletron. Let us denote by L1 (Q1) and �E1 ( �U1, �D1) the left hiral lepton(quark) doublet and antilepton (antiquark) singlet hiral super�elds respetively. Thus, forthe �rst generation of leptons and sleptons, we an take the super�eldsL1 = �L�eLe � ; �E1 : (8.14)Contained in these are the �elds `1L, ~̀1L, e C1R = eCR and ~e ?1R = ~e ?R orresponding3 respetivelyto  `1L, �`1+,  CeR and �e� in the notation of Ch.5. There is no singlet neutrino super�eldsine the SM does not ontain any left hiral antineutrino. Similarly, the �rst quark (andsquark) generation is represented by the super�eldsQ1 = �QuQd � ; �U1; �D1 : (8.15)These ontain the �elds q1L, ~q1L, u C1R = u CR , d C1R = d CR , ~u ?1R = ~u ?R and ~d ?1R = ~d ?Rorresponding to  q1L, �q1+,  CuR ,  CdR , �u� and �d� respetively.The above proedure an be repeated for the seond and third generations. Thus wedenote matter super�elds orresponding to these generations by Li, �Ei, Qi, �Ui and �Di withi = 2; 3. So we have L2 = �L��L� � ; �E2; Q2 = �QQs� ; �U2; �D2 ; (8.16)respetively ontaining the �elds `2L, ~̀2L, e C2R = � CR , ~e ?2R = ~� ?R , q2L, ~q2L, u C2R =  CR ,~u ?2R = ~ ?R , d C2R = s CR , ~d ?2R = ~s ?R . Furthermore, there areL3 = �L��L� � ; �E3; Q3 = �QtQb� ; �U3; �D3 ; (8.17)respetively ontaining the �elds `3L, ~̀3L, e C3R = � CR , ~e ?3R = ~� ?R , q3L, ~q3L, u C3R = t CR ,~u ?3R = ~t ?R , d C3R = b CR , ~d ?3R = ~b ?R .Supersymmetry, by itself, does not provide any lear answer to the generation or familyproblem and, in the MSSM, one simply repliates the super�elds thrie for the three genera-tions. Within eah family, however, the ounting of fermioni and bosoni degrees of freedommust math for every supermultiplet, as desribed by a hiral super�eld. Corresponding toa massive Dira fermion �eld, fu say, with four on-shell degrees of freedom (two spin statesfor the partile and two for the antipartile, as embodied in the omplex hiral �elds fuLand fuR), there are two orresponding omplex salar �elds ~fuL and ~fuR. Eah of the lat-ter, together with its omplex onjugate, stands for partile and antipartile �elds; thus theomponents math. Note further that ~fuL and ~fuR have di�erent SU(2)L � U(1)Y quantumnumbers just as fuL and fuR do. Another point needs to be emphasized here. Sine thesuperpotential W an ontain only left hiral super�elds, one is obliged to use the left hiral3Cf. x5.6, exept that we have dropped the +;� subsripts and used overbars for singlets.



166 CHAPTER 8. BASIC STRUCTURE OF THE MSSMharge onjugates of the SU(2)L singlet right hiral fermion �elds, i.e. f CuR = (fCu )L et., andthe omplex onjugates of their superpartner right sfermion �elds, i.e. ~f ?uR et. These areontained in left hiral super�elds with quantum numbers of the onjugate representations.Finally, all matter super�elds are taken to have odd matter parity (f. x4.5).In the gauge setor we introdue one vetor super�eld orresponding to eah gauge �eldin the gauge group SU(3)C � SU(2)L � U(1)Y . Thus we have the U(1)Y , SU(2)L, SU(3)Cgauge �elds B�, ~W�, ga� and the orresponding spin half (four omponent) Majorana gaugino�elds ~�0, ~~�, ~ga ontained in the super�eldsfV Y ; ~V W ; V ag g (8.18)respetively. Every gaugino �eld, like its gauge boson partner, transforms as the adjointrepresentation of the orresponding gauge group. Moreover, eah suh �eld has left hiraland right hiral omponents whih are harge onjugates of eah other:(~�0L)C = ~�0R : (8.19)Next, we turn to the supersymmetrization of the Higgs setor of the SM. The latter hasonly one SU(2)L doublet �eld � with a hyperharge Y� = 1. As disussed earlier, the sameHiggs VEV v an be used to give masses to the T3L = 1=2 and T3L = �1=2 fermions via theYukawa interation terms of (8.9) and (8.10). In partiular, (8.10) has been made possibleonly by use of the onjugate Higgs �eld �C whih has Y�C = �1. Suh a term, however,will not be allowed in a supersymmetri theory. There the Yukawa interations are derivedfrom the superpotentialW whih has to be an analyti funtion of left hiral super�elds (seex5.1). Hene interation terms, derived from the same superpotential, annot ontain both� and �C . Therefore, in order to make the T3L = �1=2 fermions massive, a seond Higgsdoublet is needed. We must then have { in a supersymmetri theory { two Higgs doubletswith hyperharges Y = �1 and 1 whih we shall denote by h1 (down type) and h2 (up type)respetively. If the supersript D is an SU(2) doublet index taking values 1; 2, we an writefor D = 1, h11 = h01 and h12 = h+2 while, for D = 2, we an write h21 = h�1 , h22 = h02:h1 � � h11h21� = � h01h�1 � ; h2 � � h12h22� = � h+2h02 � : (8.20)Their Yukawa interations an be written down simply by replaing � and �C by �i�2h?1 andi�2h?2 respetively in (8.9) and (8.10). The Higgs VEVs, after the spontaneous breakdown ofeletroweak symmetry, are now given by real, positive quantities (f. x10.2) v1;2 whih arisefrom the minimization of the Higgs potential term V (h1; h2) and are shown below:hh1i = 1p2 � v10 � ; hh2i = 1p2 � 0v2� : (8.21)It is well known [8.4℄ that this two Higgs doublet extension of the SM, with the up and downtype fermions oupling to separate Higgs doublets, is perfetly ompatible with all FCNConstraints4 sine it obeys the Glashow-Weinberg/Pashos ondition [8.1℄. The only hange4This is true even inluding one loop orretions.



8.2. SUPERFIELDS OF THE MSSM 167is that (8.6) and (8.11) are now respetively modi�ed toMW = 12g2qv21 + v22; MZ = 12qg2Y + g22qv21 + v22; qv21 + v22 = � 1p2GF �1=2 ' 246 GeV(8.22)and (me)ij = meiÆij = 1p2f e?ij v1; (md)ij = 1p2f d?ij v1; (mu)ij = 1p2fu?ij v2 ; (8.23a)f e?ij = g2p2MW os � (me)ij; f d?ij = g2p2MW os � (md)ij; fu?ij = g2p2MW sin � (mu)ij : (8.23b)The relations in (8.23b) have been obtained by inverting those in (8.23a). The ratiov2v1 = tan� (8.24)beomes a free parameter of the theory in so far as fermion masses are onerned.The left hiral fermioni partners of the Higgs bosons of (8.20) are given by~h1L � � ~h11~h21� = � ~h01~h�1 �L ; ~h2L � � ~h12~h22� = � ~h+2~h02 �L : (8.25)In (8.25) we have de�ned higgsino �elds ~h01L; ~h�1L; ~h+2L and ~h02L, whih are two omponentspinorial �elds in the (12 ; 0) representation (f. x3.2) and identi�ed with ~h11; ~h21; ~h12 and ~h22respetively. Generalizing, we an denote the left hiral super�elds ontaining h1; ~h1L andh2; ~h2L by H1; H2 respetively. So we haveH1 = �H11H21 � ; H2 = �H12H22 � (8.26)as the down type, up type Higgs super�elds with Y = �1; 1 respetively. They are assignedeven matter parity sine they are pereived to be quantalike (f. Table 4.1). Note that, forquarks and leptons, the need to have a massive Dira fermion makes it neessary for us tointrodue SU(2)L doublet and singlet hiral super�elds. This is unneessary in the ase of theHiggs super�elds sine ~h01L and (~h02L)C an ombine to form a four omponent spinorial �eldand ditto ~h�1L and (h+2L)C . There is therefore only one four omponent neutral higgsino �eldand similarly only one four omponent harged higgsino �eld5. The two Higgs super�eldsof (8.26) are thus suÆient. These, together with those in (8.14) { (8.18), omprise all thesuper�elds of MSSM. They are all listed in Tables 8.1a and 8.1b.5This is true with unbroken eletroweak symmetry. The broken symmetri ase is more ompliated andwill be disussed later.



168 CHAPTER 8. BASIC STRUCTURE OF THE MSSMLEFT CHIRAL MATTER SUPERFIELDSLepton doublets (olor multiplet, T3L; Y ) Quark doublets (olor multiplet, T3L; Y )L1 = �L�eLe � �1; 12 ;�1��1;�12 ;�1� Q1 = �QuQd � �3; 12 ; 13��3;�12 ; 13�L2 = �L��L� � �1; 12 ;�1��1;�12 ;�1� Q2 = �QQs� �3; 12 ; 13��3;�12 ; 13�L3 = �L��L� � �1; 12 ;�1��1;�12 ;�1� Q3 = �QtQb� �3; 12 ; 13��3;�12 ; 13�Antilepton singlets (olor multiplet, T3L; Y ) Antiquark singlets (olor multiplet, T3L; Y )�Ee (1; 0; 2) �U1; �D1 ��3; 0;�43� ;��3; 0; 23��E� (1; 0; 2) �U2; �D2 ��3; 0;�43� ;��3; 0; 23��E� (1; 0; 2) �U3; �D3 ��3; 0;�43� ;��3; 0; 23�Table 8.1a. Matter super�eld ontent of the MSSM.GAUGE SUPERFIELDS LEFT CHIRAL HIGGS SUPERFIELDSNotation Name Doublets Name YV Y Hyperharge H1 = � H01H�1 � Down type {1~VW Weak isospinV ag Color H2 = �H+2H02 � Up type 1Table 8.1b. Gauge and Higgs Super�eld ontent of the MSSM.A question an be raised at this point as to whether one ould have been more eonomialwith the ontents of super�elds in the MSSM. The requirement that all the omponent �eldsin eah super�eld must arry the same internal quantum numbers would quikly onvineanyone that the above is neessarily the minimum set. The omponents of H1 and Li, forinstane, have the same eletromagneti harges, but they di�er in lepton number (inludinglepton type) and matter parity. We have already given the raison d'être for the existene oftwo Higgs super�eld doublets with Y = �1 and Y = 1, namely the generation of masses forboth T3L = �1=2 and T3L = 1=2 fermions respetively. In fat, even in the supersymmetriextension of a matterless SM (with only gauge and Higgs �elds), the two Higgs doublet



8.2. SUPERFIELDS OF THE MSSM 169super�elds H1 and H2 are neessary for self-onsisteny. The ondition of anomaly anel-lation [8.5℄ in the higgsino setor, a requirement of renormalizability, demands in partiularthat �~hY 3~h = 0 where Y~h is the hyperharge of eah higgsino �eld ~h. Thus one doublet ~h2with Y~h2 = 1 has to be ompensated by another ~h1 doublet with Y~h1 = �1. (Gauginos,whih are another set of new fermions in the supersymmetri theory, are in the safe adjointrepresentations and do not ause anomaly problems.) We see �nally that all the super�elds,introdued above and tabulated in Tables 8.1a,b are indeed neessary for the minimal ex-tension of the SM keeping intat its loal symmetries, suh as eletromagneti harge andolor, as well as its global symmetries through the onservation of baryon (B) and lepton(L) number (inluding lepton type). As stated earlier, the exat onservation of R-parity isan assumed additional requirement. Within the MSSM the assumption of B and L (inlud-ing lepton type Li) onservation6 is equivalent to that of R-parity onservation7. But, forsuperpotential terms and supersymmetry breaking operators in the Lagrangian density, thisis a highly onstraining requirement.Of ourse, states orresponding to all omponent �elds of the super�elds, desribed above,are only `interation' eigenstates. In the real world, the absene of mass degenerate partile-spartile pairs requires supersymmetry to be broken. We shall disuss in the next hapterwhy suh a breaking annot be spontaneous within the framework of the MSSM itself. SuÆeit to say here that it has to be expliit and soft (f. x7.7). This breaking of supersymmetry inthe MSSM an be parametrized in terms of a few expliit soft terms added to the Lagrangiandensity. We hoose the most general terms of this kind. But they are �rst introdued inan ad ho manner, though some rationale for them will be given in Chs.12 and 13 on thebasis of high sale physis. The ontents of these terms will be disussed in detail in Ch.9.Let us remark, for the moment, that they an indue mixing between di�erent spartileswith the same harge and olor. Indeed, even without supersymmetry breaking, eletroweaksymmetry breaking alone auses mixings between gauginos and higgsinos (f. 5.30). Thus,for instane, harged gauginos mix with harged higgsinos through a 2 � 2 mixing matrix.The two physial mass eigenstates from that are alled harginos ~��1;2, the subsript 1 (2)onventionally referring to the lighter (heavier) spartile. A more elaborate disussion willappear in x9.2.We an immediately see yet another need for two Higgs doublets in this theory. The twodoublet super�elds H1; H2 are left hiral ones and they ontain the left hiral higgsinos of(8.25); the onjugate super�elds Hy1; Hy2 ontain the orresponding right hiral ones. Theleft hiral harginos omprise four orthogonal states: the positively harged ~�+1L; ~�+2L and thenegatively harged ~��1L; ~��2L. Let us de�ne harged gaugino (wino) �elds~�� = 1p2 �~�1 � i~�2� = ~��L + ~��R ; (8.27)where the supersripts 1; 2 are Cartesian SU(2)L indies. The massive ~�+1L and ~�+2L areorthogonal linear ombinations of ~�+L and ~h+2L while ~��1L and ~��2L are formed by similarly6Stritly speaking, even B and L (also Li) are violated at the loop level through anomalies both in the SMand the MSSM, only 13B �Li is exatly onserved. But these violations are very tiny in a zero temperature�eld theory.7This equivalene is not neessarily valid in extensions of the MSSM. Of ourse, supersymmetri GrandUni�ed Theories usually violate B and L but may respet R-parity.



170 CHAPTER 8. BASIC STRUCTURE OF THE MSSMombining ~��L and ~h�1L. (N.B. there is no ~h�2L or ~h+1L!) Correspondingly, the right hiralharginos ~��1R, ~��2R and ~�+1R, ~�+2R are orthogonal linear ombinations of the harge onju-gates of the above pairs of gauginos and higgsinos, viz. ~��R, ~h�2R and ~�+R, ~h+1R respetively.Evidently, we require both ~h+2L and ~h�1L, as appear in the two Higgs doublets, otherwise somehargino �eld, laking a partner to make a Dira mass term in the Lagrangian density, wouldremain massless. Thus we see how the two higgsino doublet �elds in the MSSM are used, inombination with the harged winos, to generate two massive Dira harginos.Similarly, there is mixing among the neutral gauginos, whih an be desribed by fouromponent Majorana �elds. There are two, namely ~�0 and ~�3, whih mix with the neutralhiggsinos ~h02 and ~h01 through a 4 � 4 mixing matrix. In this ase the four physial masseigenstate Majorana fermions are alled neutralinos ~�0i (i = 1; � � � ; 4), the subsripts beingmonotonially ordered in the diretion of inreasing mass, by onvention. One again, a de-tailed desription of the mixing among harge neutral gauginos and higgsinos, forming masseigenstate neutralinos, will be given in x9.2. In fat, similar mixings an our among dif-ferent squark generations or among di�erent slepton generations (if lepton type number getsviolated) as well. Also, one an (and does) have left right sfermion mixing. Not muh morean be said a priori about mixing between di�erent interation eigenstates in the spartilesetor. These depend on the detailed struture of the supersymmetry breaking terms andtheir relationship with EW symmetry breaking. Suh details about spartile mass eigen-states will be taken up in the next hapter after we have disussed the soft supersymmetrybreaking terms at length.An enumeration has been given below (Table 8.2) of spartile �elds in the minimal globallysupersymmetri extension of the SM whih follows from the onstrution desribed earlier.Sfermions Gauginos and higgsinosName Symbol Name Symbol(left, right) seletron ~eL;R gluinos ~ga(left, right) smuon ~�L;R(left, right) stau ~�L;R lighter harginos ~��1e-sneutrino ~�e�-sneutrino ~�� heavier harginos ~��2� -sneutrino ~��(left, right) u-squark ~uL;R lightest neutralino ~�01(left, right) d-squark ~dL;R(left, right) -squark ~L;R next-to-lightest neutralino ~�02(left, right) s-squark ~sL;R(left, right) stop ~tL;R next-to-heaviest neutralino ~�03(left, right) sbottom ~bL;R heaviest neutralino ~�04Table 8.2. List of spartile �elds in the MSSM. Antisfermion �elds have not been listed.Sfermions of the third generation are likely to have strong L-R mixing; the mass eigenstatesfermion �elds are denoted as ~�1;2, ~t1;2 and ~b1;2. Antisfermioni �elds are denoted by onjuga-tions of sfermioni �elds, e.g. ~e?L;R from ~eL;R and ~qyL;R from ~qL;R. However, this is a notation



8.3. SUPERSYMMETRIC PART OF THE MSSM 171that we shall use for �elds only, while an antisfermioni partile { the superpartner of an an-tifermion { will be labeled ~f , i.e. ~eL for the right spositron and ~uL for the right u-antisquark.Additional partiles and spartiles may be needed by theoretial shemes whih go beyondthis minimal extension. For instane, the gravitino ~G, whih is needed in a spontaneouslybroken N=1 supergravity (SUGRA) theory, has not been inluded here.8.3 Supersymmetri Part of the MSSMIn this setion we will introdue and disuss those interation and mass terms in the La-grangian density LMSSM whih ome from the exat supersymmetrization of the SM. Softinteration terms with mass dimensions less than four as well as mass terms, whih desribethe heavier masses of spartiles as di�erent from those of their partile partners, arise fromsupersymmetry breaking and will be addressed in a later setion. The general form of theLagrangian density is LMSSM = LSUSY + LSOFT (8.28)and in this setion we will give expliit expressions for LSUSY only. In order to write downthe supersymmetri interations among the dynamial �elds enumerated in x8.1, we willessentially use the forms of the Lagrangian densities of SQED, SQCD and S�GT of Chapter5, but overing three families of quarks and leptons. The only really new addition is theontribution from the Higgs setor. The gauge ouplings are the same as in the SM. Thereis no need to give the expliit gauge transformations of the matter super�elds enumeratedin x8.1. These an be obtained by a straightforward extension of (5.15) and (5.38). But wean deompose the supersymmetri part of the MSSM Lagrangian density as follows:LSUSY = Lg + LM + LH ; (8.29)where Lg;LM and LH are the pure gauge, matter and Higgs-Yukawa parts respetively.The pure gauge part of LSUSY an be written, in terms of �eld strength spinorialsuper�elds W ag , ~WW and WY , onstruted respetively via (4.39) and (5.45) from V ag , ~VWand V Y , aording to (5.17) and (5.54):Lg = 14 Z d2� �W aAg W agA + ~WAW � ~WWA +WAY WY A�+ h:: ; (8.30)where the olor index a has been summed on repetition. Similarly, the matter ontributionan be given by the generalization of (5.62) asLM = Z d4�"Lyi e(g2~V W �~� + gY V Y Y )Li + �Eyi egY V Y Y �Ei + �U yi e(gsV ag ��a + gY V Y Y ) �Ui+ �Dyi e(gsV ag ��a + gY V Y Y ) �Di +Qyi e(gsV ag �a + g2~V W �~� + gY V Y Y )Qi#: (8.31)In (8.31) the Pauli matries ~� at in the weak isospin doublet representation spae whilethe Gell-Mann matries �a (and their omplex onjugates ��a) at in the olor triplet 3 (and



172 CHAPTER 8. BASIC STRUCTURE OF THE MSSMantitriplet �3) representation spaes. The subsript i is a family index, summed over 1; 2; 3on repetition. Finally, the Higgs ontribution an be written asLH = 2Xp=1 Z d4� �Hyp e(g2~VW �~� + gY V Y Y )Hp +WMSSMÆ(2)(��) +WyMSSMÆ(2)(�)� ; (8.32)where the superpotential WMSSM is given byWMSSM = �H1 �H2 � f eijH1 �Li �Ej � f dijH1 �Qi �Dj � fuijQi �H2 �Uj : (8.33)(We use the notation A�B � �DEADBE for two SU(2)-doublet super�elds or �elds A;B withD;E being indies in the doublet representation spae with the same supersript/subsriptonventions as for two omponent spinors in Ch.3). The signs in (8.33) have been hosenso that the fij's here are the same as of those in (8.9) and (8.10), as an be heked byuse of (5.3) and (3.28a,b). The seond, third and fourth terms in the RHS of (8.33) arejust the supersymmetri generalizations of the Yukawa ouplings in (8.9) and (8.10). Onlythe �rst RHS term of (8.33) is new. This term, ontaining the parameter �, whih hasthe dimension of mass, an be thought of as a supersymmetri generalization of a higgsinomass term. We shall later see that a onsistent inorporation of spontaneous eletroweaksymmetry breakdown requires � to be of the order of the weak sale. The hoie of terms inWMSSM has been onstrained by the requirement of R-parity (Rp) onservation (f. x4.5)whih is one of the assumptions of the MSSM. Let us remark here that, sine baryon numberB and lepton number L are onserved in the SM Lagrangian, the onservation of Rp may beposited as a natural assumption in a minimal supersymmetri extension of the SM whih maybe expeted to preserve the onservation laws of the latter. Additional terms, that are gaugeinvariant with respet to SM gauge transformations, ould be admitted to the RHS of (8.33)if R-parity were violated expliitly. We postpone a disussion of this possibility to Ch.14.For the moment, we take the onservation of R-parity to be a entral assumptionof the MSSM. The terms in LMSSM, that are generated from WMSSM, are obtained froma generalization of (5.5) with the Higgs VEVs from (8.21) taken into aount to properlyinorporate spontaneous eletroweak symmetry breaking.Let us onentrate �rst on the auxiliary F and D �elds following from (8.31)-(8.33). Byuse of (5.56), we an identify seventeen (inluding i = 1; 2; 3) F �elds from (8.33). Forthe SU(2) doublet representation spae, we an employ the two spinor subsript/supersriptnotation of Ch.3, i.e. H1D = �DEHE1 and F ?DH1 = ��W=�H1D j et. This enables us to writeF ?DH1 = ��hD2 + f eij~e?jR ~̀DiL + f dij ~dyjR~qDiL ; (8.34a)F ?DH2 = �hD1 � fuij~uyjR~qDiL ; (8.34b)F ?DLi = �f eijhD1 ~e?jR ; (8.34)F ?�Ei = f ejih1� ~̀jL ; (8.34d)F ?DQi� = �f dijhD1 ~dyjR� + fuijhD2 ~uyjR� ; (8.34e)F ?�Di� = f djih1�~qjL� ; (8.34f)



8.3. SUPERSYMMETRIC PART OF THE MSSM 173F ?�Ui� = fuji~qjL��h2 : (8.34g)In (8.34e-g) the subsript � is the oating olor index, whereas in (8.34a,b) appropriateolor ontrations are implied. Now the three D �elds, orresponding to the three fatorsU(1)Y ; SU(2)L and SU(3)C of the gauge group and ignoring a possible �eld independentterm in DY , f. (5.22b), are given respetively from (5.56) byDY = �12gY �hy2h2 � hy1h1 + 13 ~qyiL~qiL � 43 ~uiR~uyiR + 23 ~diR ~dyiR�~̀yiL ~̀iL + 2~eiR~e?iR�; (8.35a)~D = �12g2 �hy1~�h1 + hy2~�h2 + ~qyiL~� ~qiL + ~̀yiL~� ~̀iL� ; (8.35b)Da = �12gs �~qyiL�a~qiL + ~uTiR��a~u?iR + ~dTiR��a ~d?iR�= �12gs �~qyiL�a~qiL + ~uyiR�a~uiR + ~dyiR�a ~diR� : (8.35)Here a is a olor index and we have utilized the hermitiity of �a in the last step. It may benoted that, in both (8.35a) and (8.35), ~u ?iR , ~d ?iR and ~e ?iR are the equivalents of � in (5.56).Finally, the supersymmetri salar potential is given (f. 5.56b) byVSUSY = F ?kFk + 12 h ~D2 + (DY )2 +DaDai : (8.36)k referring to the type of super�eld (inluding any internal symmetry index) and repeatedk and a being summed.The interation part an be written down in terms of omponent �elds in four omponentnotation in muh the same way as shown in Ch.5. The major di�erene now is that we wantto inorporate the spontaneous eletroweak symmetry breakdown SU(2)L�U(1)Y ! U(1)emand obtain the onsequent mass terms and mass eigenstates, i.e. equivalents of (8.5) to (8.10).Let us onsider non-Higgs verties for the moment. We postpone all disussions of inter-ations involving Higgs bosons to Ch.10; in partiular, these inlude Yukawa, Higgs-gaugeand Higgs-Higgs interations and some of their supersymmetri generalizations. Further-more, those verties with physial spartiles, whih involve supersymmetry breaking, will betreated in Ch.9. In the next setion of this hapter we onsider (A) fermion-fermion-gaugeboson, (B) triple gauge boson, and (C) quadruple gauge boson verties in the StandardModel. We also disuss from the MSSM those (D) sfermion-sfermion-gauge boson, (E)gauge boson-gaugino-gaugino, (F) fermion-sfermion-gaugino, (G) gauge boson-gauge boson-sfermion-sfermion and (H) sfermion quarti verties whih have to do with only the purelysupersymmetri part of LMSSM and without left right mixing. Some subsets of these as wellas other non-Higgs verties ruially involve supersymmetry breaking and both generationas well as left right mixing in a physial situation. Those will be overed in Ch.9, whih willontain the orresponding �nal physial verties with the said mixings.



