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Chapter 1

SUPERSYMMETRY: WHY AND
HOW

1.1 History and Motivation

We first give a brief factual account of the history [1.1] of supersymmetry, leaving a more
pedagogical development to later sections and chapters. This has evidently been a history
of experimenters chasing a theoretically driven idea. The notion of a symmetry transforma-
tion between fermionic and bosonic modes emerged [1.2] in connection with string theory.
However, this was constructed on a two dimensional world sheet rather than in the real
world of 3+ 1 dimensions. N=1 supersymmetry in the latter (in terms of supercharges that
take fermions into bosons and vice versa) was first proposed and formulated as a graded
Lie algebra by Golfand and Likhtman [1.3] in 1971. Akulov and Volkov [1.4] later gave a
nonlinear realization of it together with the idea of spontaneous breakdown. Finally, in 1974,
Wess and Zumino [1.5] as well as Salam and Strathdee [1.5] constructed field theories with
supersymmetry (cf. Ch.5) and the subject immediately attracted attention on a large scale.
Supersymmetry was shown by Haag, Jlopuzarisky and Sohnius (cf. Ch.3) to be the only
possible extension of the known spacetime symmetries of particle interactions. Several im-
portant results were derived on the more convergent ultraviolet behavior of supersymmetric
field theories, exploiting the cancellation between fermionic and bosonic loops. In particular,
a theorem on the nonrenormalization of superpotential terms (cf. Ch.6) was proved [1.6].
Scalar field theories are generically not natural in the sense of Weinberg, Susskind and 't
Hooft [1.7]. But it became clear after a while that supersymmetric field theories, despite
containing scalar fields, are natural [1.8].

The four momentum operator P* is essential to an algebraic formulation of supersymme-
try. As elaborated in Ch.3, if a supercharge, carrying spin 1/2, takes a boson to a fermion or
vice versa, the anticommutator between two supercharges with arbitrary spinorial compo-
nents must be proportional to P*. If the vacuum is annihilated by a supercharge, a vanishing
energy for it is then ensured. In exact supersymmetry, P* and P? = P*P, commute with
the supercharge and one is led to mass degenerate supermultiplets of states differing in spin
by 1/2. Since no such mass degeneracy has been seen! among particles occurring in Nature,

!There were early attempts to put a photon and a neutrino together in a supermultiplet. It soon became
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supersymmetry must be a badly broken symmetry. The intra-supermultiplet mass splitting,
characteristically denoted as M,, then becomes a scale of some significance. A question of
immediate interest arises in consequence: what is the order of magnitude of M,? A related
issue concerns the existence of sparticles, i.e. superpartners of the known particles. The
latter cannot make up complete supermultiplets by themselves. Therefore each particle in
a broken supersymmetric world must have a new superpartner which we call a sparticle.
A sparticle is typically heavier than the corresponding particle by a mass difference O(Mj)
and is lying yet undiscovered. Furthermore, the application of naturalness arguments [1.8]
to the weak scale (~ 100 GeV), generated in the SM by an unnatural scalar field sector, has
suggested [1.9] that? M, < O(TeV) and that sparticles should be discovered in forthcoming
high energy accelerator experiments probing these energies. The highly successful Stan-
dard Model (SM) of particle interactions has been minimally extended [1.10] to include all
these sparticles and is now called the Minimal Supersymmetric Standard Model (MSSM).
Our aim in this book is to develop this theme concretely to the extent that its links with
experiments, now being conducted or planned, become clear.

There have already been major experimental efforts to search for sparticles, undertaken
all through the 1980’s and 1990’s. The production and decays of sparticles are uniquely
characterized by large (more than tens of GeV) missing transverse energy at least in R-parity
conserving supersymmetric scenarios where the undetected lightest supersymmetric particle
(LSP) carries it away. Early hints at the beginning of the eighties in the UA1 experiment,
performed at the SPPS machine at CERN, did not materialize into believable signals but
were later identified with more mundane processes of the Standard Model. Afterwards, the
LEP eTe™ storage ring at CERN and the Tevatron pp collider at Fermilab have been heavily
deployed in searches for sparticles, but without any success so far. The same can be said for
searches in ep collision experiments performed at HERA. The four LEP experimental groups,
ALEPH, DELPHI, L3 and OPAL, as well as the two major experimental collaborations at the
TEVATRON, CDF and D, have published the strongest experimental lower bounds on the
masses of numerous sparticles; they have also established exclusion zones in parameter spaces
of various supersymmetric extensions of the Standard Model (Ch.15). The TEVATRON
experiments are being extended to RUN II with higher integrated luminosity. Two major
collaborations in the Large Hadron Collider (LHC), being built at CERN, ATLAS and CMS,
are preparing dedicated experiments which will probe sparticles in the TeV mass range. The
exploration of sparticles has been stated as a major goal in proposals for eTe™ linear colliders
with CM energies in the range 500 GeV-1.5 TeV, now being pursued vigorously. There are
also nonaccelerator experiments trying to detect the very weakly interacting LSP pervading
the universe as cold dark matter (Ch.16). Thus we are in for another decade of intense
experimental activity full of exciting possibilities.