174 CHAPTER 8. BASIC STRUCTURE OF THE MSSM8.4 Some Non-Higgs Verties of the MSSMFirst, we reount the non-Higgs SM verties in (A), (B) and (C). Subsetions (D), (E), (F)and (G) ontain the new supersymmetri extensions.(A) Fermion-fermion-gauge boson vertiesWe an disuss the strong and eletroweak verties separately.(i) Quark-quark-gluon vertiesThese are the same as in QCD, vide x5.5. The only additional remark is that all sixavors of quarks (p = u; d; ; s; t; b) have to be inluded with all interations beingdiagonal in avour spae. Thus, with p heneforth summed on repetition, we haveLq�qg = �gsga��qpT a�qp :This form is valid in any basis for the quarks that an be reahed from the urrentbasis by a unitary rotation in generation spae. Thus avor mixings of quark masseigenstates are inonsequential here.(ii) Fermion-fermion-eletroweak vetor boson vertiesThese follow exatly those given in x5.6. The only di�erenes arise on aount of �Zmixing, f. (8.7) and (8.8). Furthermore, one has to repliate for three generations.We an now employ the notation of (5.65), understanding fui;di to be either a quark ora lepton of generation i with fuiL = PLfui , fuiR = PRfui , fdiL = PLfdi , fdiR = PRfdiand PL;R = 12 (1� 5). Then, with f , f 0 and v respetively hosen as two fermions andone EW vetor boson generially, we an writeLf �f 0v = � g2p2 �W+� �fui�PLfdi +W�� �fdi�PLfui��eA� �Qfu �fui�fui +Qfd �fdi�fdi�� g22 os �W Z� �" �fui� �(1� 2Qfu sin2 �W )PL � 2Qfu sin2 �WPR	 fui� �fdi� �(1 + 2Qfd sin2 �W )PL + 2Qfd sin2 �WPR	 fdi#: (8.37)In (8.37) Qfu and Qfd are the eletromagneti harges of the up type and down typefermions fui and fdi respetively in units of the harge of the positron. Thus Qui = 23 ,Qdi = �13 , Qei = �1, Q�i = 0. Referring bak to (8.3) and omparing with (5.65), wenote that for quarks, we an writeqiL = � fuiLfdiL � ; uiR = fuiR; diR = fdiR : (8.38)



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 175Similarly, for leptons, the notation is`iL = � fuiLfdiL � ; eiR = fdiR : (8.39)However, the above quarks are gauge interation or \urrent" basis eigenstates. Whenwe go to physial mass eigenstates, we will need to inorporate the Cabibbo-Kobayashi-Maskawa (CKM) matrix for harged urrent ouplings in the quark setor. This partan be written as Lq�q0W� = � g2p2 �W+� �ui�PLV qLij dj + h::� ; (8.40)where the ui, dj et. are now understood to be mass eigenstate quark �elds. In (8.40),V qLij are the elements of the CKM matrix [8.1℄ VqL = UuyLUdL in the notation of (8.12).Eletromagneti and neutral urrent verties, of ourse, do not involve these on aountof the GIM mehanism [8.1℄. Finally, the verties and Feynman rules for iLff 0v an bewritten as in Fig. 8.1 below.W =W�; f = dj ; f 0 = ui � ig2p2 �PLV qLijW =W+; f = uj; f 0 = di � ig2p2 �PLV qyLijW =W+; f = �j; f 0 = ei � ig2p2 �PLÆijW =W�; f = ej ; f 0 = �i � ig2p2 �PLÆij
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µFig. 8.1. Fermion-fermion-eletroweak vetor boson verties with T f3L, Qf as in (8.1).Note that in the lowermost vertex gfL stands for T f3L(1� 4T f3LQf sin2 �W ) and gfR for4(T f3L)2Qf sin2 �W .



176 CHAPTER 8. BASIC STRUCTURE OF THE MSSM(B) Triple gauge boson vertiesAgain, the strong and eletroweak ases an be distinguished.(i) Triple gluon vertexThis is exatly the same as in QCD, vide (5.60) and Fig. 5.2.(ii) Triple eletroweak vetor boson vertiesThese are generalized from the W+W�W 3 vertex of S�GT in x5.6, as shown in Fig.8.2. p+ q + r = 0X =  ie [(r � p)���� + (p� q)���� + (q � r)����℄X = Z ig2 os �W [(r � p)���� + (p� q)���� + (q � r)����℄
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ρr Fig. 8.2. Triple eletroweak vetor boson verties(C) Quadruple gauge boson vertiesOne more, we an onsider the strong and eletroweak verties in di�erent ategories.(i) Quadruple gluon vertexThis is idential to that in QCD, vide x5.5 and Fig. 5.2.(ii) Quadruple eletroweak vetor boson vertiesThe W+W�W+W� vertex is idential to that given in Fig. 5.3. The W+W�W 3W 3vertex, shown there, generalizes to three ases here, as given in Fig. 8.3.X = ; Y =  �ie2 [2������ � ������ � ������℄X = ; Y = Z �2ieg2 os �W [2������ � ������ � ������℄X = Z; Y = Z �ig22 os2 �W [2������ � ������ � ������℄+W
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Fig. 8.3. Quadruple eletroweak vetor boson verties(D) Sfermion-sfermion-gauge boson vertiesWe shall work in the ~fL- ~fR basis, deferring a disussion of left right sfermion mixing toCh.9. Again, we an onsider two ases, pertaining to strong and eletroweak interations.(i) Squark-squark-gluon vertiesThese are the same as the SQCD (vide x5.5) exept for the generalization to six diagonalavors (index p summed on repetition). Then, in the notation of x5.5, we an writeL �~q~qg = �2igSAa�~q?pT a[��℄~qp ;where the operator [��℄ is as de�ned in (4.28). Eah vertex is preisely the same asthat in Fig. 5.2 with ~q generalized to ~qp. As with quarks, neither avor nor left rightmixing in squark mass eigenstates will matter here.



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 177(ii) Sfermion-sfermion-eletroweak vetor boson vertiesOne more, we generalize from the orresponding interations of S�GT in x5.6 andwrite (with v = W;Z;  and Qfu;d as eletri harge of fu;d in units of the positronharge) the terms ontaining an eletroweak vetor boson as follows:L�~f ~f 0v = �ip2g2 nW+� ~f?uiL [��℄ ~fdiL +W�� ~f?diL [��℄ ~fuiLo�2ieA� nqfu � ~f?uiL [��℄ ~fuiL + ~f?uiR [��℄ ~fuiR�+ qfd � ~f?diL [��℄ ~fdiL + ~f?diR [��℄ ~fdiR�o� ig2os �W Z�n ~f?uiL �1� 2Qfu sin2 �W � [��℄ ~fuiL � 2Qfu sin2 �W ~f?uiR [��℄ ~fuiR� ~f?diL �1 + 2Qfd sin2 �W � [��℄ ~fdiL � 2Qfd sin2 �W ~f?diR [��℄ ~fdiRo; (8.41)with the repeated generation index i summed. As done for quarks and leptons, theexpressions ~qiL = � ~fuiL~fdiL � ; ~uiR = ~fuiR ; ~diR = ~fdiR (8.42)an be written for squark �elds and~̀iL = � ~fuiL~fdiL � ; ~eiR = ~fdiR (8.43)for slepton ones. For harged urrent ouplings of mass eigenstate squarks, we an, inanalogy with (8.40), use left hiral avor rotation matrix elements V ~qLij in generationspae. Here we have used a symbol di�erent8 from that of the CKM matrix VqL totake aount of the general situation with supersymmetry breaking whih may makeV~qL 6= VqL. Again, in the oupling of the harged W to two sleptons of di�erent avortoo, to aount for di�erent generation dependent masses for harged sleptons andsneutrinos, we put in the left hiral avor rotation matrix element V ~̀Lij in generationspae, though suh a matrix element is absent in the leptoni setor. Thus we haveL�~q~q0W = �ip2g2 nW+� ~u?iLV ~qLij [��℄ ~djL + h::o ; (8.44a)L�~̀~̀0W = �ip2g2 nW+� ~�?iLV ~̀Lij [��℄~ejL + h::o ; (8.44b)L�~f ~f = �2ieA�Q ~f � ~f ?iL[��℄ ~fiL + ~f ?iR[��℄ ~fiR� ; (8.44)L�~f ~fZ = � ig2os �W Z� n2T ~f3L �1� 4T ~f3LQ ~f sin2 �W� ~f ?iL[��℄ ~fiL � 2 sin2 �WQ ~f ~f ?iR[��℄ ~fiRo :(8.44d)8Of ourse, in the limit of exat supersymmetry, V~qL equals VqL of (8.40) and V ~̀L beomes the unitmatrix.



178 CHAPTER 8. BASIC STRUCTURE OF THE MSSMHere ~fi(L;R) overs ~ui(L;R), ~di(L;R), ~ei(L;R) and ~�iL. Eq. (8.44) desribes the sfermion-sfermion-EW vetor boson ouplings with the left hiral or right hiral squark andslepton �elds understood as mass eigenstates in the limit of no left right sfermionimixing. The latter, to be treated in Ch.9, will generate additional ompliations inthese equations exept for the photon vertex. We defer an enumeration of the �nalphysial verties and Feynman rules in this ase till that disussion.(E) Gauge boson-gaugino-gaugino vertiesHere also strong and eletroweak verties are distintly separate.(1) Gluon-gluino-gluino vertiesThese are idential to those in SQCD, as disussed in x5.5 (vide Fig. 5.2).(2) EW gauge boson-neutralino/hargino-neutralino/hargino vertiesEven in the supersymmetri limit, these will not be similar to those of S�GT, Fig. 5.3.This is beause mass eigenstate harginos and neutralinos will involve ombinationsof gauginos and higgsinos on aount of the breakdown of EW symmetry. Moreover,in reality, supersymmetry breaking has a signi�ant inuene. We shall disuss thoseaspets in detail in Ch.9, and give the �nal physial verties there.(F) Fermion-sfermion-gaugino verties(1) Quark-squark-gluino vertexIn the supersymmetri approximation of negleting the di�erenes between squarkavor rotations and quark avor rotations from eigenstates of mass to those of gaugeinterations, these verties will be the same as in SQCD (x5.5, Fig. 5.2). In reality,however, these di�erenes need to be reognized. In a broken supersymmetri worldthe two avor rotation matries will be di�erent. We have already introdued thematries UuL;R and UdL;R in (8.12) for quarks. Let us de�ne analogous avor rotationmatries U~uL;R and U ~dL;R for u- and d-squarks respetively. These take mass diagonalsquarks to avor eigenstate ones. If we de�ne u; d as three omponent olumn vetorsin olor spae, then the relevant terms in (5.60) an be generalized toL�q~q~g = �p2gs ��uiPRT a~ga �UuyLU~uL�ij ~ujL � ~uyiR �U~uyRUuR�ij �~gaT aPRuj��p2gs � �diPRT a~ga �UdyLU ~dL�ij ~djL � ~dyiR �U ~dyRUdR�ij �~gaT aPRdj�+h::; (8.45)i; j being generation indies. The interation L�q~q~g is obviously the hermitian onjugateof (8.45). These forms are valid in the absene of left-right mixing for squarks. Theorresponding physial verties will be given Ch.9 after aounting for the latter.



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 179(2) Fermion-sfermion-neutralino/hargino vertiesOne again, we postpone a treatment of these to Ch.9 beause of their essential de-pendene on supersymmetry breaking via both avor rotations and gaugino higgsinomixings.(G) Gauge boson-gauge boson-sfermion-sfermion vertiesThese will be given in three ategories sine there are mixed strong and eletroweakverties apart from purely strong and purely eletroweak ones.(i) Gluon-gluon-squark-squark vertexSine the two squarks at this four point vertex have the same avor, the orrespondingavor rotations anel out. Thus this vertex is exatly the same as in SQCD (x5.5,Fig. 5.2) with a trivial avor generalization ~q ! ~qi.(ii) Eletroweak vetor boson-eletroweak vetor boson-sfermion-sfermion ver-tiesThese are present in S�GT and an, therefore, be read o� from (5.64) with ~f general-ized to over three generations of sleptons and squarks. The neutral gauge bosons W 3and B get transformed to Z and A via (8.7b,). As before, we work in the ~fL- ~fR basis,negleting left right sfermion mixing for the moment. The orresponding interationterms in the Lagrangian density an be written asL ~f�~f 0vv0 =g222 W+� W �� � ~f ?uiL ~fuiL + ~f ?diL ~fdiL�+ g2p2 �eA� � g2 sin2 �Wos �W Z��YfL� ~f ?uiL ~fdiLW �+ + ~f ?diL ~fuiLW ���+ e2A�A� nQ2fu � ~f ?uiL ~fuiL + ~f ?uiR ~fuiR� +Q2fd � ~f ?diL ~fdiL + ~f ?diR ~fdiR�o+ g224 os2 �W Z�Z�n ~f ?uiL �1� 2Qfu sin2 �W �2 ~fuiL + 4Q2fu sin4 �W ~f ?uiR ~fuiR+ ~f ?diL �1 + 2Qfd sin2 �W �2 ~fdiL + 4Q2fd sin4 �W ~f ?diR ~fdiRo+ g2eos �W A�Z�hQfu n ~f ?uiL �1� 2Qfu sin2 �W � ~fuiL � 2Qfu sin2 �W ~f ?uiR ~fuiRo�Qfd n ~f ?diL �1 + 2Qfd sin2 �W � ~fdiL + 2Qfd sin2 �W ~f ?diR ~fdiRo i:(8.46)A summation over the generation index i is understood. The relations between ~fuiL;R ,~fdiL;R and the orresponding squark/slepton avor eigenstate �elds are given in (8.42-3). Elements of the CKM type matrix V~qL arising out of avor rotations between



180 CHAPTER 8. BASIC STRUCTURE OF THE MSSMsfermioni mass and avor eigenstate �elds (f. 8.44), enter the �~f ~f 0W and �~f ~f 0ZWinterations but not the9 �~f ~f, �~f ~fZZ and �~f ~fZ ones. All these an be rewritten interms of mass eigenstate sfermion �elds. They then readL�~q~q0W = g2e3p2A��~uyiLV ~qLij ~djLW �+ + ~dyiLV ~qyLij ~ujLW ��� ; (8.47a)L�~q~q0ZW = � g22 sin2 �W3p2 os �W Z��~uyiLV ~qLij ~djLW �+ + ~dyiLV ~qyLij ~ujLW ��� ; (8.47b)L�~̀~̀0W = �g2ep2A��~�?iLV ~̀Lij ~ejLW �+ + ~e?iLV ~̀yLij ~�jLW ��� ; (8.47)L�~̀~̀0ZW = g22 sin2 �Wp2 os �W Z��~�?iLV ~̀Lij ~ejLW �+ + ~e?iLV ~̀yLij ~�jLW ��� ; (8.47d)L�~f ~f = e2A�Q2~f � ~f yiL ~fiR + ~f yiL ~fiR�A�; (8.47e)L�~f ~fZZ = g224 os2 �W Z�n�1� 4T ~f3LQ ~f sin2 �W�2 ~f yiL ~fiL+4Q2~f sin4 �W ~f yiR ~fiRoZ�; (8.47f)L�~f ~fZ = 2g2eos �W A�Q ~fnT ~f3L �1� 4T ~f3LQ ~f sin2 �W� ~f yiL ~fiL�Q ~f sin2 �W ~f yiR ~fiRoZ� ; (8.47g)L�~f ~fWW = g222 W+� W �� ~f yiL ~fiL : (8.47h)In (8.47e{h) ~fi(L;R) overs10 ~ui(L;R), ~di(L;R), ~ei(L;R) and ~�iL whih, as in (8.44), are nowunderstood as mass diagonal �elds in the limit of no left right mixing. Sine we haveyet to inlude the left right mixing of sfermions and this will be done in Ch.9, wepostpone a listing of the verties and Feynman rules till then.(iii) Eletroweak vetor boson-gluon-squark-squark vertiesThese mixed terms an be written, with the CKM-type matrix elements V ~qLij put inand with Qq = 2=3 or �1=3 for q = u or d respetively, asL~q�~q0gv = p2g2gsAa�(W �+~uyiLT aV ~qLij ~djL +W �� ~dyiLT aV ~qyLij ~djL)+2gseQqA�Aa�~qyiT a~qi+2gsg2(os �W )�1Z�Aa�~q?i (T ~q3L �Qq sin2 �W )T a~qi : (8.48)9Sfermion avor mixings do not matter here beause of the GIM-mehanism [8.1℄.10Read ~f? for ~fy in ase of sleptons.



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 181In (8.48) g2, gs are the SU(2)L, SU(3)C oupling strengths, as before, while v an beW or Z or , and i in ~qi is summed over all avors as well as left and right hiral�elds. Here all squark �elds are supposed to be mass eigenstates in the limit of no L-Rmixing. The orresponding verties and Feynman rules will be listed in Ch.9 alongwith the proper L-R mixing fators put in.(H) Salar quarti verties without HiggsThese an be piked out from the supersymmetri potential (8.36) and the detailedexpressions for the F - and D-terms given in (8.34) and (8.35) respetively. One an thenwrite the orresponding interation term in the Lagrangian density in the limit of zero leftright mixing as follows.L ~f1 ~f2�~f3�~f4 =� g222M2W sin2 ��j~uyLU~uyLUuLm(D)u UuyRU~uR~uRj2+j ~dyLU ~dyLUuLm(D)u UuyRU~uR ~uRj2�� g222M2W os2 ��j~eyLU~eyLm(D)e U~eR~eR + ~dyLU ~dyLUdLm(D)d UdyRU ~dR ~dRj2+j~�yU~�ym(D)e U~eR~eR + ~uyLU~uyLUdLm(D)d UdyRU ~dR ~dRj2�� g2s4 hXi;j �j~uyiL~ujLj2 + j ~dyiL ~djLj2 + j~uyiR~ujRj2 + j ~dyiR ~djRj2 + 2j~uyiL ~djLj2 � 2j~uyiL~ujRj2�2j~uyiL ~djRj2 � 2j ~dyiL~ujRj2 � 2j ~dyiL ~djRj2 + 2j~uyiR ~djRj2��13nXi �j~uiLj2 + j ~diLj2 � j~uiRj2 � j ~diRj2�o2i� g228 hnXi �j~uiLj2 � j ~diLj2 + j~�ij2 � j~eiLj2�o2 + 4j~uyLV~qL ~dL + ~�yV ~̀L~eLj2i� g22 tan2 �W8 nXi �13 j~uiLj2 + 13 j ~diLj2 � 43 j~uiRj2 +23 j ~diRj2 � j~�ij2 � j~eiLj2 + 2j~eiRj2�o2: (8.49)In (8.49) i; j are generation indies. Moreover, m(D)e is the physial real diagonal hargedlepton mass matrix of (8.11) in the generation spae; the unitary avor rotation matrixU~eR transforms the mass eigenstate harged right slepton �elds to the orresponding avoreigenstate ones, while U~eL and U~� do the same for harged and neutral left slepton �elds
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Chapter 9SOFT SUPERSYMMETRYBREAKING IN THE MSSM
9.1 The Content of LSOFTWe now turn to that part of LMSSM through whih supersymmetry breaking is expliitlyintrodued. But �rst we need to demonstrate [9.1℄ the impossibility of e�eting a spontaneousbreakdown of global supersymmetry purely within the framework of the MSSM. We followthe redutio ad absurdum proedure in assuming suh a spontaneous breaking and applyingthe supertrae mass sum rule (7.50). Let us separately onsider the mass squared matriesM2e for the harge �1, M2u for the harge +23 , M2d for the harge �13 and M2� for the neutralmatter fermion sfermion supermultiplets of any generation. Assuming harge and oloronservation, the RHS of (7.50) now an reeive possible ontributions from the generatorsT3 and Y=2 only. We an sum over all possible left and right hiral supermultiplets in thesupertrae, exept that the latter have to be onjugated sine (7.50) has been written fora left hiral supermultiplet. We an then use the results (T3)eL = �12 , (Y=2)eL = �12 ,(T3)eCL = 0, (Y=2)eCL = 1, (T3)uL = 12 , (Y=2)uL = 16 , (T3)uCL = 0, (Y=2)uCL = �23 , (T3)dL =�12 , (Y=2)dL = 16 , (T3)dCL = 0, (Y=2)dCL = 13 , (T3)�L = 12 , (Y=2)�L = �12 . Thus we have1STrM2e = g2hD3i � gY hDY i; (9.1a)STrM2u = �g2hD3i+ gY hDY i; (9.1b)STrM2d = g2hD3i � gY hDY i; (9.1)STrM2� = �g2hD3i+ gY hDY i: (9.1d)Two positive ombinations of the above four supertraes are seen to have vanishing RHS,namely1These M 's are the mass matries of (5.10) and (7.50) taken for eah generation and summed over leftand right hiral supermultiplets. Thus STrM2e � STrM2eL + STrM2eR = m2~eL +m2~eR � 2m2e et. Though wehave not inluded generation mixing in this argument, (9.2) an be generalized to over generation spae.183



184 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMSTrM2e + STrM2� = STrM2u + STrM2d = 0 : (9.2)Eq. (9.2) an be satis�ed only if in eah family some slepton/squark is lighter than theorresponding fermion. This is manifestly ontrary to observation, exept possibly for thethird squark family. Hene the starting assumption is wrong and, if one stiks to MSSM�elds alone, supersymmetry has to be expliitly broken.In priniple, one ould introdue an extra U(1)Y 0 fator in the gauge group in a way suhthat all left hiral fermioni �elds arried the quantum number Y 0 = 1. The DY 0-term (f.7.50), orresponding to this U(1)Y 0 , ould be given a nonzero VEV, spontaneously breakingsupersymmetry. (9.2) would now have a nonzero RHS and the ompulsion of having somesfermions lighter than the orresponding fermions ould be evaded. But then there will bean additional weak neutral gauge boson Z 0, mixing with the Z, whereas suh mixing is nowseverely onstrained by experiment. Moreover, an extra U(1)Y 0 gauge fator would introdue[9.2℄ unanelled ABJ anomalies [9.3℄ and make the theory nonrenormalizable. A great manyextra super�elds would be needed to anel all anomalies and it would be diÆult in generalto keep all sfermions heavier than extant lower mass bounds. Furthermore, gauginos wouldnot aquire masses at the tree level.We an then onlude that, though the spontaneous breakdown of supersymmetry is atheoretially desirable feature, suh a mehanism will have to involve �elds beyond thoseof the MSSM. Phenomenologial onstraints point to suh �elds being signi�antly heavierthan the eletroweak sale and hene arrying masses muh larger than those of the MSSMspartiles. Muh theoretial speulation has taken plae so far regarding the spei�s of suha mehanism and the urrent wisdom on it will be elaborated in Chs.12 and 13. Two broadharateristis an, however, be mentioned at this junture. Spontaneous SupersymmetryBreakdown (SSB) needs to be e�eted in a setor of �elds whih are singlets with respetto the SM gauge group and known as the hidden or seluded setor. SSB an take plaethere at a distint sale denoted by �s, say. Supersymmetry breaking is then transmitted tothe gauge nonsinglet observable or visible setor by a messenger setor (assoiated witha typial mass sale MM that ould, but need not, be as high as the Plank mass MP l); thismay or may not require the introdution of additional gauge nonsinglet messenger super�elds.Fig. 9.1 is a artoon depiting this.
Hidden
sector

Observable
sector

Messenger transmission

Fig. 9.1. Cartoon showing the transmission of supersymmetry breaking from the hidden to theobservable setor.It is nonetheless true that this messenger sale must be at least two (and perhaps manymore) orders of magnitude above the mass of the MSSM �elds. Hene, when the former are



9.1. THE CONTENT OF LSOFT 185integrated out at lower (eletroweak) energies, the residual theory is desribed (f. 7.40) bythe supersymmetri Lagrangian density of the MSSM, namely LSUSY plus some soft expliitsupersymmetry breaking terms, olleted in LSOFT and haraterized by the supermultipletsplitting mass parameter Ms (f. Ch.1). In Chs. 12 and 13 we shall disuss in detail twoalternative broad senarios in whih the messenger setor onsists of(1) higher dimensional operators [9.4℄ suppressed by inverse powers of the Plank mass,or,(2) �elds with gauge interations [9.5℄ at lower energy sales.For (1), the mehanism of Fig. 9.1 an generally proeed at the tree level leading to Ms ��2s=MP l. For (2), the origin of Ms may be seen in terms of a one loop supergraph suh asthat of Fig. 9.2, in whih the letters V;M and H refer to super�elds in the visible, messengerand hidden setors respetively, yielding Ms � (gauge oupling)2 �2s=MM . The ourreneof the square of �s in the numerator in either ase is easy to understand if supersymmetrybreaking in the hidden setor arises through the VEV of an auxilary F - or D-�eld (f.x7.4{x7.6). Finally, then, a total Lagrangian density of the form of (7.40) an provide aphenomenologially realisti desription at least for a range of energies above the EW sale.That will be our starting point here.
Λ2

s

H

V VMFig. 9.2. Possible one loop supergraph implementing the sheme of Fig. 9.1.We wrote the most general form of LSOFT in (7.42) for a supersymmetri gauge theory.An appraisal of the di�erent terms in it shows that, for the MSSM, LSOFT an have no Ci-type terms. This is due to the fat that the model does not ontain any salar �eld that isinvariant under SU(3)C �SU(2)L�U(1)Y gauge transformations. All other types of terms,shown in (7.42), are possible. Thus we an write�LSOFT = ~q?iL(M2~q)ij ~qjL + ~u?iR(M2~u)ij~ujR + ~d?iR(M2~d)ij ~djR + ~̀?iL(M2~̀)ij`jL+~e?iR(M2~e)ij~ejR + hh1 � ~̀iL(f eAe)ij~e?jR + h1 �~qiL(f dAd)ij ~d?jR+~qiL �h2(fuAu)ij~u?jR + h::i+m21jh1j2 +m22jh2j2 + (B�h1�h2 + h::)+12(M1�~�0PL~�0 +M?1 �~�0PR~�0) + 12(M2�~~�PL~~�+M?2 �~~�PR~~�)+12(M3�~gaPL~ga +M?3 �~gaPR~ga)� VSOFT + gaugino mass terms: (9.3)



186 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMIn (9.3) M1;2;3 are the (generally omplex) gaugino (Majorana) mass parameters in the La-grangian density pertaining to ~�0, ~~� and ~ga whih are (f. Ch.8) the U(1)Y , SU(2)L andSU(3)C gaugino �elds respetively while m1;2 are the real Higgs salar mass parameters.Furthermore, i; j are generation indies with summation implied by repetition. Thus thesquared left squark massM2~q and the squared right squark masses M2~u,M2~d as well as thosefor left sleptons M2̀ and those for harged right sleptons M2~e are all 3 � 3 hermitian ma-tries in generation spae. The produts f eAe; f dAd and fuAu, whih form oeÆients ofthe trilinear salar terms in (9.3), are general 3 � 3 omplex matries in the same spae.These are the soft supersymmetry breaking A terms of (7.43), eah written as a produtof a superpotential oupling f of (7.41) times an A parameter with the dimension of mass,f. (7.44). Similarly, we have saled the oeÆient of the SU(2)L � U(1)Y -invariant Higgsbilinear term by the supersymmetry invariant Higgsino mass �. This ensures that the softsupersymmetry breaking parameter B (f. 7.44) also has the dimension of mass. Note fur-ther the absene of any linear term in the Higgs �elds, whih would have been a C-typeterm, f. (7.43). If we allow all the new parameters, introdued in (9.3), to be omplex,we would be dealing with some one hundred and twenty four [9.5℄ unknown real onstantsof whih nineteen were already in the SM and one hundred and �ve are new. Fortunately,many proesses are sensitive only to a small subset of these parameters, at least at the treelevel2. In fat, in pratial alulations in the MSSM (e.g. those for supersymmetry searhesat olliders) several simplifying assumptions are usually made in order to drastially reduethe number of these additional parameters to only a handful. The �nal set of parametersis determined by the spei� assumptions made. Di�erent assumptions (usually motivatedby di�erent senarios of supersymmetry breaking) result in di�erent versions of the Con-strained Minimal Supersymmetri Standard Model (CMSSM). Let us remark that, thoughwell motivated, these assumptions do need to be tested in experiments and suh tests forman important part of supersymmetry phenomenology at olliders. Of ourse, one again Rponservation has been assumed in (9.3). The introdution of Rp violation in the soft super-symmetry breaking part of L, without Rp nononserving supersymmetri terms present inthe superpotential W of (8.33), generally makes the salar potential unbounded from below.We shall onsider the latter kind of terms in Ch.14, when dealing with extensions of theMSSM.Yet another issue onfronting us is that of phases. As mentioned earlier, many of thenew parameters in the part LSOFT of (9.3) an, in general, be omplex in a CP noninvarianttheory. Two of these an be hosen to be real by appropriate phase rotations of the �eldsappearing in LSOFT without ompromising the form of LSUSY in (7.41). However, manydi�erent nontrivial (i.e. in priniple measurable) phases remain in the MSSM in addition tothe single CP violating phase of the CKM matrix of the SM. On the other hand, some of thesephases are subjet to strong phenomenologial onstraints [9.6, 9.7℄ whih ome from thelak of observation of any additional, beyond-Standard-Model CP violation in low energyexperiments so far. For example, if the phases in the gaugino/higgsino setor are large,e�etive anellation mehanisms need to be devised [9.6℄ to meet those onstraints. The2For instane, negative searh results from LEP, f. Ch.15, already imply that both jM2j and j�j mustexeed MW . Herein lies the origin of the � problem about whih we shall have more to say in x13.4 andx14.2.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 187simplest way to satisfy the experimental bounds on new soures of CP violation is to assume[9.8℄ that the phases of all soft supersymmetry breaking parameters are small. In fat, mostanalyses of CP onserving proesses in softly broken supersymmetri senarios have beenperformed under this assumption. Our phenomenologial disussions will be mostly basedon suh a framework, but the mass matries and ouplings, given in this hapter, allow forthe possibility of CP-violating phases.One supersymmetry and (at a lower energy sale) EW symmetry get broken, di�erentspartiles of the same eletri harge an mix. The spartiles, listed in Table 8.2, then nolonger remain eigenstates of mass. Left squarks (sleptons) mix with right squarks (sleptons);there an be generation mixing as well. The EW gauginos and higgsinos mix too, as men-tioned in Ch.8. The mixing patterns and mass values of spartile mass eigenstates dependruially on the manner of supersymmetry breaking. These masses and mixing angles, inturn, determine the experimental signals of supersymmetry. This is true both for spartileprodution as well as deay analyses and for low energy signatures aused by the exhangeof virtual spartiles in loops. We therefore need to study all nontrivial restritions on spar-tile mass matries implied by low energy physis onstraints, mainly from the absene [9.8℄of FCNC proesses in nature. These onstraints also play a ruial role in relating softlybroken supersymmetry to some higher sale physis whih auses the transmission of super-symmetry breaking to the MSSM �elds in the observable setor. The mass values of mattersfermions as well as of nonmatter fermions (i.e. gauginos and higgsinos) are ontrolled by theexpliitly supersymmetry breaking soft operators, introdued at this higher sale. One thenneeds to onsider the subsequent modi�ation of these via renormalization group evolutiondown to eletroweak energies. This sale dependene of the mass spetrum of spartiles willbe disussed in Ch.11 whereas here we onentrate on the extra masses and mixing angles ofthe MSSM at laboratory energies. Let us note meanwhile that there is no really satisfatorytheory of soft supersymmetry breaking terms at this point; only speulative models exist.Thus low energy onstraints are the only phenomenologial pointers to them that we haveat present and these merit areful attention.The next setion ontains a disussion of the masses of higgsinos and eletroweak gauginosas well as of the two ases of mixing among them: one for harged ones and another forneutral ones. In subsequent setions we shall onsider the general mass matries for sleptonsand squarks inorporating various supersymmetri and nonsupersymmetri mass terms. Weshall also address the di�erent ases of mixing among them and what e�ets these have ontheir interation verties.9.2 Eletroweak Gauginos and HiggsinosWe onentrate here on the spin half supersymmetri partners of the eletroweak gauge andHiggs bosons: the eletroweak gauginos and higgsinos. While gaugino mass terms are partof the soft supersymmetry breaking LSOFT of (9.3), the spontaneous symmetry breakingSU(2)L � U(1)Y ! U(1)em fores the gaugino �elds ~�� of (8.27) to mix with the higgsino�elds ~h�i of (8.25), leading to physial mass eigenstate harginos ~��1;2. This fat, alreadymentioned in x8.2, will reeive our attention �rst. Similar mixings exist in the setor ofneutral EW gauginos and higgsinos and will be disussed later. The soft supersymmetry



188 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMbreaking gaugino mass parameters Ma(a = 1; 2) and the supersymmetry preserving higgsinomass parameter � of (8.33), plus the ratio tan � of Higgs VEVs, f. (8.24), are the onlyparameters of the model that are relevant to our present disussion. In ase Ma (a = 1; 2)and � are omplex, then M2 an be hosen to be real and positive without loss of generality.In this situation two additional parameters enter the game, viz. �� and �M { the relativephases between M2 and � and between M2 and M1 respetively. However, in some (thoughnot all) of our disussions below we shall assume these phases to be zero.The hargino mass matrixStarting from (5.55), we an isolate in the Lagrangian density the matter-gaugino-Higgsoupling terms that generate hargino masses. They an be written generially in twoomponent notation as �p2g2(T a)ij�a�j�?i + h::Here �a stands for a gaugino �eld, while � and � stand for the fermioni and bosoni om-ponents of a Higgs hiral super�eld respetively; T a is a gauge group generator ating in therepresentation spae of � and � typi�ed by indies i; j. Here �i are two omponent spinorial�elds in the (12 ; 0) representation (f. Ch.3) while their barred versions are the orrespond-ing onjugate �elds in the (0; 12) representation. One the �elds h01;2 of (8.20) aquire VEVsv1;2 on the spontaneous breakdown of the EW symmetry, the above expression generates asum of mixed gaugino and higgsino mass terms. We further need to add to the above thesupersymmetry breaking gaugino mass terms from (9.3) and the supersymmetri bilinearhiggsino mixing terms ontained in the �H1�H2 part of the superpotential (8.33). Thus themass terms of the nonmatter harged fermions an �nally be written asLMASS = � g2p2(v1�+~h21 + v2��~h12 + h::)� (M2�+�� + �~h21~h12 + h::) : (9.4)In (9.4) ~h21 and ~h12 are two omponent spinorial higgsino �elds in the (12 ; 0) representationarrying Y = �1, Q = �1 and Y = 1, Q = 1 respetively, f. (8.25). Moreover, the twoomponent harged gaugino �elds �� are de�ned as (p2)�1(�1 � i�2). The mass term of(9.4) an now be rewritten in terms of a 2�2 matrix X as follows. De�ne two olumn vetors �, eah onsisting of one gaugino �eld omponent and one higgsino �eld omponent, as + � ��+~h12 � ; ( +)T � (�+ ~h12) ; (9.5a) � � ���~h21 � ; ( �)T � (�� ~h21) : (9.5b)Let us denote the omponents of  � by  �m with m = 1; 2, i.e.  +1 = �+ et. Now we anmake use of (8.22) and (8.24) to rewrite (9.4) as�LMASS = ( �)TX + + h:: ; (9.6)with X = � M2 p2MW sin �p2MW os � � � : (9.7)



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 189One an �nd unitary matries U and V suh thatU?XV�1 =MD ; (9.8)whereMD is a diagonal matrix with real nonnegative entries ~M1 and ~M2. The two omponenthargino mass eigenstate �elds an then be identi�ed as�+k = Vkm +m ; (9.9a)��k = Ukm �m ; (9.9b)with k = 1; 2. These two omponent �� �elds enable one to reast (9.6) as�LMASS = ��k (MD)km�+m + h:: (9.10)We are now in a position to de�ne four omponent Dira hargino �elds~�+1 � � ~�+1��1 T � ; (9.11a)~�+2 � � ~�+2��2 T � : (9.11b)By using (3.28a), the mass term (9.10) an be rewritten in terms of these Dira hargino�elds as �LMASS = fM1 ~�+1 ~�+1 + fM2 ~�+2 ~�+2 : (9.12)By onvention, ~�+1 is hosen to be lighter than ~�+2 , i.e. fM1 < fM2. fM1;2 are atually thepositive square roots of the eigenvalues of the matrix XyX. From (9.8) we see that(MD )2 = VXyXV�1 = U?XXy(U?)�1; (9.13)i.e. U ;V are the unitary matries whih diagonalize the hermitian matries XXy and XyXrespetively. For suh 2� 2 matries, the eigenvalues and mixing matries are easy to writedown analytially. The squared masses are given byfM22;1 = 12"jM22 j+ j�2j+ 2M2W � n(jM22 j � j�2j)2+ 4M4W os2 2� + 4M2W (jM22 j+ j�2j+ 2<e(M2�) sin 2�)o1=2#: (9.14)If the phases of M2 and � are ignored, all the entries of X beome real. We work in theonvention where M2 is positive, but � an have either sign (N.B. tan � is always positive,f. x10.2). Then the mixing matries an be written asU = Ou ; (9.15a)V = ( Ov for det X > 0 ;�3Ov for det X < 0 ; (9.15b)Ov;u = � os�v;u sin�v;u� sin �v;u os�v;u� ; (9.15)



190 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere tan 2�u = 2p2MW (� sin� +M2 os �)M22 � �2 � 2M2W os 2� ; (9.16a)tan 2�v = 2p2MW (� os� +M2 sin �)M22 � �2 + 2M2W os 2� : (9.16b)The orresponding expressions for omplex X an be found in Ref. [9.9℄. Eqs. (9.16) areinvariant under the hange �! �+ �=2. However, these solutions are not equivalent. Onehas to hek whether (9.8) holds in order to deide whih of the four solutions of (9.16) isthe orret one.It is onvenient at this stage to relate the starting two omponent harged gaugino3 andhiggsino �elds to the four omponent weak interation eigenstate ones of (8.25) and (8.27):~�+ = � �+��T � ; (9.17a)~h+ = � ~h12~h21T � : (9.17b)The relations between these and the four omponent mass eigenstate hargino �elds ~�� are:PL~�+ = V?k1PL ~�+k ; (9.18a)PR~�+ = Uk1PR ~�+k ; (9.18b)PL~h+ = V?k2PL ~�+k ; (9.18)PR~h+ = Uk2PR ~�+k : (9.18d)Using these equations, we an also derive similar relations for the harge onjugate andadjoint spinors, PR(~�+)C = Vk1PR(~�+k )C ; (9.19a)PL(~h+)C = U�k2PL(~�+k )C ; (9.19b)~�+PL = U?k1 ~�+k PL ; (9.19)~h+PR = Vk2 ~�+k PR : (9.19d)Eqs. (9.18,19) and similar relations will prove useful later in deriving the interation vertiesinvolving various partiles/spartiles and harginos.3We should emphasize that our onvention on gaugino �eld omponents is di�erent from that of Haberand Kane [9.10℄. However, our Feynman rules are the same as theirs exept that � is the omplement oftheir �v. Our V and U matries are the same as the V and U respetively of Gunion and Haber [9.10℄.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 191The neutralino mass matrixLet us now take up the issue of mass eigenstates for neutral non matter fermions. Again,the orresponding mass terms reeive ontributions from VSOFT, from the superpotential aswell as from the matter-gauge-Higgs ouplings with the neutral Higgs �elds replaed by theirVEVs. Retaining only terms relevant to the neutral setor, the mass term in two omponentnotation readsLnMASS = �g22 �3 �v1~h11 � v2~h22� + gY2 �0 �v1~h11 � v2~h22� + �~h11~h22�12M2�3�3 � 12M1�0�0 + h:: (9.20)In (9.20) we have extended the notation of (9.4) for two omponent EW harged gauginoand higgsino �elds to the orresponding neutral ones. In general, the three mass parametersM1;M2 and �, whih determine the neutral nonmatter fermioni mass matrix and the mixingontained therein, are ompletely arbitrary. However, in simple grand uni�ed theories M1and M2 are related to eah other. Suh theories predit that M1 = M2 at the high salewhere the gauge ouplings are presumed to unify. The gaugino mass M� will be shown inCh.11 to evolve (at one loop) with the momentum sale in a way idential to that of thesquare of the orresponding gauge oupling strength g�, the subsript � referring to one ofthe fators of the SM gauge group. The uni�ation ondition then impliesM1(MZ) = 53 tan2 �WM2(MZ) ' 12M2(MZ) ; (9.21)�W being the Weinberg angle. As explained more learly in Ch.11, the fator 5=3 appearsin (9.21) from the di�erene between the normalization of generators in a simple unifyinggauge group and that of the eletroweak hyperharge generator in the SM.De�ne a row vetor ( 0)T with two gaugino �eld omponents and two higgsino �eldomponents: ( 0)T � (�0 �3 ~h11 ~h22) : (9.22)Eq. (9.20) an then be reast asLnMASS = �12 � 0�T Mn 0 + h:: (9.23)In (9.23) the 4� 4 mass matrix Mn is given byMn = 0BB� M1 0 �MZ�sW MZs�sW0 M2 MZ�W �MZs�W�MZ�sW MZ�W 0 ��MZs�sW �MZs�W �� 0 1CCA ; (9.24)where sW � sin �W ; W � os �W ; s� � sin �, � � os � in the notation of Ch.8. Let usdenote the omponents of  0 in (9.22) as  0n, with n = 1; 2; 3; 4, i.e.  01 = �0 et. Now wean de�ne two omponent neutralino mass eigenstate �elds �0l by�0l = Zln 0n ; (9.25)



192 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere l = 1; 2; 3; 4 and Z is a 4� 4 unitary matrix, as de�ned by Gunion and Haber [9.10℄,satisfying Z�MnZ�1 =MDn ; (9.26)MDn being a diagonal matrix with only nonnegative entries. The latter an be omputedfrom (MDn )2 = ZMnyMnZ�1 : (9.27)Sometimes, for simpliity of alulation, the possible phases in the entries ofMn are ignored.Now the rows of Z an be either purely real or purely imaginary. A ommon pratie in theliterature is to hoose a real, orthogonal Z. In this ase, however, the eigenvalues of MDn ansometimes be negative. Then those neutralino mass eigenstates, whih orrespond to suhnegative mass eigenvalues, need to be rede�ned with hiral rotations so as to make the latterpositive. It is diÆult to keep trak of this during alulations, sine one has to introduean expliit i5 fator whenever a neutralino orresponding to a negative eigenvalue of Mnappears at a vertex. So we shall not make suh an assumption. There is one point to benoted, though. In many appliations, it is suÆient to keep the sign of the neutralino mass inthe neutralino propagator and in neutralino spin sums without any modi�ation of Feynmanrules.As with harginos, the masses and mixing angles of the neutralinos are ompletely de-termined in terms of a few parameters; here these are M1;2, � and tan�. We an hoose tointrodue four omponent Majorana spinorial �elds ~�0l :~�0l = � �0l�0Tl � : (9.28)Now the mass term of (9.23) takes a simple four omponent Majorana form, namelyLnMASS = �12Xl fMnl ~�0l ~�0l ; (9.29)where fMnl � M~�0l are the nonnegative diagonal elements of MDn . The eigenvalues fM ǹ andthe matrix Z an most easily be obtained numerially. If all entries of Mn are real, ananalytial alulation of the former is possible [9.11℄. However, the expressions are quiteumbrous and will not be given here. The neutralino eigenstates are labeled4 in the massorderM~�01 < M~�02 < M~�03 < M~�04 by onvention. In most phenomenologial disussions of theMSSM (unless there is a lighter gravitino or a violation of R-parity), the lightest neutralino~�01 is assumed to be the Lightest Supersymmetri Partile (LSP).It is instrutive to relate the mass eigenstate neutralino �elds ~�0l to four omponentgaugino and higgsino �elds whih are weak interation eigenstates. Let us onsider thelatter �rst. They are the Majorana spinors~�3 = � �3;��T3 � ; (9.30a)4Caution: the subsripts 1,2,3 in ~�01;2;3 do not have any spei� assoiation with the subsripts of thegaugino mass parameters M1;2;3.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 193~�0 = � �0��T0 � ; (9.30b)~h01 =  ~h11~h11T ! ; (9.30)~h02 =  ~h22~h22T ! : (9.30d)Then the desired relations an be given as follows:PL~�0 = PLZ�l1 ~�0l ; (9.31a)PR~�0 = PRZl1 ~�0l ; (9.31b)PL~�3 = PLZ�l2 ~�0l ; (9.31)PR~�3 = PRZl2 ~�0l ; (9.31d)PL~h0s = PLZ�l;s+2 ~�0l ; (9.31e)PR~h0s = PRZl;s+2~�0l : (9.31f)Note that the index l in (9.31) spans the values 1; 2; 3; 4, while the index s overs 1; 2 only.Similar relations an be written for ~�0PL et. using (9.31).We an study and omment on the nature of the hargino and neutralino setors in somelimiting ases. If j�j � jM1;2j � MZ , the two lightest neutralinos ~�01;2 are gaugino domi-nated. If (9.21) is assumed, it follows that ~�01 is mostly the U(1)Y gaugino (\bino") �eld~�0 and ~�02 is largely the neutral SU(2)L gaugino (\wino") ~�3. The two higher mass neutrali-nos ~�03;4 are then predominantly higgsinos. Similarly, the lighter hargino ~��1 is more or lessthe harged \wino" and the heavier hargino is largely the harged higgsino. Furthermore,the magnitude of the � parameter and the masses of the hargino and neutralino masses areroughly related by M~��1 'M~�02 ' 2M~�01 and j�j 'M~�03 'M~�04 ' M~��2 �M~��1 . In the oppo-site limit j�j � jM1;2j, the lighter neutralinos and the lighter hargino are mostly higgsinoswith masses lose to j�j, whereas the heavier hargino is predominantly the harged \wino".Finally, when j�j ' jM2j or jM1j, strong kinds of mixing our between gauginos and hig-gsinos in the formation of physial nonmatter fermions; in general, the masses are no longerrelated in any simple way. If j�;M2j � MZ and (9.21) is assumed, then the approximaterelation M~�02 ' M~��1 holds [9.12℄ irrespetive of the ordering and the relative magnitudes ofj�j and jM1;2j. All these statements are insensitive to variations in tan� within the usuallyovered range (f. Chs. 10 and 11).



194 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSM9.3 Chargino and Neutralino Interations with GaugeBosonsChargino-Neutralino-W� interationsThese reeive ontributions from two soures: (1) the analog of the fourth term in theRHS of (5.55) orresponding to the SU(2)L gauge group and (2) the analog of the �rst term,for the two Higgs super�elds, for the SU(2)L � U(1) gauge group. It is lear that only thegauge �eld part of the ovariant derivative will ontribute to the interation. With I; J asgauge group representation indies and subsript s (= 1; 2) distinguishing the two higgsinotwo omponent spinors, the latter reads,�~hsI ��� �gY2 YhsÆIJB� + g22 (�a)IJW a�� ~hsJ :The resulting harged weak boson terms in the Lagrangian density, expressed in the fouromponent notation and in the weak basis after using (3.28,d), read:L~��k ~�0lW� = g2W�� �~�3�~�+ � 1p2 �~h02�PL~h+ � ~h01�PR~h+��+ h:: (9.32)One an rewrite the interation (9.32) in terms of hargino and neutralino �elds by using thehargino and neutralino mixing matries using (9.17,18) and (9.30,31). The �nal expressionis L~��k ~�0lW� = g2W�� ~�0l � �CLlkPL + CRlkPR� ~�+k + h:: ; (9.33)where the ouplings CLlk and CRlk are given byCLlk = � 1p2Zl4V�k2 + Zl2V�k1 ; (9.34a)CRlk = 1p2Z�l3Uk2 + Z�l2Uk1 : (9.34b)In (9.33) and (9.34) the subsript k takes values 1; 2 while l goes from 1 to 4. The generivertex orresponding to (9.33) is shown in Fig. 9.3. Note that an arrow has been put onthe Majorana fermion line also in aordane with the onvention in Appendix D of the �rstpaper of Ref. [9.10℄. Fig. 9.3 is inluded in Appendix ANeutralino-Neutralino-Z and Chargino-Chargino-(Z; ) interationsIn the four omponent basis of (9.17) and (9.30), after using the Majorana identities(3.29,d) and the de�nitions (8.7), we an write in analogy with the previous ase



9.3. CHARGINO AND NEUTRALINO INTERACTIONS WITH GAUGE BOSONS 195LZ()~�~� = g2W Z���2W ~�+�~�+ � 12 os 2�W ~h+�~h+�+ g24W Z� �~h01�5~h01 � ~h02�5~h02��eA� �~�+�~�+ + ~h+�~h+� : (9.35)The seond line of (9.35), when rewritten in terms of the mass eigenstates ~�0̀, yields theZ ~�0l ~�0n interation. The use of (9.31) leads toLZ ~�0l ~�0n = g22W Z� ~�0l � �NLlnPL +NRlnPR� ~�0n : (9.36)Here the ouplings NL;Rln are given byNLln = �12Zl3Z�n3 + 12Zl4Z�n4 ; (9.37a)NRln = � �NLln�� : (9.37b)Referring bak to (9.27), note that, under the assumption of a realMn, the Z ~�0l ~�0l0 interationwill always involve a pure vetor (axial vetor) oupling, for a negative (positive) value ofos[2Arg(ZlnZl0n)℄. In this situation the osine is just a signature fator.Turning to harginos, the last term in the RHS of (9.35) gives the  ~�+k ~��k interation asL ~��k ~�+k = �eA�h~�+m� (Vm1V�k1 + Vm2V�k2)PL+~�+m� (U�m1Uk1 + U�l2Uk2)PRi~�+k= �eA� ~�+k � ~�+k ; (9.38)where we have used U yU = VyV = 11. Finally, the Z ~��m ~�+k interation follows from the �rstRHS term of (9.35). Rewritten in terms of the mixing angles, it readsLZ ~��m ~�+k = g2W Z� ~�+m� �OLmkPL +ORmkPR� ~�+k ; (9.39)with the ouplings OL;Rmk given byOLmk = �Vm1V�k1 � 12Vm2V�k2 + Æmks2W ; (9.40a)ORmk = �U�m1Uk1 � 12U�m2Uk2 + Æmks2W : (9.40b)The unitarity properties of the V;U matries have again been used in deriving (9.39). Theverties orresponding to (9.36), (9.38) and (9.39) are given in Fig. 9.4. Those orrespondingto (9.36) have an additonal fator of 2 in the Feynman rules [9.10℄ whih appears due to ~�0lbeing Majorana fermions. One again, we have put arrows [9.10℄ on lines orresponding tothe latter. Fig. 9.4 is inluded in Appendix A