One criticism, frequently levelled against the supersymmetry idea sketched above, is the

clear that the supercharge, being the generator of a spacetime symmetry, must commute with all generators
of internal symmetries, e.g. electroweak symmetry. Thus all members of a supermultiplet must have identical
internal symmetry properties. Such is not the case between the photon and any of the three known neutrinos.

2Such a statement is far from obvious. M, could very well be of the order of other possible scales in
Physics. These include the reduced Planck scale Mp; = (87G n) /2 ~ 2.4 x 10'® GeV and the speculated
grand unification scale My ~ 2 x 10'% GeV. As we shall see later, the above conclusion, reached on the basis
of naturalness arguments, is quite a deep statement.
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“inelegance” in postulating one new state for every known particle. But extended symmetry
considerations did lead physicists in the past to postulate new particles which were subse-
quently discovered. An example, which we elaborate here, is the extension of nonrelativistic
quantum electrodynamics of the electron to cover Lorentz invariance. Such an extension re-
quires the existence of the positron, as can be understood from the standpoint of divergences.
We know that the classical self energy of an electron of radius r., namely

3
Edie = 2(¢*/4mre)

in rationalized units, is linearly divergent as r. — 0. One can guess [1.11] that this calculation
becomes unreliable for radii less than the “classical electron radius” Ry ~ %(62/471'7716) ~
1.7 fm for which E¢; equals the rest energy of the electron. In the diagrammatic language
of old fashioned perturbation theory [1.12], this contribution is given by Fig.1.1a — the solid,
wiggly and dashed lines standing for the electron, the photon and a time slice respectively.

Y

Y

1.1(a) 1.2 (b)

Fig.1.1. Electron self energy diagrams in old fashioned perturbation theory.

Of course, in a relativistic quantum description of the electron, it has been possible
to probe r, far below Ry (indeed below 107® fm). This is because the linear divergence,
mentioned earlier, gets cured here by the presence of the positron. Owing to the latter, there
is also® Fig.1-1b now. In this contribution the electron annihilates the positron, created in
a pair from a vacuum fluctuation, while the remaining electron goes out. As a result, there
is an intrinsic uncertainty in the electron’s position of the order of its Compton wavelength
re ~ 1/m,. The linear divergence cancels in the sum of these two contributions and the self
energy becomes [1.13]

2
pauant. _ 3e"me
self - 2

167

The expression for Fg is still logarithmically divergent as 7. — 0, but this mild divergence®
can be easily tackled within the renormalization program. One postulates a bare mass of
the electron which is also logarithmically divergent, owing to a counterterm inserted in the
Lagrangian, so that the renormalized mass m = mP¥® + E is finite.

In(mere) .

3This reasoning has been highlighted by H. Murayama, hep-ph/9410285, ibid/0002242.