196 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSM9.4 Masses and Mixing Patterns of SfermionsSlepton mass termsThere are three soures of slepton mass terms in the Lagrangian density: 1) expliitmass terms as well as trilinear A-terms from the soft part of the salar potential VSOFT , f.(9.3), 2) the ontribution to the salar potential by the F -terms of (8.34), whih arise outof the superpotential W of (8.33) and 3) the ontribution to the salar potential from theD-terms given by (8.35). The F - and D-ontributions, as well as those from the trilinearterms in VSOFT , materialize after the neutral Higgs �elds aquire nonvanishing VEVs on thespontaneous breakdown of the SU(2)L�U(1)Y symmetry. On the other hand, eah sfermionmass term in VSOFT is invariant under SU(2)L�U(1)Y transformations. If all sfermions areheavier than the eletroweak gauge bosons, as indiated by present null searh experiments,their large masses ould be due to these terms. The piees in the sfermion mass terms due totrilinear salar ouplings, as well as the terms whih orginate from the higgsino mass termin the superpotential W, mix the left and right sleptons ~eiR and ~ejL. Depending upon thenature of VSOFT , there an also be generation mixing for harged sleptons. However, we willshow later that, under some simple assumptions about VSOFT , one an often neglet some ofthe generation mixing in the slepton setor, one one has imposed the restritions impliedby strong experimental limits that exist on the nononservation of lepton avor.The relevant terms in V (and hene in �L), whih ontribute to slepton masses, an bewritten, using (9.3),(8.33)-(8.35) and (8.36), asV ~̀= V ~̀SOFT + V ~̀F + V ~̀D : (9.41)The di�erent terms in the RHS of (9.41) an be shown, with repeated indies summed, asfollows: V ~̀SOFT = ~̀�iL(M2~̀)ij ~̀jL + ~e?iR(M2~e)ij~ejR + hh1�~̀iL(f eAe)ij~e?jR + h::i ; (9.42a)V ~̀F = ���?h�2 � ~�?i f e?ij ~ejR��2 + ���?h0?2 � ~e?iLf e?ij ~ejR��2+Xi ���f ejih1�~̀jL���2 + f eijf e�ij0~e?jR~ej0R �jh01j2 + h+1 h�1 � ; (9.42b)V ~̀D = 14g2Y (jh1j2 � jh2j2)Xi �j~̀iLj2 � 2j~eiRj2�+14g22 �hy1~�h1 + hy2~�h2� ~̀yiL~� ~̀iL : (9.42)When the neutral Higgs �elds aquire vauum expetation values, as per (8.21), (9.42)lead to the following mass terms in the Lagrangian density.�L~̀m = ~��i �M2~̀+M2Z os 2� (1=2)11�ij ~�j+~e�iL hM2~̀�M2Z os 2� (1=2� sin2 �W )11 +m2ei11iij ~ejL+~e�iR �M2~e �M2Z os 2� sin2 �W11 +m2ei11�ij ~ejR� �~e�iL(meiAe�ij +meiÆij� tan�)~ejR + h::� : (9.43)



9.4. MASSES AND MIXING PATTERNS OF SFERMIONS 197In writing the above mass term, we have absorbed the eletroweak ouplings and VEVsv1;2 in MZ ; � and �W ; mei stands for the mass of the harged lepton ei (f. 8.23) and11ij = Æij. Moreover, we have used (8.23a) for f eij. The hoie of the signs in front of thef eAe et. terms in (9.3) was made in aordane with the onvention established in x7.7 anddetermines the sign of the Ae-term in (9.43). The opposite signs of the terms proportional toM2Z os 2� sin2 �W in the seond and third lines of (9.43) are noteworthy. The oeÆient ofthis term is essentially deided by the eletri harge of the slepton �eld. The hiral super�eld�Ei ontains ~e�iR and hene arries the eletri harge of the positron, unlike Li ontaining ~eiLwith the opposite harge. Furthermore, the term ontainingM2Z os 2� is proportional to TL3fand hene hanges sign between the left seletron and the sneutrino. Clearly, the states ~eiL~e�iR and ~�i, whih appear in (9.43), are the interation eigenstates; the orresponding masseigenstates will be linear ombinations of these. In priniple, both lepton avor mixing5 aswell as L-R mixing are now possible.Squark mass termsThe supersymmetri and nonsupersymmetri mass terms for squark �elds an be writtenin a manner analogous to that for slepton ones with the orrespondene ~̀L ! ~qL, ~�i ! ~uiL,~eiL;R ! ~diL;R. Just the additional singlet �elds ~uiR, that are present, need to be inluded.Moreover, the nontrivial CKM mixing, present in the quark setor, needs to be taken intoaount. Expressions similar to those appearing in (9.42) an be written for the squark salarpotential. In the following we �rst write the relevant part of the squark salar potential whihwill ontribute to squark masses asV ~q = V ~qSOFT + V ~qF + V ~qD ; (9.44)without any spei� assumptions about the supersymmetry breaking parametri matriesAd; Au. We then haveV ~qSOFT = ~qyiL(M2~q)ij ~qjL + ~dyiR(M2~d)ij ~djR + ~uyiR(M2~u)ij~ujR+ hh1 �~qiL(f dAd)ij ~d?jR + ~qiL �h2(fuAu)ij~u?jR + h::i ; (9.45a)V ~qF = ����?h�2 � ~uyiLf d?ij ~djR���2 + ����?h0?2 � ~dyiLf d?ij ~djR���2 +Xi ��f djih1 �~qjL��2+ �����?h+1 + ~dyiLfuij~ujR���2 + �����?h0?1 + ~uyiLfu?ij ~ujR���2 +Xi ��fu?ji h2 �~qjL��2+Xi ���f d?ij h0?1 ~djR � fu?ij h�2 ~ujR���2 +Xi ���f d?ij h+1 ~djR � fu?ij h0?2 ~ujR���2 ; (9.45b)V ~qD = 14g2Y �jh1j2 � jh2j2� h� 13 ~qyiL~qiL +Xi 2�Quj~uiRj2 +Qdj ~diRj2� i+ 14g22�hy1~�h1 + hy2~�h2� � ~qyiL~� ~qiL ; (9.45)5There are urrently some senarios, going beyond the MSSM, whih antiipate a large ~��-~�� mixing inanalogy with what is observed in the ��-�� setor by the super-Kamiokande experiment.



198 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere Qu;d are the eletri harges of the u; d-type squarks in units of the positron harge.From (9.49) the squark mass terms in the Lagrangian density an be written as�L~qm = ~u�iL �M2~q +M2Z os 2� (1=2�Qu sin2 �W )11 + (mumuy)�ij ~ujL+~d�iL �M2~q �M2Z os 2� (1=2 +Qd sin2 �W )11 + (mdmdy)�ij ~djL+~u�iR �M2~u +QuM2Z os 2� sin2 �W11 + (muymu)�ij ~ujR+~d�iR hM2~d +QdM2Z os 2� sin2 �W11 + (mydmd)iij ~djR�~u�iL �(muAu�)ij + �(mu)ij ot�� ~ujR + h::� ~d�iL �(mdAd�)ij + �(md)ij tan �� ~djR + h:: (9.46)In (9.50)mu andmd are the up and down type quark mass matries respetively in generationspae (f. 8.11). One may note that , just as with sleptons, the squarks are massive evenin the limit of unbroken SU(2)L�U(1)Y symmetry. One more, there is a relative negativesign between the mass terms for left squarks and right squarks for the piees proportionalto the harge Qu and Qd. The mixing between the left and right squark �elds, given inthe last two RHS terms, is aused by the trilinear A-terms as well as by the higgsino massontribution to the F -terms. Beause of extant mixing in the quark setor, both L-R mixingand generation mixing are nontrivial and ompliated for squarks.Sfermion mixing: some generalitiesLet us de�ne a six omponent vetor~f = � ~fL~fR� ; (9.47)where ~fL; ~fR are eah a three omponent olumn vetor in generation spae with omponents~fiL; ~fiR; ~f being the superpartner of any matter fermion �eld f , quark or lepton. Thus ~f anbe ~�; ~e; ~u; ~d exept that we put ~�R = 0. The general squared mass matrix for suh sfermionsan then be written as a 2� 2 Hermitian matrix of 3� 3 bloks in the spae spanned by thevetor of (9.47): M2~f =  M2~fLL M2~fLRM2y~fLR M ~fRR ! : (9.48)In (9.48) M2~fLL and M2~fRR are hermitian in generation spae. Now all the sfermion massterms of (9.43) and (9.46) an be olleted under�LSFERMION MASS =X~f ~f yM2~f~f : (9.49)Spei�ally, for sneutrinos, harged sleptons, u-squarks and d-squarks, we an respetivelywrite from (9.43) and (9.46) the 6 � 6 squared mass matries in terms of 3 � 3 submatrix



9.4. MASSES AND MIXING PATTERNS OF SFERMIONS 199bloks asM2~� = �M2~̀+M2ZT ~�3L os 2� 11 00 0� ; (9.50a)M2~e =�M2~̀+M2Z(T ~e3L �Qe sin2 �W ) os 2� 11 +memye �me(Ae� + � tan�)�(AeT + �? tan �)mye M2~e +QeM2Z os 2� sin2 �W11 +myeme� ;(9.50b)M2~u =�M2~q +M2Z(T ~u3L �Qu sin2 �W ) os 2� 11 +mumyu �mu(Au? + � ot �)�(AuT + �? ot �)myu M2~u +QuM2Z os 2� sin2 �W 11 +myumu� ;(9.50)M2~d =�M2~q +M2Z(T ~d3L �Qd sin2 �W ) os 2� 11 +mdmyd �md(Ad� + � tan�)�(AdT + �? tan �)myd M2~d +QdM2Z os 2� sin2 �W11 +mydmd� :(9.50d)In (9.50) T ~f3L is the third omponent of the weak isospin of ~fL, Qf the eletromagnetiharge of f andmf the mass matrix (f. 8.11 and 8.12) for f in generation spae, with (me)ijbeing of ourse meiÆij. However, M2~f involves not only mf but also the soft supersymmetrybreaking squared mass matries M2 both for the SU(2)L doublet left sfermions and forthe SU(2)L singlet right sfermions plus the matrix Af in generation spae and �nally thesupersymmetri higgsino mass parameter �. Note that Af is in general a omplex 3 � 3matrix and � an be omplex too. Observe furthermore that the D-term ontributions arediagonal in generation spae. The o�diagonal LR mixing terms are proportional to fermionmasses and hene appreiable only for the third generation. Otherwise, generation mixingis really ontrolled by the soft supersymmetry breaking terms.Referring bak to (9.47), we an de�ne mass eigenstate sfermions through the six om-ponent olumn vetor ~fm whih is unitarily transformed from ~f :~fm =W ~fy~f : (9.51)The 6� 6 unitary matries W ~f then diagonalize the squared mass matries M2~f 8 ~f :M2(D)~f =W ~fyM2~fW ~f : (9.52)Let us introdue the indies s; t running from 1 to 6 while we keep the generation indies asi; j running from 1 to 3. We make a onvention to order the sfermions by mass, ~fm1 beingthe lightest and ~fm6 the heaviest among sfermions of a given harge. Eq. (9.51) an then berewritten as ~fms =W ~f?ts ~ft = W ~f?is ~fiL +W ~f?i+3 s ~fiR ; (9.53)



200 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMthe generation index i being summed on repetition. The seond step of (9.53) shows the de-omposition of a mass eigenstate sfermion �eld into left and right hiral interation eigenstatesfermions. The latter an be written, by inverting (9.53), as~fiL = W ~fis ~fms ; (9.54a)~fiR = W ~fi+3 s ~fms : (9.54b)Two limiting ases of the above most general sfermion mass mixing are also quite trans-parent.(a) No L-R mixingIn this ase M ~fLR vanishes and (9.48) redues toM2~f = �M2~fLL 00 M2~fRR � : (9.55)Now the 6� 6 unitary matrix W ~f has the hiral blok diagonal formW ~f = �U ~fL 00 U ~fR � ; (9.56)where U ~fL and U ~fR are unitary submatries for the distint left and right sfermion setors.In terms of expliit generation indies i; j (= 1; 2; 3) we an writeW ~fi j+3 = W ~fi+3 j = 0 ; (9.57a)W ~fij = U ~fLij ; (9.57b)W ~fi+3 j+3 = U ~fRij : (9.57)The 3�3 unitary matries U ~fL and U ~fR in generation spae, appearing in (9.56) and (9.57),are sfermioni generalizations of the avor rotation matries UfL;UfR for a hiral fermion fthat we introdued for f = u; d in Ch.8 to put the quark mass matriesmu;md into diagonalform via biunitary transformations. The hiral blok submatries of (9.50), for f = ~�; ~e; ~u; ~d,now have the following respetive expressions after diagonalization.M2(D)~� = U~�y(M2~̀�M2Z os 2� T ~�3L11)U~�; (9.58a)M2(D)~eLL = U~eyL �M2~̀+M2Z os 2�(T ~e3L � sin2 �W )11 +m2(D)e �U~eL ; (9.58b)M2(D)~eRR = U~eyR �M2~e +QeM2Z os 2� sin2 �W11 +m2(D)e �U~eR; (9.58)M2~uLL = U~uyL �M2~u +M2Z os 2�(T ~u3L �Qu sin2 �W )11 +myumu�U~uL ; (9.58d)M2(D)~uRR = U~uyR �M2~u +QuM2Z os 2� sin2 �W11 +myumu�U~uR; (9.58e)M2(D)~dLL = U ~dyL hM2~d +M2Z os 2�(T ~d3L �Qd sin2 �W )11 +mydmdiU ~dL ; (9.58f)M2(D)~dRR = U ~dyR hM2~d +Q ~dM2Z os 2� sin2 �W11 +mydmdiU ~dR : (9.58g)



9.4. MASSES AND MIXING PATTERNS OF SFERMIONS 201Note that mass eigenstate sfermions will now be ordered by mass within s = 1; 2; 3 for leftsfermions and within s = 4; 5; 6 for right sfermions, i.e. now we havemass(fm1 ) < mass(fm2 ) < mass(fm3 ); (left sfermions) ; (9.59a)mass(fm4 ) < mass(fm5 ) < mass(fm6 ); (right sfermions) ; (9.59b)without any de�nite ordering between the two groups. Thus a program, made to diagonalizethe original 6� 6 matrix, will not automatially return a blok diagonal mixing matrix as in(9.56) sine the program will insist on all mass eigenstate sfermions being ordered aordingto their masses. The latter an be obtained just by interhanging ertain rows and olumnsof W ~f without a�eting physis.(b) No avor mixingIn this limit the 6� 6 mixing matrix only ouples the two sfermioni states labelled bythe indies i and i + 3, i.e. the left and the right states of a given avor. For a real massmatrix, one has W ~fii = W ~fi+3 i+3 = os � ~fi ; (9.60a)W ~fi i+3 = �W ~fi+3 i = � sin � ~fi : (9.60b)Thus, for instane, mass eigenstate harged sleptons will now be desribed by~fm = 0BBBBBB� ~e1~�1~�1~e2~�2~�2
1CCCCCCA ; (9.61)i.e. the mass ordering is enfored between fmi and fmi+3 and not between di�erent avorstates.Before losing this setion, we want to omment spei�ally on the squared mass matriesof staus, sbottoms and stops. These third generation sleptons and squarks are somewhatspeial. It is reasonable to take them to be deoupled from other sleptons and squarksi.e. assume no avor mixing for them. On the other hand, they do involve substantialL-R mixing on aount of the nonnegligible masses of their fermion partners. Indeed, theyphysially manifest themselves as the mass eigenstates ~�1;2;~b1;2 and ~t1;2. In this piture theorresponding squared mass matries an be written approximately in 2� 2 formM2~� = �m2~̀3 � (1=2� sin2 �W )M2Z os 2� +m2� �m� (A�? + � tan�)�m� (A� + �? tan�) m2~� �M2Z os 2� sin2 �W +m2� � ; (9.62a)M2~b = �m2~q3 � (1=2� 1=3 sin2 �W )M2Z os 2� +m2b �mb(Ab? + � tan�)�mb(Ab + �? tan�) m2~b � 1=3M2Z os 2� sin2 �W +m2b � ;(9.62b)



202 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMM2~t = �m2~q3 + (1=2� 2=3 sin2 �W )M2Z os 2� +m2t �mt(At? + � ot�)�mt(At + �? ot�) m2~t + 2=3M2Z os 2� sin2 �W +m2t � :(9.62)The o�-diagonal L-R mixing term is partiularly large in the stop ase, being proportionalto the mass of the top quark. This an in priniple make ~t1 the lightest sfermion.9.5 The Flavor Problem in SupersymmetryMany disussions in previous setions have hinted that there is a generi avor problem[9.8℄ in supersymmetri theories. The origin of the problem is in the ourrene of sizableavor dependene in sfermion mass matries. The latter naturally leads to large induedFCNC amplitudes whih are, however, unobserved by experiment. The lak of observationof the deay � ! e puts some onstraints on the lepton-slepton setor. Though proesseslike D0 $ �D0 and B0 $ �B0 transitions as well as b ! s deay yield onstraints on thequark-squark setor, the most stringent restritions here ome from what is already knownabout K0- �K0 mixing. Let us elaborate on this last statement by following the treatment ofHagelin et al [9.8℄. At the one loop level the box diagram of Fig. 9.5 an indue an operatorsuh as �dL�sL �sL�dL
sL

sL d~
0
iL

dL

dL

g~ g~

d~
0
LjFig. 9.5 One loop squark indued K0- �K0 mixinginto the e�etive Lagrangian density ontributing to the said mixing. From the produt oftwo squark propagators and four elements of the matrix U ~dL of (9.56) in this diagram, thetransition amplitude for �sLdL ! �dLsL piks up a fator6Xi U ~dLdi U ~dyLisk2 �m2~di + i�Xj U ~dLdj U ~dyLjsk2 �m2~dj + i� ;k being the loop momentum. We have set all external momenta to zero beause m2K � m2~q.Sine the unitarity of U ~dL makes this fator vanish in ase m2~di is the same for ~di = ~d; ~s;~b, itan be rewritten as 1(k2 �m2~d + i�)4 �����Xi U ~dLsi U ~dyLid �m2~di �����2 +O ��k2 �m2~d��5� ;6We work in an interation basis where the down quark mass matrix is diagonal.



9.5. THE FLAVOR PROBLEM IN SUPERSYMMETRY 203where m2~d is an average mass squared for harge �1=3 squarks and m2~di = m2~d + �m2~di .The aforementioned transition amplitude has the dimensionality of an inverse mass squared.So after inserting the produt of the two gluino propagators and four powers of the QCDoupling strength gs and performing the loop integration, one is left with an amplitudeproportional to g4s~m6 �����Xi U ~dLdi U ~dyLis �m2~di�����2 ;where ~m = max (m~q;M~g), i.e. the larger of the squark and gluino masses. With j�m ~di j �m ~di = O(102) GeV, this yields a ontribution whih is three orders of magnitude larger thanthat from the SM. The latter obtains through the replaement of the gluino lines by W�lines and of the squark lines by ui-quark ones in Fig. 9.5 and reprodues the observed valueof the KL-KS mass di�erene [9.13℄ rather well.The above disussion raises an important question : how an suh undesirable amplitudesbe suppressed in supersymmetri theories? The struture of the expression in the aboveparagraph implies that there are basially three ways in whih a suppression of the desirednature an be ahieved. One may also onsider various ombinations of these options. Weshall desribe these three possibilities one by one. Note that we keep our fous on the quark-squark setor here. Analogous arguments do apply to the lepton-slepton setor, though witha ertain simpli�ation; avor mixing among leptons an be negleted { at least in the limitof vanishing neutrino masses. Thus onstraints, from the yet unobserved �! e deay andmuon onversion to eletron in atoms, an also be taken are of.The �rst hoie is to make the prefator in the said expression small, i.e. to take [9.14℄the masses of sfermions of the �rst two generations to be very large, in the multi-TeV range.Of ourse, the naturalness argument, disussed in Ch.1, requires one to keep third generationsfermion and Higgs boson masses at or below the TeV sale. However, the smallness of �rstand seond generation Yukawa ouplings allows the hoie of quite large masses for the or-responding sfermions without destabilizing the hierarhy7. This is a \brute fore" solutionof the avor problem, sine all loop orretions involving internal �rst or seond generationsfermions and external fermion or gauge boson legs are then suppressed, inluding in parti-ular those orretions that give rise to FCNC transitions. The prevention of unaeptablylarge loop orretions from the hyperharge U(1)Y D-terms to Higgs masses requires theonditionPi Yim2~fi <�O(1) TeV2. Another problem arises in any attempt to implement suha spetrum at a high energy sale: two loop ontributions to the renormalization groupequations due to SU(3)C interations tend to drive the squared stop masses to negativevalues [9.15℄, leading to olor and/or harge symmetry breaking. On the positive side, thiskind of model also easily satis�es onstraints on avor onserving CP violating amplitudes.In partiular, those from the yet unobserved eletri dipole moments of the neutron andeletron are respeted even though all soft supersymmetry breaking parameters have CPviolating phases of O(1). This kind of \inverted hierarhy" model sometimes goes under thename more minimal or E�etive Supersymmetry, sine �rst and seond generation sfermionsessentially deouple from physis at energies that will be aessible in the foreseeable futureat ollider experiments.7If tan� is small, the ~bR; ~� and h masses an also be made large.



204 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMThe seond strategy [9.16℄ is to assume a (presumably dynamially generated) alignmentbetween the fermion and sfermion mass matries so that both an be made diagonal in thesame basis. In fat, in that ase the mixing matrix, appearing in the expression for the boxgraph of Fig. 9.5, is diagonal. The expression then vanishes and the problem is solved. This isatually only a partial solution, sine, owing to nontrivial CKM mixing,M2~q annot ommutesimultaneously with the u and d quark mass matries (exept whenM2~q is proportional to theunit matrix; this ase will be treated below). As already stated (see also Table 9.1 below),by far the most stringent onstraints ome from the kaon setor. Models of alignment heneusually assume thatM2~q is aligned with the d quark mass matrix. Sine CKM mixing anglesare in fat quite small, an approximate alignment with the u quark mass matrix then alsoobtains. However, generially one would expet nonnegligible D0- �D0 mixing in this lass ofmodels.The third option is to assume a high degree of mass degeneray, or universality ofmasses, among sfermions with given SU(2)L�U(1)Y quantum numbers (inluding eletro-magneti harge) but ourring in di�erent generations. In this senario the K0- �K0 mixingexpression is suppressed beause the �m2~di are very small. Large avor mixing is possiblein this option if on-shell spartiles an be produed,8 but FCNC amplitudes, involving onlySM partiles as external legs, are suppressed by a super-GIM mehanism. In pratie, itsuÆes to assume a near mass degeneray between sfermions of the �rst and seond gen-erations; experimental avor mixing onstraints on the third generation are weak, mostlybeause the SM ontribution to B0- �B0 mixing is quite large, and has a sizable theoretialunertainty. Indeed, with substantial L-R mixing, one may expet ~�1, ~b1 and ~t1 to be signif-iantly lighter than the orresponding mass degenerate harge �1, harge �1=3 and harge2/3 sfermions of the �rst two generations, respetively. Note that FCNC onstraints do notlead to any relations between, say, M2~u; M2~d and M2~q. As will be shown in more detailin Chs.12 and 13, spei� models with high sale supersymmetry breaking nevertheless dousually imply a high degree of degeneray between �rst and seond generation squarks withdi�erent SU(2)L � U(1)Y quantum numbers. On the other hand, in suh models exat uni-versality only holds at a high sale. Quantum orretions will typially lead to deviationsfrom universality at the weak sale. We shall see later that many suh models, while stillompatible with the present onstraints, therefore predit signi�ant new ontributions toertain FCNC proesses. In the remaining setions of this hapter we shall hene presentFeynman rules for sfermion interations allowing for a ompletely general mixing betweenall six sfermions of a given eletri harge.Before oming to the Feynman rules, mentioned above, however, we would like to give amore quantitative disussion of the bounds on avor violation in the sfermion setor. Thisan most easily be done using the mass insertion method [9.18℄. In this approah one worksin a basis where the mass matrix of quarks of a given harge as well as the orrespondingquark-squark-neutral gaugino ouplings are diagonal in avor spae. As a result, di�erentbases need to be used for problems involving external d-type or external u-type quarks.Flavor violation is then desribed by avor nondiagonal entries (� ~fij)AB of the sfermionsquared mass matries in that basis, where i and j are generation indies and A;B 2 fL;Rg8The e�ets of suh large mixing may be observable as slepton osillations [9.17℄ in pp and `+`� olliders.



9.5. THE FLAVOR PROBLEM IN SUPERSYMMETRY 205labels the four 3 � 3 bloks in (9.48). These o�-diagonal entries are treated as two pointinterations in the perturbation expansion, leading to nondiagonal propagators with expliitavor o�diagonal mass insertions. The experimental onstraints an most onveniently bequantity x = 0:3 x = 1:0 measurabler���<e(Æ ~d12)2LL��� 1:9� 10�2 4:0� 10�2r���<e(Æ ~d12)2LR��� 7:9� 10�3 4:4� 10�3 �mKr���<e(Æ ~d12)LL(Æ ~d12)RR��� 2:5� 10�3 2:5� 10�3r���<e(Æ ~d13)2LL��� 4:6� 10�2 9:8� 10�2r���<e(Æ ~d13)2LR��� 5:6� 10�2 3:3� 10�2 �mBr���<e(Æ ~d13)LL(Æ ~d13)RR��� 1:6� 10�2 1:8� 10�2pj<e(Æ~u12)2LLj 4:7� 10�2 1:0� 10�1pj<e(Æ~u12)2LRj 6:3� 10�2 3:1� 10�2 �mDpj<e(Æ~u12)LL(Æ~u12)rrj 1:6� 10�2 1:7� 10�2���=m(Æ ~d12)LL��� 1:0� 10�1 4:8� 10�1 �0K=�K���=m(Æ ~d12)LR��� 1:1� 10�5 2:0� 10�5 �0K=�K���(Æ ~d23)LL��� 4:4 8:2 BR(b! s)���(Æ ~d23)LR��� 1:3� 10�2 1:6� 10�2 BR(b! s)���(Æ ~̀12)LL��� 4:1� 10�3 7:7� 10�3 BR(�! e)���(Æ ~̀12)LR��� 1:4� 10�6 1:7� 10�6 BR(�! e)���(Æ ~̀13)LL��� 15 29 BR(� ! e)���(Æ ~̀13)LR��� 8:9� 10�2 1:1� 10�1 BR(� ! e)���(Æ ~̀23)LL��� 2:8 5:3 BR(� ! �)���(Æ ~̀23)LR��� 1:7� 10�2 2:0� 10�2 BR(� ! �)Table 9.1. Experimental upper bounds [9.18℄ on avor violation in the soft supersymmetrybreaking terms of sfermions.expressed as bounds on the dimensionless quantities (Æ ~fij)AB . In the simplest ase, (Æ ~fij)AB =(� ~fij)AB=(m2 ~fij)AB, where the \average" sfermion squared mass is given by (m2 ~fij)AB =q(M2ii)AA(M2jj)BB . Moreover, this formalism also allows the inlusion of higher order



206 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMontributions. Thus, for instane, the seond order ontribution to (Æ ~fij)RR is given by(� ~fik)RL(� ~fkj)LR=�(m2 ~fik)RL(m2 ~fkj)LR�.The experimental bounds on the various o�-diagonal entries (Æ ~fij)AB are summarizedin Table 9.1, whih has been extrated from Ref.[9.18℄. It has been assumed here thateah supersymmetri ontribution separately satis�es the overall onstraint on the quantityindiated, i.e. \aidental" anellations between di�erent kinds of ontributions have notbeen onsidered. For simpliity, moreover, (Æ ~fij)LR and (Æ ~fij)RL are taken to be equal, thoughthe assumption ould be avoided. The bounds on the slepton setor have been omputedfrom loop diagrams involving a photino, rather than treating the two neutral eletroweakgauginos separately. It is in this limit that the bounds on (Æ ~̀ij)RR are idential to those on(Æ ~̀ij)LL that have been listed in the table. An analogous statement holds for the bounds in thesquark setor, whih ome from diagrams involving gluinos. All these bounds sale inverselywith the relevant sfermion mass. The numerial values, given in Table 9.1, assume a ommonsquark mass of 500 GeV and a ommon slepton mass of 100 GeV. Thus the bounds on Æ ~̀ salelike m~̀=(100 GeV) while those on Æ~q (q = u; d) sale like m~q=(5000 GeV). Note that we onlyquote bounds from ontributions involving avor hanging ouplings to neutral gauginos(gluinos or neutralinos) ~�0; values are given for two values of the ratio x � (m~�0=m ~f )2.Eah entry in the last olumn in this table indiates the physial measurable from whihthe orresponding bound has been derived. Note moreover that the bounds on (Æ ~fij)RR and(Æ ~fij)RL are equal to those on the orresponding (Æ ~fij)LL and (Æ ~fij)RL respetively. As mentionedearlier, the most severe onstraints exist on the mixing between �rst and seond generationharge �1=3 squarks. The onstraint on the mixing between harge 2/3 squarks of the �rsttwo generations is onsiderably milder. Furthermore, O(1) mixing between seond and thirdgeneration squarks is allowed in the LL or RR setor. The onstraint on mixing betweenleft and right sfermions is often muh more stringent than that on LL and RR mixing. Thereason is that the relevant e�etive fermioni operators leading to radiative deays treatedin the last eight rows of Table 9.5, break hiral symmetry, i.e. ause ouplings betweenleft hiral and right hiral fermions, failitated by the transitions between the orrespondingsfermions.9.6 Interations of Sfermions with Gauge BosonsA sfermion partiipates in an MSSM gauge interation in two ways: (1) as a member of asfermion pair and (2) along with another fermion. We shall take up (2) in the next Setion.Here we onsider (1) and enumerate the di�erent possibilities below.



9.6. INTERACTIONS OF SFERMIONS WITH GAUGE BOSONS 207Slepton-slepton-eletroweak gauge boson interationsIn this ategory ome ubi/quarti verties involving a pair of sleptons and one/twoEW gauge boson(s). The two sleptons ould be various ombinations of harged and neutralones while the gauge boson(s) would be orrespondingly neutral and/or harged. Theseinterations were overed earlier in (8.44b{d) and (8.47{h), but we now desribe physialverties with mass eigenstate sleptons and general mixing as desribed at the end of x9.4.We an ollet all suh verties in three groups.(1) The �rst group (Fig. 9.6) onsists of verties whih involve either only one (two) Zboson(s) interating with a sneutrino pair or only one (two) photon(s). These vertieshave the feature that the mixing matriesW ~f anel out. The ruial observation hereis that W ~fyW ~f = 11.(2) The seond group (Fig. 9.7), omprising either a W+W� pair interating with twosleptons or a Z interating with a harged slepton pair, shows a nontrivial dependeneon the mixing matries W ~f only in the presene of left right mixing. Without suhmixing, i.e. if the 6�6 slepton mixing matrix has the form (9.56), avor mixing wouldagain drop out, owing to the unitarity of the U matries. On the other hand, if L-Rmixing is present, a nontrivial dependene on the mixing angle emerges even in theabsene of avor mixing. The relevant Feynman rules for this ase an be derived easilyfrom the general rules listed in Fig. 9.7, using (9.60). Notie that we have replaedW~� by U~� sine in the MSSM no righthanded (s)neutrinos exist at the weak sale.(3) All the remaining verties, whih are in general a�eted by generation mixing even inthe absene of L-R mixing, make up the third group (Fig. 9.8). In this ase a nontrivialdependene on the mixing angle will survive in both simpli�ed senarios disussed inx9.4, i.e. (9.57) and (9.60). For the onveniene of the reader we give both the W+~l~��and W�~�~l� verties, whih are related to eah other by omplex onjugation.Figs. 9.6, 9.7 and 9.8 are inluded in Appendix ASquark-squark-gauge boson interationsThe simplest set of verties in this ategory are those that involve only squarks and gluonsin SQCD. The ubi ~q�~qg and the quarti ~q�~qgg verties have already been fully disussed inx5.5 and x8.4. Nothing needs to be added to those disussions, sine the mixing matrieswill anel out in these verties.Turning to ubi and quarti verties of physial mass eigenstate squarks with eletroweakgauge bosons, we an again ollet them in three groups as in the ase of sleptons. However,the �rst group { whih is free from any mixing { now has only pure photon verties, f.Fig. 9.9. The seond group (Fig. 9.10), involving a W+W� pair or one (two) neutral gaugeboson(s), at least one being the Z, shows a nontrivial mixing dependene only in the preseneof L-R mixing. Only the third group, ontaining a single W either by itself or in assoiationwith a neutral gauge boson interating with a squark pair, has the ompliation of bothtypes of mixing, i.e. generation as well as left right. These verties are given in Fig. 9.11.



208 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMAs with sleptons, it is straightforward to derive the orresponding Feynman rules if avoror L-R mixing an be ignored, using (9.57) and (9.60), respetively.Figs. 9.9, 9.10 and 9.11 are inluded in Appendix AThis brings us to the end of the disussion of sfermion-gauge boson verties.9.7 Fermion-sfermion-gaugino/higgsino interationsFermion-sfermion-hargino interationsLet us �rst disuss the fermion-sfermion-hargino verties in the \urrent" basis in whihgenerially ~fuiL; ~fdiL are the left sfermions of the up, down type, ~fuiR; ~fdiR are the orrespond-ing right sfermions and fui; fdi the orresponding fermions following the notation introduedin x8.4. Our starting points are (1) the gaugino-sfermion-fermion interations, as given byexpressions analogous to (5.55) and (2) the higgsino-sfermion-fermion ouplings arising fromthe superpotential (8.33). In the two omponent spinor notation used in previous setions,the relevant part of the Lagrangian density readsLf ~f 0� ~�� = �g2 ����1Qi ~d�iL + �+�2Qi~u�iL + ���1Li~e�iL + �+�2Li~��iL�+ g2(m�u)ijp2MW sin � �~h12�2Qi~u�jR + ~h12� �Uj ~diL�+ g2(m�d)ijp2MW os � �~h21�1Qi ~d�jR + ~h21� �Dj ~uiL�+ g2(m�e)ijp2MW os � �~h21�1Li~e�jR + ~h21� �Ej ~�iL� + h:: (9.63)We have written out the squark and slepton terms separately. The �rst term in the RHSof (9.62) desribe the gaugino-fermion-sfermion ouplings, while the last three terms orre-spond to higgsino-fermion-sfermion interations. The latter are proportional to fermion massmatries and vanish in the limit of massless fermions. In this expression �1(2)Qi and �1(2)Li are thetwo omponent spinors representing the T3L = 1=2 (�1=2) fermioni omponents of a hiralSU(2)L doublet super�eld suh as Qi or Li of (8.15)-(8.17). Furthermore, � �Dj and � �Ej are thefermioni omponents of SU(2)L singlet super�elds. The four omponent Dira spinor �eldsorresponding to the various matter fermions are onstruted out of �Ui; �Di; �Li; � �Ui; � �Di; � �Ei(where e.g. �Ui � �1Qi and so on) as desribed in (3.20) of x3.2. For example, for the up typequarks ui = � �Ui��T�Ui � : (9.64)Reall that eah of the singlet super�elds �Ei; �Di and �Ui ontains the left hiral omponentof the antifermion �eld. Let us de�ne Dira �elds fui;di for general up, down type matterfermions (overing both quarks and leptons) in analogy with the ui of (9.64). In terms ofthese generi up, down fermions and sfermions and the four omponent wino and higgsinoeigenstates de�ned in (9.17), we an rewrite (9.63) as



9.7. FERMION-SFERMION-GAUGINO/HIGGSINO INTERACTIONS 209Lf ~f 0? ~�� = �g2 h �fuiPR~�+ ~fdiL + �fdiPR(~�+)C ~fuiLi+ g2(mfd)ijp2MW os � h �fuiPR~h+ ~fdjR + (~h+)CPRfdj ~f �uiLi+ g2(mfu)ijp2MW sin � h �fdiPR(~h+)C ~fujR + ~h+PRfuj ~f �diLi+ h:: (9.65)Of ourse, a sum over all fermions fui; fdi overing quarks and leptons (and orrespondingsfermions) is implied. On utilizing (9.18) and (9.19), this Lagrangian an be reast in termsof the hargino mass eigenstates ~��k ; k = 1; 2, asLf ~f 0� ~�� = �g2 hUk1 �fuiPR ~�+k ~fdiL + Vk1 �fdiPR(~�+k )C ~fuiLi+ g2(mfd)ijp2MW os �Uk2 h �fuiPR ~�+k ~fdjR + ~f �uiL(~�+k )CPRfdji+ g2(mfu)ijp2MW sin �Vk2 h �fdiPR(~�+k )C ~fujR + ~f �diL ~�+k PRfuji+ h:: (9.66)In the supersymmetri limit the lepton-slepton-hargino verties an be read o� fromthis expression, using (me)ij = meiÆij, modulo ~eL-~eR mixing in the slepton setor. However,the existene of the soft supersymmetri breaking terms an hange that. In ase of thequark-squark-hargino interation, there is also the additional ompliation of generationmixing whih is present even in the supersymmetri limit. A further point to note in (9.66)is the ourrene of (~�+k )C . The appearane of harge onjugated fermion �elds is generiin supersymmetri theories and gives rise to the expliit presene of the harge onjugationmatrix C in Feynman rules. The basi reason for the neessity of introduing these uglyC-fators in Feynman rules is the following. In ontrast with harged fermions in the SM,harginos do not arry a \fermion number" like lepton or baryon number. The same �eld anthus ouple to �u ~d and to d�~u. If the �rst vertex is written in terms of an inoming (positive)hargino �eld, the seond vertex has to be written in terms of the outgoing harge onjugateof that hargino �eld (or vie versa).We are now in a position to write down the interation terms of (9.66) expliitly forthe quark/squark and lepton/slepton setors in terms of mass diagonal matter fermion andsfermion �elds. We use quark avor rotation matries UuL;R and UdL;R, introdued in Ch. 8,as well as the sfermion rotation matries U~�, W~e, W~u and W ~d of x9.4. We employ i; j; k =1; 2; 3 as indies in generation spae, while s = 1; : : : ; 6 labels harged slepton or squark masseigenstates. The physial quark masses are denoted by mdi and mui. Finally, quark/squark�elds are taken to be row or olumn vetors in olor spae. The quark/squark part of (9.66)then reads (for simpliity we omit the supersript m denoting mass eigenstates)Lq�~q0�� = �uiCLiskPR ~ds ~�+k + �diDLiskPR~us(~�+k )C+ ~uys(~�+k )CERiskPRdi + ~dys ~�+k FRiskPRui + h:: ; (9.67)



210 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwith CLisk = �g2Uk1 3Xj=1 UuL�ji W ~djs + g2Uk2p2MW os � 3Xj;n=1V qLin mdnUdR�jn W ~dj+3 s ; (9.68a)DLisk = �g2Vk1 3Xj=1 UdL�ji W ~ujs + g2Vk2p2MW sin � 3Xj;n=1V qL�ni munUuR�jn W ~uj+3 s ; (9.68b)ERisk = g2Uk2mdip2MW os � 3Xj=1 UdLji W ~u�js ; (9.68)FRisk = g2Vk2muip2MW sin � 3Xj=1 UuLji W ~d�js : (9.68d)The orresponding verties are given in Fig. 9.12. It may be noted that left (right) fermionsonnet to the left (right) omponents of the sfermions through the gaugino omponentsof the harginos, whih are desribed by U`1 and V`1. In ontrast, the terms oming fromYukawa ouplings, whih are proportional to a quark mass, ouple a left (right) fermion tothe right (left) omponent of the orresponding sfermion. If squarks and quarks ould bealigned exatly (see x9.5), all ombinations of quark and squark mixing matries appearing in(9.68) would redue either to the unit matrix (in the right handed setor) or to the standardKM matrix VqL (in the left handed setor); however, as disussed earlier, alignment annotbe exat in the u and d setors simultaneously. Note �nally that, as per the onvention ofAppendix D of Haber and Kane [9.10℄, a harge onjugation matrix C� to the right operateson the transposed �u-spinor �uT or �v-spinor �vT while a C� �1 to the left requires a transposedv-spinor vT or u-spinor uT to left multiply it.Fig. 9.12 is inluded in Appendix AWe turn next to the lepton/slepton part of (9.63). It readsL`�~̀0 ~�� = ��iLisk~esPR ~�+k + dLijk�eiPR(~�+k )C ~�j + eRijk(~�+k )CPRei~��j + h:: ; (9.69)with Lisk = �g2Uk1W ~eis + g2meip2MW os �Uk2W ~ei+3 s ; (9.70a)dLijk = �g2U ~�ijVk1 ; (9.70b)eRijk = g2meip2MW os �Uk2U ~��ij : (9.70)The orresponding verties are drawn in Fig. 9.13; they an be obtained from those of Fig.9.12 with the replaements u! �, d! e, VqL ! 11, UuL , UdL , UuR, UdR ! 11, W~u ! U~�,W ~d !W~e, and muk ! 0.



9.7. FERMION-SFERMION-GAUGINO/HIGGSINO INTERACTIONS 211Fig. 9.13 is inluded in Appendix AFermion-sfermion-neutralino interationsThe neutralino-fermion-sfermion interation an be written down in a similar fashion.This time we need to isolate the a = 3 term from (5.55) for the SU(2)L gauge group and theU(1)Y analog of the terms in (5.36) and express them in terms of the four omponent matterfermions as well as the four omponent gauginos and higgsinos in the weak interation basis,de�ned in (9.30):Lf�~f ~�0 = �p2g2 ~fiL Xf=e;�;u;d �fiPR hT f3 ~�3 + tan �W (Qf � T f3 )~�0i+p2g2 tan �W Qf ~f �iR~�0PRfi � g2p2MW os � (m�d)ij h ~h01PL ~dyjRdi + �djPL ~h01 ~diLi� g2p2MW sin � (m�u)ij h ~h02PL~uyjRui + �ujPL ~h02~uiLi� g2p2MW os � (m�e)ij h ~h01PLei~e�jR + �ejPL ~h01~eiLi+ h:: (9.71)In (9.71) T f3L and Qf are respetively the third omponent of weak isospin and the eletro-magneti harge of fermion type f and i; j are generation indies as before. In terms of theneutralino mass eigenstates ~�0l , (9.71) beomesLf�~f ~�0 = Xf=u;d;e;� ~�0l �GfLl ~f �iLPL +GfRl ~f �iRPR� fi� g2p2MW sin � h(m�u)ijZ�l4~uyjR ~�0l PLui + (mu)ijZl4~uyiL ~�0l PRuji� g2p2MW os � h(m�d)ijZ�l3 ~dyjR ~�0l PLdi + (md)ijZl3 ~dyiL ~�0l PRdji� g2p2MW os � h(m�e)ijZ�l3~e�jR ~�0lPLei + (me)ijZl3~e?iL ~�0l PReji+ h:: ; (9.72)where we have used (9.31). The oupling strengths GfLl and GfRl in (9.71) an be written asGfLl = �p2g2 hT f3LZ�l2 + tan �W (Qf � T f3L)Z�l1i ; (9.73a)GfRl = p2g2 tan �WQfZl1 : (9.73b)One more, we an rewrite the interations of (9.72) in terms of mass diagonal quark andlepton �elds by performing avor rotations in generation spae with indies i; j. Similarly,the squark and slepton interation eigenstates appearing in (9.72) an be related to the



212 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMorresponding mass eigenstates through (9.54). The quark and squark �elds are also threeomponent row or olumn vetors in olor spae. Altogether the relevant interation termsfor the quark/squark setor an be written as (we again suppress the supersriptm indiatingmass eigenstates):Lq�~q0 ~�0 = ~�0l h(GuLislPL +GuRislPR)~uysui + (GdLislPL +GdRislPR) ~dysdii + h:: (9.74)In (9.74) we have de�ned the ouplingsGuLisl = GuLl 3Xj=1 W ~u�js UuLji � g2p2MW sin �muiZ�l4 3Xj=1 W ~u�j+3 sUuRji ; (9.75a)GuRisl = GuRl 3Xj=1 W ~u�j+3 sUuRji � g2p2MW sin �muiZl4 3Xj=1 W ~u�js UuLji ; (9.75b)GdLisl = GdLl 3Xj=1 W ~d�js UdLji � g2p2MW os �mdiZ�l3 3Xj=1 W ~d�j+3 sUdRji ; (9.75)GdRisl = GdRl 3Xj=1 W ~d�j+3 sUdRji � g2p2MW os �mdiZl3 3Xj=1 W ~d�js UdLji ; (9.75d)where the oeÆients GqLl and GqRl are as in eqs.(9.73a) and (9.73b), respetively. Feynmanrules for the verties of (9.75) are given in Fig. 9.14. An arrow has been put on the neutralinoline in onformity with the onvention in Appendix D of the �rst paper of Ref. [9.10℄.Fig. 9.14 is inluded in Appendix ALet us remark one again that, in the limit of massless fermions, the higgsinos willdeouple from the matter fermion/sfermion setor. Note also that the ouplings of neutralhiggsinos to quark mass eigenstates are proportional to the mass of that eigenstate. This isin ontrast to the ouplings of the harged higgsinos, where heavy quark masses ontributeto the oupling of light quarks. However, due to the smallness of the KM elements mixingthe third generation with the �rst two, in pratie one an still often neglet the Yukawaontributions to hargino and neutralino ouplings to �rst and seond generation fermions.In the alignment option of x9.5 the produts of avor rotation matries an be put equal tounity in either the up or down quark setor (but not for both simultaneously, as we notedearlier). On the other hand, if squarks of all three generations are degenerate and LR mixingan be ignored, all produts of rotation matries appearing in (9.75) ollapse to Kroneker-Æs,where either i = s or i + 3 = s.Let us now turn our attention to the lepton/slepton setor. The interation terms withneutralinos an be written asL`�~̀0 ~�0 = ~�0l hG�ijl~��jPL�i + (GeLislPL +GeRislPR)~e�seii+ h:: (9.76)



9.7. FERMION-SFERMION-GAUGINO/HIGGSINO INTERACTIONS 213In (9.76) we have introdued the ouplingsG�ijl = G�l U ~��ij ; (9.77a)GeLisl = GeLl W ~e�is � g2p2MW os �meiZ�l3W ~e�i+3 s ; (9.77b)GeRisl = GeRl W ~e�i+3 s � g2p2MW os �meiZl3W ~e�is ; (9.77)The vertex Feynman rules appear in Fig. 9.15. In the alignment option, or if sleptons aremass degenerate, the slepton avor rotation matries U~� and W~e an be put equal to theidentity matrix, if ~eL-~eR mixing is negligible. LR mixing an, as usual, be inluded in theseoptions by using (9.60). One again an arrow has been put [9.10℄ on the neutralino line.Fig. 9.15 is inluded in Appendix AQuark-squark-gluino interationsThese are now di�erent from the pure SQCD ase, f. (5.60) and Fig. 5.2. However, withthe armory of quark and squark avor rotation matries that have been developed already,we an write the relevant interation terms in a straightforward way as follows9.Lq~q0?~g = �p2gs Xq=u;d �qi hU qL�ji W ~qjsPR � U qR�ji W ~qj+3 sPLiT a~ga~qs + h:: (9.78)We have again suppressed the supersript m denoting mass eigenstates, and have written(s)quark �elds as vetors in olor spae. The orresponding Feynman rules are given in Fig.9.16; we have used them already in x9.5, in the basis where UdL = UdR = 11.Fig. 9.16 is inluded in Appendix AEqs. (9.68), (9.75) and (9.78) are in a general basis of the quark and squark interationeigenstates. Not all the rotation matries appearing in these equations are separately physialquantities. Despite the ourrene of the matries UuR and UdR in some of these equations,one an only measure the produts of quark and squark mixing matries whih appear in theseouplings. Note that exatly one fator in these produts is always the hermitian onjugateof a rotation matrix. This shows that only any misalignment between righthanded quarksand \righthanded" (SU(2) singlet) squarks is measurable. That an also be seen by de�ningU qR�ij qiR and U qR�ij ~qiR as new \interation eigenstates". This rede�nition does not modify anyof the gauge interations in the MSSM Lagrangian. The righthanded quark mixing matrieswould then disappear from (9.68), (9.75) and (9.78); more exatly, they would be absorbedin the squark rotation matriesW~q, whih are not invariant under this rede�nition of the ~qR\interation eigenstates".10 Indeed, pratial alulations are usually performed in this basis,9The s subsript of g, referring to the strong oupling, should not be onfused with the squark masseigenstate label s.10Of ourse, produts of rotation matries that appear in ouplings of mass eigenstates are invariant underrede�nitions of urrent eigenstates.



214 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMbeause the relevant ouplings are simpler than in a general basis. One an even go one stepfurther and hose the SU(2)L doublet (s)quark interation eigenstates in suh a way thateither the up or the down quark mass matrix (but not both!) beomes diagonal. The onlyquark rotation matrix appearing in the quark squark hargino/neutralino/gluino ouplings isthen the KM matrix. Of ourse, suh a proedure will yet again modify the squark rotationmatries. In these bases our interations are modi�ed as follows: UuR;UdR ! 11, and eitherUdL ! 11;UuL ! (VqL)y (in the basis where md is diagonal), or UuL ! 11;UdL ! VqL (inthe basis where mu is diagonal).Flavor mixing in the fermion-sfermion-bosino ouplings is of muh greater phenomeno-logial importane than the \super-CKM mixing" introdued in x8.4. The latter appearsin the oupling of W bosons to squarks and sleptons; the only proess of urrent interestwhere these ouplings play a role is slepton prodution at hadron olliders, whih is howeverdiÆult to detet anyway (see x15.3). In ontrast, the ouplings listed in this setion notonly determine the onstraints on avor mixing desribed in x9.5; they also largely determinehow spartiles deay. For example, the \avor" of a squark is usually de�ned through thequark to whih this squark deays. However, in the presene of signi�ant avor mixing thisde�nition may not be unique: several di�erent quarks might ouple to the same squark masseigenstate. The relative branhing ratios into di�erent quark avors may even depend onthe -ino that is produed in that deay. For example, di�erent ombinations of mixing ma-tries appear in squark to neutralino plus quark deays, desribed by the Lagrangian (9.74),than in squark to gluino plus quark deays desribed by (9.78). Conversely, these ouplingsdetermine whih (ombinations of) avors are produed in the deays of gluinos, harginosand neutralinos. For example, (9.76) and (9.77) show that the observation of deays of thetype ~�0l ! ~�01`+`0�, with l > 1 and ` 6= `0, would be an unambiguous sign for slepton avormixing.This ompletes our disussion of verties with gauginos/higgsinos interating with afermion-sfermion ombination.9.8 Quarti Sfermion VertiesThe �nal nongauge and nonHiggs interation that needs to be disussed is the interationof four sfermions. These verties appear e.g. in one loop orretions to sfermion pair pro-dution proesses, and in two loop orretions to reations without external superpartiles.In (8.49) we gave the relevant part of the Lagrangian in the absene of ~fL- ~fR mixing. Inthat ase sfermion mixing matries only appeared in the F -term (Yukawa) ontributions,and in the part of the SU(2)L D-term that ouples ~uL to ~dL squarks, and ~� to ~eL sleptons.However, sine ~fL and ~fR have di�erent gauge quantum numbers, nonvanishing ~fL- ~fR mix-ing means that sfermion mixing in general a�ets almost all terms in the quarti interationLagrangian. This is true even for the SU(3)C D-terms, sine the ~qL squarks reside in lefthiral super�elds that transform as triplets under SU(3)C , while the �~q�R reside in antitripletleft hiral super�elds: The SU(3)C D-term ontributions from the two therefore di�er by arelative sign, as shown in (5.60). The only exeption is the term involving four sneutrinos,sine the MSSM assumes the absene of SU(2)L singlet sneutrinos with weak sale masses.



9.8. QUARTIC SFERMION VERTICES 215The relevant part of the Lagrangian an now be written as�L ~f4 = X~f1; ~f2; ~f3; ~f4 Y [ ~f1; ~f2; ~f3; ~f4℄ ~f �1 ~f2 ~f �3 ~f4 ; (9.79)where the Y are onstant (�eld independent) oeÆients. In (9.79) the indies ~fi of Y havebeen written in the form of arguments, rather than as supersripts or subsripts, in orderto avoid an exessive proliferation of subsripts. The sum in (9.79) runs over sfermion type(~u; ~d; ~e and ~�), mass eigenstate labels, and olor indies.The Y oeÆients of (9.79) are given expliitly byY [~ua�s ; ~uat ; ~ub�u ; ~ubv℄ = g222M2W sin2 � 3Xi;j;k;l;m;n=1W ~u�is UuLik mukUuR�jk W ~uj+3 tW ~ulvUuL�lm mumUuRnmW ~u�n+3 u+ g2s4 "ÆsvÆtu � 13ÆstÆuv � 4 3Xi;j=1W ~u�is W ~u�j+3 u�W ~uivW ~uj+3 t � 13W ~uitW ~uj+3 v�#+ g228 �1 + tan2 �W9 � 3Xi;j=1W ~u�is W ~uitW ~u�juW ~ujv+ g22 tan2 �W9 3Xi;j=1 �2W ~u�i+3 sW ~ui+3 t �W ~u�is W ~uit�W ~u�j+3 uW ~uj+3 v ; (9.80a)Y [ ~da�s ; ~dat ; ~db�u ; ~dbv℄ = g222M2W os2 � 3Xi;j;k;l;m;n=1W ~d�is UdLik mdkUdR�jk W ~dj+3 tW ~dlvUdL�lm mdmUdRnmW ~d�n+3 u+ g2s4 "ÆsvÆtu � 13ÆstÆuv � 4 3Xi;j=1W ~d�is W ~d�j+3 u�W ~divW ~dj+3 t � 13W ~ditW ~dj+3 v�#+ g228 �1 + tan2 �W9 � 3Xi;j=1W ~d�is W ~ditW ~d�juW ~djv+ g22 tan2 �W36 3Xi;j=1�W ~d�i+3 sW ~di+3 t �W ~d�is W ~dit�W ~d�j+3 uW ~dj+3 v ; (9.80b)Y [~ua�s ; ~uat ; ~db�u ; ~dbv℄ = �g2s6 "ÆstÆuv � 2 3Xi;j=1�W ~u�is W ~uitW ~d�j+3 uW ~dj+3 v +W ~u�i+3 sW ~ui+3 tW ~d�juW ~djv�#� g224 �1� tan2 �W9 � 3Xi;j=1W ~u�is W ~uitW ~d�juW ~djv+ g22 tan2 �W18 3Xi;j=1 hW ~u�is W ~uitW ~d�j+3 uW ~dj+3 v+2W ~u�i+3 sW ~ui+3 t �W ~d�juW ~djv + 2W ~d�j+3 uW ~dj+3 v�i ; (9.80)



216 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMY [~ua�s ; ~dat ; ~db�u ; ~ubv℄ = g222M2W sin2 � 3Xi;j;k;l;m;n=1W ~d�iu UuLik mukUuR�jk W ~uj+3 vW ~dltUuL�lm mumUuRnmW ~u�n+3 s+ g222M2W os2 � 3Xi;j;k;l;m;n=1W ~u�is UdLik mdkUdR�jk W ~dj+3 tW ~ulvUdL�lm mdmUdRnmW ~d�n+3 u+ g2s2 "ÆsvÆtu � 2 3Xi;j=1�W ~u�is W ~uivW ~d�j+3 uW ~dj+3 t +W ~u�i+3 sW ~ui+3 vW ~d�juW ~djt�#+ g222 3Xi;j=1W ~u�is W ~ditW ~d�juW ~ujv ; (9.80d)Y [~ua�s ; ~uat ; ~e�u; ~ev℄ = �g224 �1 + tan2 �W3 � 3Xi;j=1W ~u�is W ~uitW ~e�juW ~ejv+ g22 tan2 �W6 3Xi;j=1 �W ~u�is W ~uitW ~e�j+3 uW ~ej+3 v+2W ~u�i+3 sW ~ui+3 t �W ~e�juW ~ejv � 2W ~e�j+3 uW ~ej+3 v�� ; (9.80e)Y [ ~da�s ; ~dat ; ~e�u; ~ev℄ = g222M2W os2 � 3Xi;j;k;l=1�W ~d�is UdLik mdkUdR�jk W ~dj+3 tW ~e�l+3 umelW ~elv+W ~d�i+3 sUdRik mdkUdL�jk W ~djtW ~e�lumelW ~el+3 v�+ g224 �1� tan2 �W3 � 3Xi;j=1W ~d�is W ~ditW ~e�juW ~ejv+ g22 tan2 �W6 3Xi;j=1 hW ~d�is W ~ditW ~e�j+3 uW ~ej+3 v�W ~d�i+3 sW ~di+3 t �W ~e�juW ~ejv � 2W ~e�j+3 uW ~ej+3 v�i ; (9.80f)Y [~ua�s ; ~uat ; ~��i ; ~�i℄ = g224 3Xj=1 �W ~u�js W ~ujt�1� tan2 �W3 �+ 4 tan2 �W3 W ~u�j+3 sW ~uj+3 t� ; (9.80g)Y [ ~da�s ; ~dat ; ~��i ; ~�i℄ = �g224 3Xj=1 �W ~d�jsW ~djt�1 + tan2 �W3 �� 2 tan2 �W3 W ~d�j+3 sW ~dj+3 t� ; (9.80h)Y [~ua�s ; ~dat ; ~e�u; ~�i℄ = g222M2W os2 � 3Xj;k;l;m=1W ~u�js UdLjk mdkUdR�lk W ~dl+3 tU ~�mimemW ~e�m+3 u+ g222 3Xj;k=1W ~u�js W ~djtU ~�kiW ~e�ku ; (9.80i)Y [ ~da�t ; ~uas; ~��i ; ~eu℄ = �Y [~ua�s ; ~dat ; ~e�u; ~�i℄�� ; (9.80j)
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Chapter 10HIGGS BOSONS IN THE MSSM
10.1 Higgs Potential in the MSSMAs disussed in Ch.1, low energy supersymmetry has been theoretially motivated to sta-bilize the mass and the VEV of the Standard Model Higgs boson with respet to highersales. This makes the Higgs setor of a supersymmetri extension of the Standard Modelespeially interesting. We have already shown in Ch. 8 that the minimal supersymmetrimodel requires two Higgs doublets h1;2 (with D as an SU(2) doublet index and Y = �1; 1respetively): hD1 � � h11h21 � = � h01h�1 � ; hD2 � � h12h22� = � h+2h02 � : (10.1)We shall see in this hapter how these doublets lead to �ve physial Higgs partiles h;H;A;H�and what one an say about their masses and ouplings [10.1℄, [10.2℄. A noteworthy fea-ture, spei� to this supersymmetri extension, is that all quarti self ouplings of the Higgs�elds get related to the gauge ouplings of the eletroweak theory. This is quite unlike innonsupersymmetri theories where the former are a priori arbitrary. This restrition is thekey to various mass bounds and relations [10.3℄ whih exist for physial Higgs partiles inthe supersymmetri extension of the Standard Model. A seond important feature is thatthe ouplings of the neutral Higgs partiles to quark mass eigenstates turn out to be avordiagonal. This happens beause up type quarks obtain their masses purely from the VEVv2=p2 of h02 while down type ones do so from the VEV v1=p2 of h01. In the language ofGlashow and Weinberg [10.4℄ the Higgs setor of the MSSM is a speial ase of the `type 2'two Higgs doublet model.We have already given the MSSM superpotential and the soft expliit supersymmetrybreaking terms in Chs. 8 and 9 respetively. The tree level salar potential isV = VSUSY + VSOFT ; (10.2)where VSUSY was de�ned in (8.36) and VSOFT in (9.3). Reall thatFk = ��WMSSM=��yk����; WMSSM = �H1�H2 � fìjH1�Li �Ej � f dijH1�Q �Dj � fuijQ�H2 �Uj : (10.3)219



220 CHAPTER 10. HIGGS BOSONS IN THE MSSMAs before, i; j are generation indies and, for any two SU(2)-doublet super�elds AD and BE,A�B � �DEADBE. Moreover, ~DH = �g2hyk~�2hk ; (10.4a)DYH = �gY hykY2 hk ; (10.4b)where we are now using the subsript H to refer exlusively to the Higgs setor and k issummed. Needless to say, both ~D and DY will have additional bilinear terms involvingsquarks as well as those with sleptons.The tree level Higgs potential follows from (10.2) { (10.4) by inputting VSOFT from (9.3)and utilizing the relation ~�AB �~�CD = 2ÆADÆBC � ÆABÆCD. Using the notation hyh � jhj2, itan be written asVH = 18(g2Y + g22)(jh1j2 � jh2j2)2 + g222 jhy1h2j2 + j�j2(jh1j2 + jh2j2) + VH;SOFT ; (10.5a)VH;SOFT = m21jh1j2 +m22jh2j2 + (m212h1 �h2 + h::) ; (10.5b)with oeÆients m21; m22 and m212 � B�, f.(9.3), having the dimension1 of squared mass. Infollowing the steps to (10.5), it may be noted that h1�h2 = ~hy1h2 where ~h1 = i�2h�1 is an SU(2)doublet with Y = 1. (10.5a) and (10.5b) an be rewritten asVH = 18(g2Y +g22)(jh1j2�jh2j2)2+ g222 jhy1h2j2+m21hjh1j2+m22hjh2j2+(m212h1�h2+h::); (10.6)where m21;2h = m21;2 + j�j2 : (10.7)The sign of the last RHS term in (10.6) has been hosen with are. It will be seen later thatm212 = B� is expeted to be positive.10.2 Spontaneous Symmetry Breakdown and VEVsA Higgs indued spontaneous symmetry breaking will take plae if the minimum of VH isattained at nonzero values of the Higgs �elds:hh1i = 1p2 � v10 � ; hh2i = 1p2 � 0v2 � : (10.8)In (10.6) one an2 always absorb a relative phase between h1 and h2 by rede�ning one ofthem with an additional phase; this freedom enables us to de�ne v1;2 as real and positive1We remind the reader that B is a soft supersymmetry breaking parameter with the dimension of mass,while � is a supersymmetry invariant (higgsino mass) parameter.2Any VEV for one harged Higgs �eld an be rotated to zero by an SU(2) transformation and then theminimization ondition means a vanishing VEV for the other harged Higgs. This is a onsequene of inbuiltU(1)em invariane whih thus remains unbroken.



10.2. SPONTANEOUS SYMMETRY BREAKDOWN AND VEVS 221and also to treat m21; m22 and m212 as real. Reall from x8.2 that these VEVs an be relatedto the W and Z masses byMW = g22 (v21 + v22)1=2; MZ = (g2Y + g22)1=22 (v21 + v22)1=2; (10.9)i.e. (v21 + v22)1=2 = (p2GF )�1 ' 246 GeV: (10.10)Let us onsider the parameter tan �, as introdued in (8.24), namelytan � � v2=v1: (10.11)Now, our phase freedom to de�ne v1;2 as positive restrits � to the range0 � � � �=2 :Though tan � will generally be left undetermined in this book, urrent theoretial widsomsuggests [10.5℄ that the value of tan � is restrited to the range 1 � tan� <� 60. The lowerand upper bounds both stem from the desired requirement (f. Ch.11) of radiatively induedeletroweak symmetry breakdown by whih one of the eigenvalues of the neutral Higgs masssquared matrix, evaluated at v1 = 0 = v2, is driven to be negative by the top Yukawaoupling via Renormalization Group Evolution. They ome also from the requirement of allthe ouplings partiipating in the RGE equations remaining perturbative upto a high grandunifying sale like 2� 1016 GeV. These issues, inluding additional experimental onstraintson tan �, will be disussed more thoroughly in Ch.11.Near the minimum, haraterized by the VEVs hh01;2i = v1;2=p2, hh�1 i = 0 = hh+2 i, it issuÆient to explore the Higgs potential retaining only the neutral Higgs �elds. This part ofthe Higgs potential an be written from (10.6) asV 0H = 18(g2Y + g22)2(jh01j2 � jh02j2)2 +m21hjh01j2 +m22hjh02j2 �m212(h01h02 + h::) ; (10.12)where the negative sign before the last RHS term proportional to m212 has arisen beause�12 = �1. The quarti terms in (10.12) vanish along jh01j = jh02j. By further hoosingh01 = �h02, we see that the fat that V 0H must be bounded from below requires thatm21h +m22h = m21 +m22 + 2j�j2 > 2jm212j : (10.13)Beause of quantum orretions and renormalization group evolution (f. Ch.11), m21h; m22hand m212 beome running quantities | varying with the energy sale, f. x6.9. However,(10.13) has to be valid at all sales. On the other hand, the quadrati part of V 0H an bewritten as V 0;quadr:H = (h0�1 h02)� m21h �m212�m212 m22h � � h01h0�2 � : (10.14)For the nonzero VEVs v1;2 to develop, at least one of the eigenvalues of the mass squaredmatrix in (10.14) has to be negative. Sine (10.13) requires the matrix to have a positive



222 CHAPTER 10. HIGGS BOSONS IN THE MSSMtrae, one is led to the neessary ondition for spontaneous symmetry breakdown that itsdeterminant be negative, i.e.m412 > m21hm22h = (m21 + j�j2)(m22 + j�j2) : (10.15)(10.15) is valid only at and below the energy sale where the spontaneous breaking of ele-troweak symmetry beomes operative. Furthermore, (10.13) and (10.15) beome mutuallyinompatible in the supersymmetry invariant limit when m21h = m22h = �2. Hene thereis an intimate onnetion between the breaking of supersymmetry and that ofeletroweak symmetry in the MSSM.Let us return to (10.6) and explore VH at its supposed minimum, i.e. at h1;2 = hh1;2i, asgiven by (10.8). ThusV minH = 132(g2Y + g22)(v21 � v22)2 + 12m21hv21 + 12m22hv22 �m212v1v2 : (10.16)The onsisteny onditions for the above mentioned minimum is the vanishing of �V minH =�v1and �V minH =�v2. These respetively imply the relationsm21h = m212 v2v1 � 18(g2Y + g22)(v21 � v22) ; (10.17a)m22h = m212 v1v2 + 18(g2Y + g22)(v21 � v22) : (10.17b)By using (10.7), (10.10) and (10.11) in (10.17), the latter an be reast into the followingequations: �2B� = �2m212 = (m21 �m22) tan 2� +M2Z sin 2� ; (10.18a)j�j2 = (os 2�)�1(m22 sin2 � �m21 os2 �)� 12M2Z : (10.18b)10.3 Higgs Masses at the Tree LevelThough we shall see in x10.6 that there are signi�ant radiative orretions to Higgs massesin the MSSM, we �rst disuss their tree level values here. The mass squared matrix of theHiggs salars an be obtained from the quadrati part of VH , i.e. V (2)H = 12m2lm�l�m withm2lm = � �2VH��l��m� ; (10.19)where �l is the generi notation for the real or imaginary part of any Higgs omponent �eldand the double derivative is evaluated at the minimum. The 8�8 Higgs mass squared matrixthen breaks up diagonally into a set of 2� 2 matries.



10.3. HIGGS MASSES AT THE TREE LEVEL 223Charged Goldstones and HiggsThe total harged Higgs mass term, obtained by using (10.8) in (10.6), is given byV quadrh� =(h+1 h+2 )�m21h + 18(g2Y + g22)(v21 � v22) + 14g22v22 m212 + 14g22v1v2m212 + 14g22v1v2 m22h � 18(g2Y + g22)(v21 � v22) + 14g22v21 ��h�1h�2 �= �m212v1v2 + 14g22� (h+1 h+2 )� v22 v1v2v1v2 v21 ��h�1h�2 � ; (10.20)where { in the last step { eqs. (10.17) have been used. The vanishing determinant and thenonvanishing trae of the matrix in the RHS of (10.20) imply massless as well as massiveharged modes. The former are the Goldstone boson pair G� whih ombine with themassless W� to give them mass. The latter pertain to the physial harged Higgs partilesH�. Thus one has m2G� = 0 ; (10.21a)m2H� = �m212v1v2 + 14g22� (v21 + v22) : (10.21b)It follows from (10.20) and (10.11) that the orresponding mass diagonal �elds areH� = sin � h�1 + os � h�2 ; (10.22a)G� = � os � h�1 + sin � h�2 ; (10.22b)The ouplings of G� in a general R-gauge are given in Ref. [10.1℄. However, we formulateour disussions in the unitary gauge where G� are set equal to zero.Neutral Goldstone and CP odd HiggsChoosing �`;m in (10.19) to be =m h01;2, we have the orresponding mass squared matrix:m2=m h0 =�m21h + 18(g2Y + g22)(v21 � v22) m212m212 m22h � 18(g2Y + g22)(v21 � v22)� = m212 � v2=v1 11 v1=v2� ;(10.23)one again using (10.17). As before, the vanishing determinant and the nonvanishing traeimply a massless neutral Goldstone mode G (whih ombines with the massless Z) and aneutral salar whih is CP odd on being a linear ombination of the imaginary omponentsof the neutral Higgs �elds. In fat, we havem2G0 = 0 ; (10.24a)m2A = m212v1v2 �v21 + v22� = 2m212sin 2� : (10.24b)



224 CHAPTER 10. HIGGS BOSONS IN THE MSSMN.B. sine sin 2� is restrited to be positive, (10.24b) makes sense only if m212 is positive {at least at eletroweak energy sales. This is the explanation of the hoie of the sign of thelast RHS term in (10.6). The mass diagonal �elds orresponding to (10.24) areAp2 = =m h01 sin � + =m h02 os � ; (10.25a)G0p2 = �=m h01 os � + =m h02 sin � : (10.25b)In the physial basis, the CP odd neutral Higgs mass term in the Lagrangian density beomes12(G0 A)� 0 m2A��G0A � ;and the orret normalization of m2A in (10.24b) an be heked from this. The ouplingsof G0 in a general R-gauge an be found in Ref. [10.1℄, but again, in the U-gauge of ours,G0 = 0.Neutral CP even HiggsTurning to the <e h01;2 omponents, we �nd the orresponding mass squared matrix inan analogous way to bem2<e h0 = 12 � 2m21h + 14(g2Y + g22)(3v21 � v22) �2m212 � 12v1v2(g2Y + g22)�2m212 � 12v1v2(g2Y + g22) 2m22h + 14(g2Y + g22)(3v22 � v21)�= � m2A sin2 � +M2Z os2 � �(m2A +M2Z) sin� os ��(m2A +M2Z) sin � os � m2A os2 � +M2Z sin2 � � ; (10.26)where (10.10), (10.17) and (10.24b) have been used. The eigenvalues of the matrix in theRHS of (10.26), standing for the tree level physial squared masses of the two CP even Higgssalars (H; h) of the MSSM, arem2H;h = 12 �m2A +M2Z � f(m2A +M2Z)2 � 4M2Zm2A os2 2�g1=2� : (10.27)In (10.27) we have de�ned H to be the heavier of the two, i.e. mh � mH . The orrespondingmass diagonal �elds are1p2H = (<e h01 � v1p2) os� + (<e h02 � 1p2v2) sin� ; (10.28a)1p2h = �(<e h01 � v1p2) sin� + (<e h02 � 1p2v2) os� : (10.28b)Referring bak to the matrix of (10.26) as �A BB C �, the angle of rotation � in (10.28) isseen to obey the relations [10.1℄, [10.2℄sin 2� = 2Bp(A� C)2 + 4B2 = �m2H +m2hm2H �m2h sin 2� ; (10.29a)



10.3. HIGGS MASSES AT THE TREE LEVEL 225os 2� = A� Cp(A� C)2 + 4B2 = �m2A �M2Zm2H �m2h os 2� ; (10.29b)tan 2� = m2h +m2Hm2A �M2Z tan 2� = m2A +M2Zm2A �M2Z tan 2� : (10.29)Sine � is in the range 0 � � � �=2, (10.29a) restrits � to the interval��=2 � � � 0 :A geometrial depition is given in Fig. 10.1. Note that we always havesin(� � �); os(� + �) � 0 :
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Fig.10.1. Geometrial depition of physial CP even neutral Higgs states.Relations and onstraintsThe Higgs mass spetrum is ompletely ontrolled by two new parameters whih anbe taken to be mA and tan�. These strongly inuene the other masses, e.g. mh ! 0 ifmA ! 0. The following tree level relations and onstraints [10.1{10.3℄ emerge from (10.21b),(10.24b) and (10.27): m2H� = m2A +M2W > max (M2W ; m2A) ; (10.30a)m2h +m2H = m2A +M2Z ; (10.30b)mh < min (mA;MZ)j os 2�j < min (mA;MZ) ; (10.30)mH > max (mA;MZ) ; (10.30d)os2(� � �) = m2h(M2Z �m2h)m2A(m2H �m2h) : (10.30e)Thus the harged Higgs bosons H� are predited to be heavier than the W . Of the CPeven neutral ones, one light Higgs h is expeted to be lighter than the Z and one heavier His expeted to exeed the Z in mass. The mass of the CP odd Higgs A is expeted to bebetween those of the two CP even ones. The ontents of (10.30) and (10.30d) are illustratedin Fig. 10.2 below where mh< and mH> are the absolute (�-independent) upper and lower



226 CHAPTER 10. HIGGS BOSONS IN THE MSSMbounds on mh and mH respetively. For large tan � (i.e. j os 2�j ! 1) , mh saturates mh<from below and mH omes down to mH> from above. These are all tree level preditions;we disuss radiative e�ets on these mass bounds in x10.6.
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Fig.10.2. Tree level upper and lower mass bounds on h and H as a funtion of mA.10.4 Higgs-partile VertiesThe eletroweak parameters of the Standard Model, together with tan� and �, ompletelydetermine the ouplings of the physial Higgs partiles to the Standard Model gauge bosonsand fermions. We shall �rst disuss those and then ome to Higgs self ouplings. A disussionof Higgs ouplings to spartiles is relegated to x10.5. In (8.32) we have already given theHiggs ontribution to the supersymmetri part of the MSSM Lagrangian density. From thisone an obtain all the Higgs ouplings to fermions and gauge bosons in terms of the originallyintrodued but unphysial Higgs �elds h01;2 and h�1;2. The onversion to ouplings with massdiagonal Higgs �elds an be easily done through the transformations (10.22), (10.25) and(10.28). One should also put G� = 0 = G0 in the unitary gauge whih we hoose. Forsimpliity, we on�ne ourselves to one generation of up and down type fermions (massesmu and md respetively): fL � � fuLfdL � ; fuR; fdR, where f overs both quarks and leptons.Generation e�ets an be obtained by interpretingmu;d as 3�3 diagonal quark mass matriesand multiplying the harged Higgs oupling to fermions by the Cabibbo-Kobayashi-Maskawamatrix V.The Higgs-fermion-antifermion Yukawa interations an then be written asLY = � g2md2MW os �Xf �fdfd(H os�� h sin�) + ig2md tan �2MW Xf �fd5fdA� g2mu2MW sin �Xf �fufu(H sin� + h os�) + ig2mu ot �2MW Xf �fu5fuA+ g2p2MW Xf �H+ �fu(mu ot� PL +md tan� PR)fd + h::� ; (10.31)with f being summed over quarks and leptons. The orresponding vertex ouplings (i timesthe oeÆients of the interation terms in L) are given in Fig. 10.3. We do the same for



10.4. HIGGS-PARTICLE VERTICES 227the trilinear gauge-gauge-Higgs and Higgs-gauge-Higgs as well as the quarti gauge-gauge-Higgs-Higgs verties instead of writing out the algebrai expressions in L.Fig. 10.3 is inluded in Appendix BWe an make the following omments on the ouplings of Fig. 10.3.� Tree level Higgs ouplings to fermions are parity onserving and that of A to matterfermions involves a 5. That is why, in ontrast with the `salars' h and H, A issometimes alled the `pseudosalar' Higgs. But, in the presene of CP violation, loope�ets an mix the `salar' and `pseudosalar' Higgs bosons, espeially sine the MSSMadmits additional soures of CP violation beyond the CKM phase.� The parameters mu and md refer to masses of up and down type quarks respetivelyfor eah generation.� Bose statistis forbids the ZHH and Zhh trilinear ouplings, while any ZhH ouplingis forbidden by CP invariane. Sine the latter is violable, a ZhH oupling ould exist.� The absene of any tree level ZW�H� or W�H� oupling is not surprising sineneither an our [10.1℄ in any model ontaining just SU(2)L doublet and singlet Higgs�elds.� The ouplings for the verties (W+W�h and W+W�H), (W+HH� and W+hH�),(ZHA and ZhA), (ZZH and ZZh) and (ZZh and ZhA) are pairwise omplementary,i.e. if one is suppressed by the ombination of mixing angles, the other is nearly fullstrength.� For large tan� and moderate �, the neutral CP even Higgs ouplings with the downtype fermions get enhaned relative to those with up type ones. For the CP odd Higgs,this statement is true independent of �.Turning to the self ouplings of the Higgs bosons, we notie that they follow from theHiggs potential VH of (10.5) on using the formulae for the physial Higgs �elds, namely(10.22a), (10.25a) and (10.28). Following Ref. [10.1℄, one an introdue the onvenientdi�erential operatorsDH � (p2)�1[os�(�=�h01 + �=�h0�1 ) + sin�(�=�h02 + �=�h0�2 )℄ ;Dh � (p2)�1[� sin�(�=�h01 + �=�h0�1 ) + os�(�=�h02 + �=�h0�2 )℄ ;DA � (p2)�1i[sin �(�=�h01 � �=�h0�1 ) + os �(�=�h02 � �=�h0�2 )℄ ;DH� � sin � �=�h�1 + os � �=�h�2 ;DH+ � sin � �=�h+1 + os � �=�h+2 :



228 CHAPTER 10. HIGGS BOSONS IN THE MSSMNow the ubi and quarti vertex fators listed beside eah vertex below (with legs, a; b; spanning h;H;A and a; b; ; d spanning h;H;A;H�) an be obtained respetively fromDaDbDVH and DaDbDDdVH evaluated at hh01i = v1=p2; hh�1 i = 0 = hh+2 i; hh02i = v2=p2.We list these ubi and quarti self oupling verties of the physial Higgs bosons in Fig.10.4. Fig. 10.4 is inluded in Appendix BThe deoupling limit in the Higgs setor of the MSSM is attained [10.5℄ by taking mAto be very large : mA ! 1. (In pratie, this usually obtains one mA exeeds 250 GeV).From (10.27) and (10.30) we now have the resultsmh !MZ j os 2�j; os2 2� ! m2h=M2Z ; (10.32a)m2H ! m2A +M2Z sin2 2� ; (10.32b)j os(� � �)j !M2Z j sin 4�j=(2m2A) : (10.32)In this limit we have mA � mH � mH� and os(� � �) ' 0, i.e. � � � ! �=2 andsin� ' � os � up to orretionsO(M2Z=m2A). Thus the lightest Higgs partile h saturates3 itsupper mass boundMZ j os 2�j while the other Higgses all beome uniformly heavy. Moreover,a perusal of the gauge ouplings of the Higgs partiles, all desribed above, shows that theverties HW+W , HZZ, ZAh, W�H�h, ZW�H�h and W�H�h are all proportional toos(� � �) while the verties hZZ, ZAH, W�H�H, ZW�H�H and W�H�H are allproportional to sin(���). Hene any vertex involving at least one vetor boson and exatlyone heavy Higgs partile (H;A or H�) vanishes as os(� � �) when mA ! 1. Turning tomatter fermions, the oupling strengths of the CP even neutral Higgs salars to down typeand up type fermions { relative to those of the Standard Model Higgs { are given belowhfd �fd: � sin�os � = sin(� � �)� tan� os(� � �) ; (10.33a)hfu �fu: os�sin � = sin(� � �) + ot � os(� � �) ; (10.33b)Hfd �fd: os�os � = os(� � �) + tan � sin(� � �) ; (10.33)Hfu �fu: sin�sin � = os(� � �)� ot � sin(� � �) : (10.33d)Fig. 10.3 and (10.33) imply that, in the deoupling limit j� � �j ! �=2, the ouplings ofthe lightest Higgs salar h to fermions and gauge boson pairs are idential to those of theStandard Model Higgs. Likewise, Fig. 10.4 shows that the self ouplings hhh and hhhh alsoredue to their SM values in this limit. Thus, for a heavy A withmA �MZ , the e�ets of theextra salars H�, H and A in the MSSM deouple and the residual salar h, while saturatingits appear mass bound, looks just like the SM Higgs boson �0. The onset of deoupling is3The reader is reminded that the present disussion is at the tree level.



10.5. HIGGS-SPARTICLE VERTICES 229ontrolled by (10.32), and is depited in Fig. 10.5 where the funtions sin2(� � �) andos2(� � �), i.e. the squared oupling strengths of h and H respetively to WW (f. Fig.10.3) relative to that of the SM Higgs, are plotted against mA for two harateristi valuesof tan�. Though the tree level results, mentioned above, hange somewhat on aount ofradiative orretions (f. x10.6), this last statement remains valid. The low energy e�etivesalar setor of the MSSM indeed beomes indistinguishable from that of the SM in thedeoupling limit, exept that, unlike in the latter, the mass of the lightest Higgs partileperfore remains bounded from above.
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Fig.10.5. Squared oupling strengths of h and H to WW , relative to that of the SM Higgs, asfuntions of mA, ourtesy A. Djouadi.10.5 Higgs-spartile VertiesHiggs ouplings to neutralinos and harginosThe ouplings of the Higgs bosons to the eletroweak neutralinos and harginos originatefrom the gauge strength Yukawa ouplings of gauginos to the salar and fermioni omponentof a given hiral supermultiplet. In two omponent notation these are given by the last RHSterm in (5.36) for abelian interations, and by the �fth RHS term in (5.55) for nonabelian,presently SU(2), interations with the Higgs super�elds H1 and H2 being the relevant hiralsuper�elds. The orresponding terms in the interation Lagrangian density an be rewrittenin terms of the four omponent gaugino and higgsino �elds of (9.17) and (9.30) by using theidentities (3.28a,b) and (3.29a,b) to obtain the resultLH ~�~� = � g2p2 hh01 �~h01PR~�3 +p2~�+PR~h+� + h�1 �p2~h01PR~�+ � ~�3PR~h+�+h02 �p2~h+PR~�+ � ~h02PR~�3�+ h+2 �~h+PR~�3 +p2~�+PR~h02�i� gYp2 �h+2 ~h+PR~�0 + h02~h02PR~�0 � h01~h01PR~�0 � h�1 ~�0PR~h+� + h:: (10.34)Finally, we use (9.18), (9.19), (9.27), (10.22a), (10.25a) and (10.28) to express (10.34) in



230 CHAPTER 10. HIGGS BOSONS IN THE MSSMterms of hargino, neutralino and Higgs mass eigenstates:LH ~�~� = �g2 (H os�� h sin�) �~�+k (PRQkm + PLQ�mk) ~�+m + 12 ~�0n (PRQ00nl + PLQ00�ln ) ~�0l ��g2 (H sin�+ h os�) �~�+k (PRSkm + PLS�mk) ~�+m � 12 ~�0n (PRS 00nl + PLS 00�ln ) ~�0l ��ig2An~�+k [PR (Qkm sin � + Skm os �)� PL (Q�mk sin � + S�mk os �)℄ ~�+m+12 ~�0n [PR (Q00nl sin � � S 00nl os �) + PL (S 00�ln os � �Q00�ln sin �)℄ ~�0l�� hg2H� ~�0l �PRQ0Rlk + PLQ0Llk� ~�+k + h::i : (10.35)In (10.35) we have introdued the following quantities:Qkm � 1p2Vk1Um2 ; (10.36a)Skm � 1p2Vk2Um1 ; (10.36b)Q0Rlk � sin � �Zl3Uk1 � 1p2Uk2 (Zl2 + tan �WZl1)� ; (10.36)Q0Llk � os � �Z�l4V�k1 + 1p2V�k2 (Z�l2 + tan �WZ�l1)� ; (10.36d)Q00nl � 12 [Zn3 (Zl2 � tan �WZl1) + Zl3 (Zn2 � tan �WZn1)℄ ; (10.36e)S 00nl � 12 [Zn4 (Zl2 � tan �WZl1) + Zl4 (Zn2 � tan �WZn1)℄ : (10.36f)We have losely followed the notation of Ref.[10.2℄ in de�ning the above quantities. Theonly di�erene is an overall fator of g2 in the de�nition of Q0R and Q0L whih have beenput in order to onform with the onvention used for the other oeÆients in the interationLagrangian density (10.35). The orresponding Feynman rules are given in Fig. 10.6 in theAppendix, the only nontrivial feature being an extra fator of two in verties involving twoMajorana (neutralino) fermions.Fig. 10.6 is inluded in Appendix BReall from Ch.9 that Uk1; Vk1; Zk1 and Zk2 label gaugino omponents, while Uk2; Vk2; Zk3and Zk4 label higgsino omponents. Thus eqs. (10.36) learly reet the origin of the quanti-ties de�ned from Higgs{higgsino{gaugino interations. These ouplings are not proportionalto the masses of the orresponding harginos and neutralinos. In fat, as disussed in x9.2,gaugino{higgsino mixing in the hargino and neutralino setors is often suppressed. The neu-tral Higgs bosons will then predominantly ouple to two di�erent harginos and neutralinos.However, hargino and neutralino �nal states an nonetheless play a prominent role in the



10.5. HIGGS-SPARTICLE VERTICES 231deays of the heavy neutral Higgs bosons A and H if mA; mH � 2mt and tan � is not large.Conversely, �nal states ontaining the light neutral Higgs boson h an play an important rolein the deays of the heavier neutralinos and harginos into lighter ones. On the other hand,the lower bound m~��1 > 100 GeV, whih omes from hargino searhes at LEP, implies thatthe deays H� ! ~��k ~�0l an dominate only over the small region of parameter spae wherem~�+1 +m~�01 < mH+ < mt +mb. Indeed, LEP searhes imply that m~�+1 +m~�01 � 140 GeV, ifthe \gaugino mass uni�ation ondition", f. (9.21), holds. Finally, note that the ouplingsof h;H and A would be salar and pseudosalar respetively, were all rotation matries inthe hargino and neutralino setor stritly real.Sfermion Higgs ouplingsThe ouplings between Higgs bosons and sfermions reeive ontributions from the super-symmetri F - and D-terms in the salar potential, as well as from trilinear soft supersymme-try breaking terms. The same terms also ontribute to sfermion mass matries and have beenolleted in (9.42) and (9.45) for sleptons and squarks respetively. We use (10.22a), (10.25a)and (10.28) to move to the Higgs mass eigenstate basis. The quarti F - and D-terms thenalso give rise to trilinear interations of a single Higgs partile with two sfermions, due tothe VEVs of the neutral omponents of the Higgs �elds. We �rst present the relevant pieesof the interation Lagrangian density in the urrent basis for sfermions. This allows easieromparison with results in the literature. Moreover, as disussed in x9.5, in many realistiSUSY models intergeneration sfermion mixing an often be negleted, in whih ase the masseigenstates are essentially equal to urrent eigenstates. For ease of presentation, we showthe trilinear and quarti interations of Higgs bosons with sleptons and squarks separately.For any angle �, we use s�; �; t� and (t)� to mean sin�, os�, tan� and ot� respetively,exept that the orresponding symbols for �W are sW ; W ; tW and (t)W respetively. Theresults for the relevant ubi and quarti interations areLH ~̀�~̀ = g2p2MWH+n~��i ~ejR h� (me)ij � (meAe�)ij t�i+~��i ~ejL h�memye�ij t� �M2W Æijs2�i o+ g22MW � ~e�iL~ejR h(meAe�)ij (H� � hs� � iAs�)+� (me)ij (Hs� + h� + iA�)i + h::+ g2MW � h~e�iL~ejL �memye�ij + ~e�iR~ejR �myeme�iji (hs� �H�)+ g2MW2 �hs(�+�) �H(�+�)�Xi �j~�ij2 �1 + t2W �� j~eiLj2 �1� t2W ��2 j~eiRj2 t2W � : (10.37)



232 CHAPTER 10. HIGGS BOSONS IN THE MSSMLH~q�~q = g2p2MWH+n~uyiL ~djR h� (md)ij � �mdAd��ij t�i+~uyiR ~djL h�� (m�u)ij � (m�uAu)ij (t)�i+~uyiL ~djL ��mumyu�ij (t)� + �mdmyd�ij t� �M2W Æijs2��+~uyiR ~djR �myumd�ij (t� + (t)�)o+ g22MW � h ~dyiL ~djRn �mdAd��ij (H� � hs� � iAs�)+� (md)ij (Hs� + h� + iA�)o + h::i+ g22MW s� h~uyiL~ujRn (muAu�)ij (Hs� + h� � iA�)+� (mu)ij (H� � hs� + iAs�)o+ h::i+ g2MW � (hs� �H�) � ~dyiL ~djL �mdmyd�ij + ~dyiR ~djR �mydmd�ij�� g2MW s� (Hs� + h�) h~uyiL~ujL �mumyu�ij + ~uyiR~ujR �myumu�iji+ g2(MW=2)Xi �j~uiLj2 �1� t2W=3�� ��� ~diL���2 �1 + t2W=3�+(2t2W=3)�2 j~uiRj2 � ��� ~diR���2�� �hs(�+�) �H(�+�)� : (10.38)LHH ~̀�~̀ = g222p2M2WH+~��i ~ejLns�2� �memye�ij (H� � hs� + iAs�)�M2W Æij �Hs(�+�) + h(�+�) � iA2�� o+ h::� g224M2W 2� �H22� + h2s2� �Hhs2� + A2s2��� h~e�iL~ejL �memye�ij + ~e�iR~ejR �myeme�iji� g22t2�2M2WH+H� h~��i ~�j �memye�ij + ~e�iR~ejR �myeme�iji+ g228 ��h2 �H2� 2� + 2Hhs2� + A22���Xi �j~�ij2 �1 + t2W�� j~eiLj2 �1� t2W �� 2t2W j~eiRj2�� g224 H+H�2�Xi �j~�ij2 �1� t2W�� j~eiLj2 �1 + t2W �+ 2t2W j~eiRj2� : (10.39)
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LHH~q�~q = g222p2M2WH+n~uyiL ~djLh �mumyu�ij �s2� (Hs� + h� � iA�)+�mdmyd�ij s�2� (H� � hs� + iAs�)�M2W Æij �Hs(�+�) + h(�+�) � iA2�� i+~uyiR ~djR �H(���) � hs(���)� 2s2� �myumd�ij o + h::� g224M2W 2� �H22� + h2s2� �Hhs2� + A2s2��� � ~dyiL ~djL �mdmyd�ij + ~dyiR ~djR �mydmd�ij�� g224M2W s2� �H2s2� + h22� +Hhs2� + A22��� h~uyiL~ujL �mumyu�ij + ~uyiR~ujR �myumu�iji� g222M2WH+H� �~uyiL~ujL �mdmyd�ij t2� + ~dyiL ~djL �mumyu�ij (t)2�+~uyiR~ujR �myumu�ij (t)2� + ~dyiR ~djR �mydmd�ij t2��+ g228 ��h2 �H2� 2� + 2Hhs2� + A22���Xi �j~uiLj2 �1� t2W=3�� ��� ~diL���2 �1 + t2W=3�+(2t2W=3)�2 j~uiRj2 � ��� ~diR���2��� g224 H+H�2�Xi �j~uiLj2�1 + 13t2W�� ��� ~diL���2 �1� t2W=3��(2t2W=3)�2 j~uiRj2 � ��� ~diR���2�� : (10.40)The following points about (10.37){(10.40) are noteworthy:� The hermitian onjugation in these equations ats only on terms to the left of theh:: as written, terms to the right being already hermitian after summation over thegeneration indies i and j.� The oupling of one Higgs boson to two sfermions is again not proportional to thesfermion mass. In the ase of third generation sfermions the usually most importantontributions to suh a trilinear oupling are those proportional to � or one of the



234 CHAPTER 10. HIGGS BOSONS IN THE MSSMA�parameters, sine the absolute values of these quantities an be signi�antly largerthanMW . Indeed, in priniple, suh ouplings o�er the only diret experimental aessto the A�parameter. In pratie, however, these ouplings are diÆult to measuresine they involve three as yet undisovered partiles.� The only signi�ant ontributions to the Higgs ouplings to �rst and seond generationsfermions are the pure gauge terms. In ontrast, the quarti interations of thirdgeneration sfermions are often dominated by ontributions proportional to m2f .� The F -term ontributions to the ouplings of SU(2)L-doublet, \left hiral" sfermionsare proportional to mfmyf , while those of SU(2)L-singlet, \right hiral" sfermions areproportional to myfmf . This is analogous to the LL and RR entries of the squaredsquark mass matrix listed in (9.46).� The relative sign between the SU(2) and U(1)Y D-term ontributions to the quartiinterations di�ers for neutral and harged Higgs boson pairs. For example, the H+H�pair ouples more strongly to ~eL pairs than to ~� pairs, while the opposite is true forpairs of neutral Higgs bosons.In the �nal step, (9.51) and (9.54) are to be utilized to onvert the urrent eigenstatesfermion �elds in (10.37){(10.40) into mass eigenstate ones. We an use a notation similarto that in x9.8. The �nal result for Higgs-sfermion interations an then be written asLH ~f = X�; ~f; ~f 0C[�; ~f; ~f 0℄� ~f � ~f 0 + X�;�0; ~f; ~f 0D[�; �0; ~f; ~f 0℄��0 ~f � ~f 0; (10.41)where � and �0 stand for any of the �ve physial Higgs �elds of the MSSM, while ~f and ~f 0are sfermion �elds. Invariane under SU(3)C implies that ~f 0 must be a squark if and onlyif ~f is a squark; both squarks must then have the same olor index, whih therefore neednot be displayed. Moreover, we shall again assume that the superpotential is written in abasis where the leptoni Yukawa ouplings are avor diagonal. The oeÆients desribingslepton-Higgs interations an then be written down. First, we display the oeÆients of thevarious ubi Higgs-slepton-slepton terms. They areC[H+; ~�i; ~es℄ = g2p2MW n 3Xk=1 U ~��ki h�mekW ~ek+3 s + �m2ekt� �M2W s2��W ~eksi� 3Xj;k=1 t� (meAe�)kj U ~��ki W ~ej+3 so; (10.42a)C[H�; ~es; ~�i℄ = �C[H+; ~�i; ~es℄�� ; (10.42b)C[H; ~�i; ~�j℄ = �g[~�℄�+�Æij ; (10.42)C[h; ~�i; ~�j℄ = g[~�℄s�+�Æij ; (10.42d)C[H; ~es; ~et℄ = A[~es; ~et℄� + �[~es; ~et℄s� � g[~es; ~et℄�+� ; (10.42e)



10.5. HIGGS-SPARTICLE VERTICES 235C[h; ~es; ~et℄ = �A[~es; ~et℄s� + �[~es; ~et℄� + g[~es; ~et℄s�+� ; (10.42f)C[A; ~es; ~et℄ = ig22MW n 3Xi=1 ��meiW ~e�is W ~ei+3 t � ��meiW ~e�i+3 sW ~eit�+t� 3Xi;j=1 h(meAe)ijW ~e�j+3 sW ~eit � (meAe�)ijW ~e�is W ~ej+3 ti o:(10.42g)All oeÆients C[�; ~̀; ~̀0℄ not listed in eqs.(10.42) vanish. One ould rewrite the matrixmeA�ein terms of its eigenvalues and orresponding 3� 3 rotation matries. We have not done sosine the eigenvalues of this matrix have no speial physial meaning, in ontrast to those ofthe SM matter fermion mass matries. Moreover, we have introdued the quantitiesA[~es; ~et℄ � g2MW �n� 3Xi=1 m2ei �W ~e�is W ~eit +W ~e�i+3 sW ~ei+3 t�+12 3Xi;j=1 h�meAey�ijW ~e�is W ~ej+3 t + (meAe)ijW ~e�j+3 sW ~eiti o;(10.43a)�[~es; ~et℄ � g22MW � 3Xi=1 mei ��W ~e�is W ~ei+3 t + ��W ~e�i+3 sW ~eit� ; (10.43b)g[~�℄ � g2MW2 �1 + t2W � ; (10.43)g[~es; ~et℄ � g2MW2 3Xi=1 �W ~e�is W ~eit �t2W � 1�� 2t2WW ~e�i+3 sW ~ei+3 t� : (10.43d)The oeÆients of the various quarti Higgs-Higgs-slepton-slepton interations analso be displayed. They areD[H+; H�; ~�i; ~�j℄ = g222�4 �t2W � 1� Æij � g22t2�2M2W 3Xk=1 U ~��ki U ~�kjm2ek ; (10.44a)D[H+; H�; ~es; ~et℄ = 3Xi=1 ng222�4 �W ~e�is W ~eit �1 + t2W �� 2t2WW ~e�i+3 sW ~ei+3 t�� g22t2�2M2Wm2eiW ~e�i+3 sW ~ej+3 to; (10.44b)D[H+; H; ~�i; ~es℄ = �dg[~�i; ~es℄s�+� + dY [~�i; ~es℄� ; (10.44)D[H�; H; ~es; ~�i℄ = �D[H+; H; ~�i; ~es℄�� ; (10.44d)



236 CHAPTER 10. HIGGS BOSONS IN THE MSSMD[H+; h; ~�i; ~es℄ = �dg[~�i; ~es℄�+� � dY [~�i; ~es℄s� ; (10.44e)D[H�; h; ~es; ~�i℄ = �D[H+; h; ~�i; ~es℄�� ; (10.44f)D[H+; A; ~�i; ~es℄ = idg[~�i; ~es℄2� + idY [~�i; ~es℄s� ; (10.44g)D[H�; A; ~es; ~�i℄ = �D[H+; A; ~�i; ~es℄�� ; (10.44h)D[H;H; ~�i; ~�j℄ = �dg[~�℄2� Æij ; (10.44i)D[H; h; ~�i; ~�j℄ = 2dg[~�℄s2� Æij ; (10.44j)D[h; h; ~�i; ~�j℄ = dg[~�℄2� Æij ; (10.44k)D[A;A; ~�i; ~�j℄ = dg[~�℄2� Æij ; (10.44l)D[H;H; ~es; ~et℄ = �dY [~es; ~et℄2� � dg[~es; ~et℄2� ; (10.44m)D[H; h; ~es; ~et℄ = dY [~es; ~et℄s2� + 2dg[~es; ~et℄s2� ; (10.44n)D[h; h; ~es; ~et℄ = �dY [~es; ~et℄s2� + dg[~es; ~et℄2� ; (10.44o)D[A;A; ~es; ~et℄ = �dY [~es; ~et℄s2� + dg[~es; ~et℄2� : (10.44p)We again list only the nonvanishing oeÆients; for example, D[H�; H+; ~f; ~f 0℄ � 0, for~f 6= ~f 0. The Lagrangian density in (10.41) is nonetheless hermitian. Moreover, we haveintrodued the quantities dg[~�℄ � g228 �1 + t2W � ; (10.45a)dg[~�i; ~es℄ � g222p2 3Xj=1 U ~��ji W ~ejs ; (10.45b)dg[~es; ~et℄ � �g228 3Xi=1 �2t2WW ~e�i+3 sW ~ei+3 t +W ~e�is W ~eit �1� t2W �� ; (10.45)dY [~�i; ~es℄ � g22s�2p2M2W 2� 3Xj=1 m2ejU ~��ji W ~ejs ; (10.45d)dY [~es; ~et℄ � g224M2W 2� 3Xi=1 m2ei �W ~e�is W ~eit +W ~e�i+3 sW ~ei+3 t� : (10.45e)The analogous expressions for Higgs interations with squarks are ompliated by non-trivial quark avor mixing. In addition to rotating the squarks into mass eigenstates usingthe matriesW~u andW~d, we also need to diagonalize the quark mass matries using (8.12).The oeÆients of the various ubi Higgs-squark-squark interation terms are givenbelow. They are
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C[H+; ~us; ~dt℄ = g2p2MW 3Xi;j=1nW ~u�is W ~dj+3 th 3Xk=1 �UdLik mdkUdR�jk � �mdAd��ij t�i+W ~u�j+3 sW ~dith 3Xk=1 ��UuL�ik mukUuRjk � (m�uAu)ij (t)�i+W ~u�is W ~djth 3Xk=1 �UuLik m2ukUuL�jk (t)� + UdLik m2dkUdL�jk t���M2W Æijs2�i+W ~u�i+3 sW ~dj+3 t (t� + (t)�) 3Xk;l=1UuRik mukV qLkl mdlUdR�jl o;(10.46a)C[H�; ~dt; ~us℄ = �C[H+; ~us; ~dt℄�� ; (10.46b)C[H; ~ds; ~dt℄ = A[ ~ds; ~dt℄� + �[ ~ds; ~dt℄s� � g[ ~ds; ~dt℄�+� ; (10.46)C[h; ~ds; ~dt℄ = �A[ ~ds; ~dt℄s� + �[ ~ds; ~dt℄� + g[ ~ds; ~dt℄s�+� ; (10.46d)C[H; ~us; ~ut℄ = A[~us; ~ut℄s� + �[~us; ~ut℄� � g[~us; ~ut℄�+� ; (10.46e)C[h; ~us; ~ut℄ = A[~us; ~ut℄� � �[~us; ~ut℄s� + g[~us; ~ut℄s�+� ; (10.46f)C[A; ~ds; ~dt℄ = ig22MW 3Xi;j=1nt� h�m�dAd�ijW ~d�j+3 sW ~dit � �mdAd��ijW ~d�is W ~dj+3 ti+ 3Xk=1mdk h�UdLik UdR�jk W ~d�is W ~dj+3 t � ��UdL�ik UdRjk W ~d�j+3 sW ~diti o;(10.46g)C[A; ~us; ~ut℄ = ig22MW 3Xi;j=1n(t)� h(m�uAu)ijW ~u�j+3 sW ~uit � (muAu�)ijW ~u�is W ~uj+3 ti+ 3Xk=1muk ��UuLik UuR�jk W ~u�is W ~uj+3 t � ��UuL�ik UuRjk W ~u�j+3 sW ~uit�o:(10.46h)The quantity V qLk` appearing in (10.46a) is an element of the Cabibbo-Kobayashi{Maskawamatrix of (8.40). Moreover, we have introdued the quantities
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A[ ~ds; ~dt℄ � g2MW � 3Xi;j=1n12 hW ~d�is W ~dj+3 t �mdAd��ij +W ~d�j+3 sW ~dit �m�dAd�iji� 3Xk=1m2dk hUdLik UdL�jk W ~d�is W ~djt + UdRik UdR�jk W ~d�i+3 sW ~dj+3 tio;(10.47a)A[~us; ~ut℄ � g2MW s� 3Xi;j=1n12 hW ~u�is W ~uj+3 t (muAu�)ij +W ~u�j+3 sW ~uit (m�uAu)iji� 3Xk=1m2uk �UuLik UuL�jk W ~u�is W ~ujt + UuRik UuR�jk W ~u�i+3 sW ~uj+3 t�o;(10.47b)�[ ~ds; ~dt℄ � g22MW � 3Xi;j;k=1mdk h�UdLik UdR�jk W ~d�is W ~dj+3 t + ��UdL�ik UdRjk W ~d�j+3 sW ~diti ; (10.47)�[~us; ~ut℄ � g22MW s� 3Xi;j;k=1muk ��UuLik UuR�jk W ~u�is W ~uj+3 t + ��UuL�ik UuRjk W ~u�j+3 sW ~uit� ; (10.47d)g[ ~ds; ~dt℄ � �g2MW2 3Xi=1 �W ~d�is W ~dit�1 + 13t2W�+ 23W ~d�i+3 sW ~di+3 tt2W� ; (10.47e)g[~us; ~ut℄ � g2MW2 3Xi=1 �W ~u�is W ~uit �1� 13t2W�+ 43W ~u�i+3 sW ~ui+3 tt2W� : (10.47f)Similarly the oeÆients of the various quarti Higgs-Higgs-squark-squark intera-tion terms an be written down. They areD[H+; H�; ~ds; ~dt℄ = � g222M2W 3Xi;j;k=1 hUdRik m2dkUdR�jk W ~d�i+3 sW ~dj+3 tt2�+UuLik m2ukUuL�jk W ~d�is W ~djt(t)2�i+ g222�4 3Xi=1 �W ~d�is W ~dit�1� 13t2W��23W ~d�i+3 sW ~di+3 tt2W� ; (10.48a)



10.5. HIGGS-SPARTICLE VERTICES 239D[H+; H�; ~us; ~ut℄ = � g222M2W 3Xi;j;k=1 �UuRik m2ukUuR�jk W ~u�i+3 sW ~uj+3 t(t)2�+UdLik m2dkUdL�jk W ~u�is W ~ujtt2�i� g222�4 3Xi=1 �W ~u�is W ~uit �1 + 13t2W��43W ~u�i+3 sW ~ui+3 tt2W� ; (10.48b)D[H+; H; ~us; ~dt℄ = dY u[~us; ~dt℄s� + dY d[~us; ~dt℄�+dY ud[~us; ~dt℄��� � dg[~us; ~dt℄s�+� ; (10.48)D[H�; H; ~dt; ~us℄ = �D[H+; H; ~us; ~dt℄�� ; (10.48d)D[H+; h; ~us; ~dt℄ = dY u[~us; ~dt℄� � dY d[~us; ~dt℄s��dY ud[~us; ~dt℄s��� � dg[~us; ~dt℄�+� ; (10.48e)D[H�; h; ~dt; ~us℄ = �D[H+; h; ~us; ~dt℄�� ; (10.48f)D[H+; A; ~us; ~dt℄ = �idY u[~us; ~dt℄� + idY d[~us; ~dt℄s� + idg[~us; ~dt℄2� ; (10.48g)D[H�; A; ~dt; ~us℄ = �D[H+; A; ~us; ~dt℄�� ; (10.48h)D[H;H; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄2� � dg[ ~ds; ~dt℄2� ; (10.48i)D[H; h; ~ds; ~dt℄ = dY [ ~ds; ~dt℄s2� + 2dg[ ~ds; ~dt℄s2� ; (10.48j)D[h; h; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄s2� + dg[ ~ds; ~dt℄2� ; (10.48k)D[A;A; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄s2� + dg[ ~ds; ~dt℄2� ; (10.48l)D[H;H; ~us; ~ut℄ = �dY [~us; ~ut℄s2� � dg[~us; ~ut℄2� ; (10.48m)D[H; h; ~us; ~ut℄ = �dY [~us; ~ut℄s2� + 2dg[~us; ~ut℄s2� ; (10.48n)D[h; h; ~us; ~ut℄ = �dY [~us; ~ut℄2� + dg[~us; ~ut℄2� ; (10.48o)D[A;A; ~us; ~ut℄ = �dY [~us; ~ut℄2� + dg[~us; ~ut℄2� : (10.48p)In (10.48) we have introdued the quantitiesdY u[~us; ~dt℄ � g22�2p2M2W s2� 3Xi;j;k=1UuLik m2ukUuL�jk W ~u�is W ~djt ; (10.49a)dY d[~us; ~dt℄ � g22s�2p2M2W 2� 3Xi;j;k=1UdLik m2dkUdL�jk W ~u�is W ~djt ; (10.49b)



240 CHAPTER 10. HIGGS BOSONS IN THE MSSMdY ud[~us; ~dt℄ � g22p2M2W s2� 3Xi;j;k;l=1UuRik mukV qLkl mdlUdR�jl W ~u�i+3 sW ~dj+3 t ; (10.49)dY [ ~ds; ~dt℄ � g224M2W 2� 3Xi;j;k=1m2dk hUdLik UdL�jk W ~d�is W ~djt + UdRik UdR�jk W ~d�i+3 sW ~dj+3 ti ; (10.49d)dY [~us; ~ut℄ � g224M2Ws2� 3Xi;j;k=1m2uk �UuLik UuL�jk W ~u�is W ~ujt + UuRik UuR�jk W ~u�i+3 sW ~uj+3 t� ; (10.49e)dg[~us; ~dt℄ � g222p2 3Xi=1 W ~u�is W ~djt ; (10.49f)dg[ ~ds; ~dt℄ � �g228 3Xi=1 �W ~d�is W ~dit �1 + 13t2W�+ 23W ~d�i+3 sW ~dj+3 t tan2 �W� ; (10.49g)dg[~us; ~ut℄ � g228 3Xi=1 �W ~u�is W ~uit �1� 13t2W� + 43W ~u�i+3 sW ~uj+3 tt2W� : (10.49h)The orresponding Feynman rules are shown in Fig. 10.7.Fig. 10.7 is inluded in Appendix B10.6 Radiative E�ets on MSSM Higgs PartilesThe properties of the Higgs partiles in the MSSM and the relations among them, followingnaturally from supersymmetry, have been disussed in x10.3{x10.5 at the tree level. How-ever, it is now known [10.6℄ that signi�ant hanges are indued radiatively in many of theexpressions and relations, appearing in those setions, by quantum loop orretions. Weshall disuss some of these e�ets at the one loop level, on�ning ourselves largely to themass of the lightest Higgs h. That is where they are most spetaular and are of the greatestimportane to experiment. Before going into the details, let us make three general points:� One needs to be lear about the meaning of a physial Higgs mass when radiative e�etsare to be taken into aount. The on-shell mass is de�ned as the square root of thatvalue of q2 for whih the real part of the inverse salar propagator q2 �m2tree +�(q2),�(q2) being the one loop self energy orretion, vanishes. However, we will omputeradiative orretions to stati Higgs masses.� Radiative orretions to the mass of h are dominated by loops involving the top quarkt and its stop partners ~t1;2, f. Fig. 10.8. This domination ours owing to the largeYukawa oupling that these states have with h. Contributions from loops mediated byother states are negligible by omparison and will be ignored.



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 241� In the limit of exat supersymmetry, tree level Higgs masses are proteted by thenonrenormalization theorem disussed in Ch.6. This explains why radiative orretionsto those masses are ontrolled by Ms, the sale of soft supersymmetry breaking.
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h hFig.10.8. One loop self energy diagrams for h.The radiatively orreted Higgs setor of the MSSM has been the subjet of onsiderablestudy over several years. We do not go here into the initial and orginal works, but a detaileddisussion with a historial perspetive and a omplete set of pertinent referenes may befound in the seond paper ited in Ref. [10.1℄. Three main tools have been employed in theliterature: (1) diret diagrammati alulations, (2) renormalization group methods and (3)e�etive potential tehniques. Let us fous our attention on the orretion to mh as a samplease. The proedure in (1) is to adopt a straight omputational approah by alulating theone loop self energy diagrams for h as given in Fig. 10.8.In ontrast, the methodology in (2) is that of Renormalization Group Evolution (RGE).For instane, when the spartile mass spetrum (haraterized by the sale Ms) is muhheavier than the weak sale, i.e. Ms �MZ , the quarti self oupling of h at the sale Ms istaken from (10.12) and (10.28b) to be132 os2 2� [g2Y (Ms) + g22(Ms)℄2 :It is then evolved to its value at the eletroweak sale by means of the Standard ModelRGE and used in the omputation of the mass of h utilizing Standard Model expressions.However, we hoose to present below an exposition of approah (3) { namely that of thee�etive potential { in alulating the orretion to the tree level value of mh. Thoughthis method is numerially not as aurate as the diagrammati one, it is pedagogiallymore interesting and gives a better theoretial insight into these loop indued radiativeorretions. In addition, the inlusion of leading two loop orretions and the omputationof orretions to stati Higgs self ouplings are more straightforward in this approah.We start by onsidering the stati approximation in whih the e�etive ation is approx-imated by the one loop e�etive potential. The atual alulation of the one loop e�etivepotential an be found in standard text books [10.7{10.9℄. The �nal expression readsV 1H(Q) = V 0H(Q) + �V (1)H (Q) ; (10.50a)



242 CHAPTER 10. HIGGS BOSONS IN THE MSSM�V (1)H (Q) = 164�2STr M4(h) �lnM2(h)Q2 � 32� : (10.50b)In (10.50), V 0H(Q) is the tree level Higgs potential with its ouplings renormalized at somesale Q, M(h) is the �eld dependent mass matrix and the supertrae, f. 5.10, overs allsupermultiplet �elds whose masses depend on the VEVs of the Higgs �elds.Corretions in the absene of ~tL-~tR mixingWe have earlier noted that the most important loop orretions to the Higgs potential VHome from the top-stop setor of the theory. To keep the disussion simple, we will onsideronly these. First, we neglet any mixing between the SU(2)L doublet (~tL) and singlet (~tR)squarks and assume equal soft supersymmetry breaking squared masses ~m2 for those two�elds. The relevant �eld dependent masses then arem2t (h) = f 2t jh02j2 ; (10.51a)m2~t1(h) = m2~t2(h) = ~m2 + f 2t jh02j2 ; (10.51b)where ft is the top Yukawa oupling strength, being equal to mt(2p2GF )1=2= sin�. We havenegleted D-term ontributions to the stop masses sine they are proportional to eletroweakgauge ouplings. They are thus suppressed by at least one power of M2Wm�2t ompared tothe pure Yukawa ontribution.Eah fermion or boson ontributes to the supertrae of (10.50b) with a multipliativeweight fator equal to the number of independent degrees of freedom assoiated with it. Letus reall that eah Dira fermion ontains four degrees of freedom, while eah omplex salarhas two. In addition, we have to inlude a olor fator of three. Altogether, we thus havefrom (10.50b) that�V (1)H;t�~t(Q) = 316�2 �( ~m2 + f 2t jh02j2)2�ln ~m2 + f 2t jh02j2Q2 � 32�� (f 2t jh02j2)2�ln f 2t jh02j2Q2 � 32�� ;(10.52)where the overall fator of 3 in the numerator omes from olor. As already advertised, thetwo terms in the RHS of (10.52) anel exatly in the limit of unbroken supersymmetry.In order to understand the physial signi�ane of these orretions, we �rst have to redothe minimization of the Higgs potential. In x10.2 we had minimized the tree level expressionwhih we now all V (0)H . Here we will do the same for V (0)H + �V (1)H;t�~t. As evident from(10.52), in the limit of vanishing ~tL-~tR mixing, orretions from the top-stop setor onlyinvolve the seond Higgs doublet h2. Therefore (10.17a) remains unhanged. On the otherhand, (10.17b) now beomesm22h = m212 ot � + M2Z2 os 2� � 3f 2t16�2 �f(m2~t )� f(m2t )� ; (10.53)where we have introdued the funtionf(m2) � 2m2�ln m2Q2 � 1� (10.54)



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 243and m2t ; m2~t are squared masses of the top and the stops respetively. We need not, for themoment, be bothered by the presene of the lnQ2 term sine it an ultimately be absorbedin the renormalization of m22h.As in (10.19), we alulate the mass squared matries now for the CP odd and CP evenHiggs bosons by taking seond derivatives of V (0)H + �V (1)H;t�~t with respet to the imaginaryand real parts of the neutral Higgs �elds respetively. One again, only the VEV v2 (and notv1) ontributes to (10.53) as a onsequene of our assumption of no ~tL-~tR mixing. Therefore,only the 2, 2 entries in the onerned matries an possibly reeive orretions from thetop-stop setor. Moreover, sine the VEVs v1 and v2 are real, the derivatives have to betaken at =m h01 = =m h02 = 0. It is then easy to see that the �nal result for the masssquared matrix of the CP odd states is the same as at the tree level, i.e. (10.23). Theexpliit orretion to the 2,2 entry from the seond derivative of (10.53) exatly anels theorretion to m22h, given in (10.53). However, suh is not the ase for the 2,2 element of themass squared matrix of the CP even Higgs salars, (f. 10.26). There we �nd the following�nite and positive orretion: �LL22 = 3f 2tm2t4�2 ln m2~tm2t � �hsin2 � ; (10.55)where �h = 3GFm4tp2�2 ln m2~tm2t : (10.56)We have put the supersript LL on �22 to denote the fat that (10.56) is a leading logarithm(in the ratio m~t=mt) expression.The one loop orretion to (10.26), in this senario, readsÆm2<e h0 = 0� 0 00 �hsin2 � 1A ; (10.57)so that (10.27), (10.29) and (10.30b) extend respetively tom2h;H = 12"m2A +M2Z + �hsin2 � � n(m2A +M2Z)2 sin2 2�+ �(M2Z �m2A) os 2� + �hsin2 ��2 o1=2# ; (10.58a)tan 2� = (m2A +M2Z) tan 2� �m2A �M2Z + �hsin2 � os 2���1 ; (10.58b)m2h +m2H = m2A +M2Z + �hsin2 � : (10.58)
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Fig.10.9. Other Higgs masses vs mA for tan� = 1.5 and 30 with m~t ' 1 TeV; adapted from Ref.[10.10℄.In Fig. 10.9 the Higgs masses mh; mH and mH� , as given in (10.58a), are plotted [10.10℄against mA, the mass of the CP odd Higgs boson, for two rather extreme values of tan�.For tan � > 1, the mass eigenvalue of h inreases monotonially with mA, saturating to itsmaximum upper bound mh < (M2Z os2 2� + �h)1=2 (10.59)for modest values of mA, i.e. mA > 300 GeV. For large tan � and m~t taken to be O(TeV),the RHS of (10.59) is � 110 GeV. We shall see later that the possibility of ~tL{~tR mixing aninrease this upper bound4. At this level, the harged Higgs mass is still given by (10.30a)and is hene independent of tan �, as shown in [10.10℄ Fig. 10.9. The tree level propertiesof the Higgs mass spetrum in the deoupling limit (mA ! 1) are still maintained. Nowthe A;H;H� Higgs partiles remain nearly degenerate while the lightest h saturates itsmaximum mass value. The tree level mass orderings, mH > m�H > mA remain valid forsmall tan �. Otherwise, the larger tan� urves in Fig. 10.9 are fairly similar to the urvesin Fig. 10.2, with MZ replaed by fM2Z + �2hg1=2.Eq. (10.56) represents the elebrated orretion whih has a quarti power dependeneon the mass of the top quark. Note that it has only a logarithmi dependene on the stopmass squared m2~t whih is harateristi of the square of the soft supersymmetry breakingsale Ms. This would seem to ontradit our starting proposition that orretions to themasses of Higgs bosons should be proportional to supersymmetry breaking masses. Thisapparent ontradition is resolved by the fat that the shift in the tree level parameter m22his indeed proportional to m2~t �m2t , .f.(10.53). One would need to �ne tune the parametersappearing in this equation if the tree level part were muh smaller than the orretion term.Furthermore, notie that the renormalization sale Q has disappeared from (10.56). Thisis to be expeted sine this equation desribes the orretion to a relation among physial4Indeed, the �nal experimental lower bound on the mass of an SM-like Higgs boson of about 115 GeVfrom the ompleted runs at LEP indiates the need for some amount of ~tL-~tR mixing unless ~tL;R-masses aremuh in exess of 1 TeV. This point will be disussed in more detail in x15.5.



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 245quantities (masses of CP even Higgs bosons one hand and MZ ; mA on the other). Indeed,it an be shown already at the level of the e�etive potential (10.50) that the expliit lnQ2dependene of the one loop orretion anels against a similar dependene of the runningquantities appearing in the tree level potential. In the simpli�ed senario, onsidered by usso far, it follows from (10.52) that the entire lnQ2 dependene ollapses to��V (1)H� ln Q2 = � 38�2 ~m2�f 2t jh02j2 + 12 ~m2� : (10.60)Thus the �rst term in the RHS of (10.60) exatly anels the Q2-dependene of m22h(Q)jh02j2.The seond term in the RHS of (10.60), a �eld independent onstant, is of no immediateinterest to partile physis, though it may ontribute to the osmologial onstant.Corretions with ~tL-~tR mixingLet us now introdue a nonzero ~tL-~tR mixing, desribed (.f. 9.62) by the o�-diagonalmatrix element5 �mt(At + � ot�) of the stop squared mass matrix. We will also allow thesoft supersymmetry breaking ~tL and ~tR mass terms to di�er. The eigenvalues of the �elddependent ~t squared mass matrix are then given bym2~t1;2(h) = f 2t jh02j2 + 12 hm2~tL +m2~tR �q(m2~tL �m2~tR) + 4f 2t jAth02 + �h0�1 j2 i : (10.61)Note that these eigenvalues depend on both neutral Higgs �elds h01;2. The orresponding oneloop orretion to the Higgs e�etive potential now beomes�V (1)H;t�~t(Q) = 332�2"m4~t1(h)(ln m2~t1(h)Q2 � 32) +m4~t2(h)(ln m2~t2(h)Q2 � 32)�2f 4t jh02j4�ln f 2t jh02j2Q2 � 32�#:Both the minimization onditions �VH=�h01 = 0; �VH=�h02 = 0 are now a�eted by radiativeorretions. Therefore, (10.17) hange tom21h = m212 tan� � 12M2Z os 2� � 3f 2t32�2 �(�+ At tan �)m2~t1 �m2~t2 �f(m2~t1)� f(m2~t2)� ; (10.62a)m22h = m212 ot � + 12M2Z os 2�� 3f 2t32�2 (f(m2~t1) + f(m2~t2)� 2f(m2t ) + At(At + � ot�)m2~t1 �m2~t2 [f(m2~t1)� f(m2~t2)℄) :(10.62b)5We take At and � to be real here.



246 CHAPTER 10. HIGGS BOSONS IN THE MSSMOne again, the squared mass matries for the neutral Higgs bosons an be omputedfrom the seond derivatives of the Higgs potential. The alulation for the CP odd ase isgreatly simpli�ed by the observation that the �rst derivatives of any of the �eld dependenttop (stop) masses with respet to the imaginary parts of h01 and h02 vanish in the (real)minimum of the Higgs potential. A straightforward alulation yields the resultm2=m h0 = (m212 +�)� tan� 11 ot � � ; (10.63)with � = � 3f 2t32�2 �Atm2~t1 �m2~t2 [f(m2~t1)� f(m2~t2)℄ : (10.64)As antiipated, this orretion vanishes in the limit of no ~tL-~tR mixing (� = At = 0). Theone loop orreted mass of the physial CP odd Higgs boson A thus beomesm2A = 2(m212 +�)sin 2� : (10.65)The expliit lnQ2 dependene an again be shown to anel in this equation, if m212 andtan � are understood to be running parameters. However, this anellation works exatlyonly in one loop order; beyond that, terms of order [f 2tm2~t ln(m2~t =Q2)℄2 remain in (10.65). Inthe interest of perturbative stability, one should therefore hoose a renormalization sale Qlose to the stop mass, e.g. Q = pm~t1m~t2 . This is totally analogous to the hoie made inperturbative QCD alulations (involving massless partons) of the renormalization sale tobe lose to the external momentum.The generalization of (10.57), inluding ~tL-~tR mixing, now readsÆm2<e h0 = ��11 �12�12 �22 � ; (10.66)with �11 = 3GFm4t2p2�2 sin2 � "�(At + � ot�)m2~t1 �m2~t2 #2 2� m2~t1 +m2~t2m2~t1 �m2~t2 ln m2~t1m2~t2! ; (10.67a)�12 = 3GFm4t2p2�2 sin2 � �(At + � ot�)m2~t1 �m2~t2 ln m2~t1m2~t2 + At� �11 ; (10.67b)�22 = 3GFm4tp2�2 sin2 � "ln m~t1m~t2m2t + At(At + � ot�)m2~t1 �m2~t2 ln m2~t1m2~t2 #+ �At� �2�11: (10.67)Again, eah of eqs. (10.67) is independent of Q2. Note also that the orreted value (10.65)of m2A has to be used in the tree level squared mass matrix (10.26).We have, so far, onsidered orretions only from the top-stop setor. If tan �, the ratio ofthe Higgs VEVs, beomes very large, the bottom Yukawa oupling an be omparable to thatof the top and make substantial additional orretions to (10.62), (10.65) and (10.66). These



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 247an be obtained from our expressions by the following three substitutions:- (1) interhangetop (stop) masses and ouplings with those of the bottom (sbottom); (2) interhange h01 andh02, i.e. tan� $ ot �; (3) interhange the shifts of m21h and m22h, i.e. the leading logarithmiorretions from the bottom-sbottom setor only a�et m21h. Note that even if tan� is ashigh as mt=mb, the `leading' logarithmi orretions from the b-~b setor to the squared massmatrix of the CP even Higgs bosons are suppressed by a fator (mb=mt)2 as ompared withthose from the t-~t setor and thus an be safely negleted; however, the nonlogarithmiorretions from ~bL-~bR mixing an be signi�ant in this ase.The question an be raised as to whether one an go beyond the one loop orretionsfrom heavy quarks/squarks, presented above. Leading two loop orretions at O(��s) to(10.67) an be inorporated with just a little more e�ort. This is done by treating the topmass in the overall m4t fator as a sale dependent running quantity. In other words, mtshould be interpreted as the MS (or DR) mass, not the pole mass. The two quantities arerelated by the boundary ondition [10.11℄mt(mt) = mpolet �1� 4�S3� � (10.68)plus higher order orretions. The sale dependene of mt for sales Q � m~t is the same asin the nonsupersymmetri SM:mt(Q) = mt(mt) � �S(Q)�S(mt)�12=23 : (10.69)The �rst (leading log) term in (10.67) an be understood to have originated from the runningof the SM Higgs self oupling from the sale6Ms = pm~t1m~t2 (10.70)to the sale mt. Using this observation, the leading two loop orretions to this term anbe easily inorporated by taking the fator m4t at the intermediate sale pMsmt. All otherterms in (10.67) an be absorbed in the boundary ondition on the Higgs self oupling atthe sale Ms; the m4t fators in all suh nonlogarithmi terms should therefore be taken atthe high sale Ms.By far, the most signi�ant e�et of the radiative orretions, disussed in this setion,is that they relax the upper bound (10.30) on the mass of the lighter CP even Higgs salarh. We had already derived an upper bound � 110 GeV in the absene of ~tL-~tR mixing, buthere we give the more general result when suh a mixing is present. For a given value oftan �, mh is still maximal when mA is large (the \deoupling limit", as disussed earlier),but the bound is now given bym2h < M2Z os2 2� +�11 os2 � +�12 sin 2� +�22 sin2 � ; (10.71)with the �'s given by (10.67). Numerially, the orretion �22 is usually the most importantone. The absolute upper bound is still reahed for tan� � 1 (i.e. j os 2�j ! 1) just as at6We assume here for simpliity that supersymmetry breaking is haraterized by this one mass sale.



248 CHAPTER 10. HIGGS BOSONS IN THE MSSMthe tree level. For equal ~tL and ~tR soft supersymmetry breaking mass terms, a simple yetaurate formula for this upper bound obtains in the limit jmtAtj � m2~t :m2h �M2Z + 3GFp2�2 "m4t (pmtMs) ln(M2s =m2t )+(At)2M�2s m4t (Ms)(1� 112(At)2M�2s )#; (10.72)with Ms as given by (10.70). We have explained why the two m4t fators in the RHS of(10.72) have to be taken at di�erent sales. Taking Ms = 1 TeV and mpolet = 175 GeV fromdiret TEVATRON experiments [10.12℄, one �nds mt(pmtMs) ' 157 GeV and mt(Ms) '150 GeV. Sine the last RHS term in (10.72) is maximal at At = p6Ms, one then obtainsan absolute upper bound on mh whih is a ritial test of MSSM, namelymh < 132 GeV: (10.73)Comparing with (10.59), we see that the e�et of nonzero At; � are quite signi�ant andshifts the upper bound on the h-mass by more7 than 20 GeV. Radiative orretions antherefore push mh well beyond the reah of existing e+e� olliders. We �nally mention thatthe treatment presented here has reently been extended by inluding orretions O(f 2t g2)to the squared Higgs mass matrix and by allowing for large CP violating phases in the thirdgeneration squark setor [10.15℄. These phases lead CP even and CP odd Higgs states tomix but do not alter the upper bound (10.73) on mh. Later, in Ch.14, we shall disuss thegeneralization of (10.73) to over extensions of the MSSM.Conluding remarksBefore onluding this setion, we want to make some brief general remarks on one loopradiative orretions to the harged Higgs mass and also to Higgs ouplings in the MSSM.We have already shown that, in the absene of ~tL-~tR mixing (i.e. negleting the e�ets of �and At) { the harged Higgs mass is given by (10.30a) and is independent of tan �. Evenwith ~tL-~tR mixing, the one loop orretions to m2H� remain small if the renormalizationsale Q is hosen in a way suh that perturbation theory is reliable. Expliit expressionsfor these orretions may be found in Ref. [10.6℄. It is worth remarking here, though, thatorretions from the top (stop)-bottom (sbottom) setor go to zero in the limit of a vanishingbottom Yukawa oupling. We further remind the reader that all D-term ontributions to thesquark mass matries were negleted. The inlusion of suh terms will introdue additionalorretions of order g22m2t =(8�2) or g22M2W=(8�2). These orretions an be omputed along7We have presented here the results within the e�etive potential framework, impliitly working withMS renormalized parameters. A more reent analysis [10.13℄ shows that a diagrammati alulation in theon-shell renormalization sheme, again inluding leading two loop orretions, almost exatly reprodues theresult from the e�etive potential approah, one the di�erene between the two renormalization shemeshas been taken into aount. One should nonetheless assign a theoretial error of two to three GeV to thepredited value of mh, due to higher order terms. An upward shift of suh a magnitude has very reentlybeen found [10.14℄ from two loop O(f4t ) orretions.



REFERENCES 249the lines presented here. Though, stritly speaking, these modify [10.6℄ the relation (10.30a),they are numerially unimportant. Note also that a omplete alulation of pure eletroweakO(g22M2W ) orretions should inlude ontributions from loops involving �rst and seondgeneration sfermions as well as those from the gauge-Higgs-gaugino-higgsino setor. Turningto Higgs ouplings, one loop radiative orretions, at the level disussed in this setion, donot a�et Higgs-gauge and Higgs-fermion ouplings8 diretly. They only ome in indiretlythrough a shift in the value of �, as indiated by (10.58b). Only in the ase of Higgs selfouplings are there some diret ontributions [10.16℄. For instane, ignoring ~tL-~tR mixing,the oeÆients (denoted by ����) of �ig2MZ=(2 os �W ) in the triple salar Hhh and HAAverties are hanged from what appear in Fig. 10.4 to�Hhh = 2 sin 2� sin(� + �)� os 2� os(� + �) + 3 �h sin�M2Z sin3 � os2 � ; (10.74a)�HAA = � os 2� os(� + �) + �h sin�M2Z sin3 � os2 � : (10.74b)Our �nal omment is on the stati approximation. That may not work so well for Higgsbosons whih are heavy, e.g. with masses omparable to those of the top/stop(s). Indeed,on-shell ouplings of H and A then often develop imaginary dispersive parts from loopsindued by the latter.
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