4The mildness of this divergence can be seen as follows. Even if 7, is replaced by the smallest length
known in Physics, namely the Planck length Ap; = M;ll, the above expression becomes only 10% of the rest
energy of the electron.
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The cancellation of the linear divergence is really a consequence of chiral symmetry. The
latter refers to an invariance under the transformation of the electron field v, — €71,
(with ¢ being a real parameter), which becomes a symmetry of relativistic electrodynamics
in the limit when m, — 0. Taking this limit in which Egjs — 0 enhances the symmetry of
the theory which then includes chiral invariance. This makes the smallness of the mass of
the electron natural in the sense of Weinberg, Susskind and 't Hooft [1.7] since the electron
is protected by this symmetry from acquiring a huge mass due to self energy corrections.
According to those authors, a small parameter in a theory is natural if, and only if, setting
it to zero enhances the symmetry of the system. Being a symmetry breaking parameter, its
smallness then gets protected against large radiative corrections by the concerned symmetry.
Indeed, this criterion can be extended to the theory itself. In the modern Wilsonian view,
every Lagrangian density £ should be defined with a cutoff A and should be written as
L(A), keeping renormalization in mind. A represents the highest energy scale upto which
L(A) is the appropriate Lagrangian density and can be perceived as the energy scale where
new physics comes into play. Now, a Lagrangian density £(A) is “natural” upto and below
the energy scale A if any set of small parameters {0, }, appearing in £L(A), is associated with
some approximate symmetry of £(A) which is exactly recovered in the d,, — 0 limit. In this
case quantum corrections — characterized by the scale A — will also vanish as {J,,} — 0 and
will remain small for nonvanishing but small {4, }.

In order to make the above discussion more quantitative, let us write the tree level

Lagrangian density of the low energy theory as Liee = ZénOn. Here the {O,} are a

set, of general operators, indexed by nonnegative integers 7”7 with d, as the corresponding
coefficients, while the summation covers all such n that occur. The inclusion of quantum
effects, characterized by the scale A, then leads to the following general form for the low
energy effective Lagrangian density”:

»Ceff = ZCn,i(5n>iA[(i_1)(dn_4)]On . (11>

n,e

In (1.1) the summation over nonnegative integers i can, in principle, go from zero to infinity;
however, in practice, only a few terms matter. Moreover, d,, is the mass dimension of the
operator O, and c,; are dimensionless coefficients which can depend only logarithmically
on A. Since we take the low energy tree level Lagrangian density to be renormalizable,
0, = 0 whenever O,, has d,, > 4. For such operators, the sum over i in (1.1) collapses to the
single term with ¢ = 0 and (1.1) describes the usual expansion of the low energy effective
Lagrangian density with higher dimensional operators suppressed by appropriate powers of
A~ These latter terms are irrelevant to any discussion of naturalness, since they disappear
when A — oo.

Turning to operators with d,, < 4, we can distinguish two cases. (1) A small coefficient
0p is “naturally small” only if ¢, , = 0, since then the corresponding coefficient will remain
small in the full effective low energy Lagrangian density as well. As already noted above,
in all known examples, a symmetry is needed to ensure that ¢, , vanishes to all orders in

>There could be additional terms in (1.1) involving powers of products of different d,’s, but they do not
change the discussion in substance.
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perturbation theory. Illustrative examples are gauge symmetries “protecting” gauge cou-
plings and chiral symmetries “protecting” fermion masses or Yukawa couplings. (2) On the
other hand, if ¢, , # 0, there is no reason to assume 9, to be small or zero in the tree level
low energy Lagrangian density; such a choice would be “unnatural”. This may not lead to
serious problems for operators with d,, = 4. In this case our argument only shows that the

natural scale for Zcm(én)‘ should be at least 6, + O(a/7), a being (47)~" times the square

2

of some (typically gauge) coupling strength. Thus even if, at the tree level, §,, is chosen in
magnitude to be much less than O(a/7), the coefficient of O,, in Leg will naturally become
of that order. An example is the quartic Higgs self coupling in the SM which is “naturally”
at least O(1072) in Leg. (In this particular case, however, the experimental lower bound on
the mass of the physical Higgs boson leads to a much stronger lower limit). The problem of
“naturalness” becomes really severe only for operators with dimension d, < 4. As shown in
(1.1), the corresponding coefficients in the low energy effective Lagrangian density diverge
like A*=4" if ¢, o # 0. The lowest dimensional relevant operator in the SM is the Higgs mass
term, which has dimension two. Since the relevant coefficient is not protected by a symme-
try, we expect it to receive quadratically divergent quantum corrections. In the next section
we shall show explicitly that such divergences do indeed occur in the SM. An exorbitant
degree of fine tuning between the bare mass and the radiative correction becomes necessary
to keep the renormalized Higgs mass near the weak scale. We shall then show in §1.3 how
supersymmetry removes this quadratic divergence (i.e. makes the corresponding ¢, , vanish)
and solves the problem by protecting the renormalized Higgs mass.

Let us return to the question of the mass of the electron. On dimensional grounds, one
might naively expect m, to grow like A after loop corrections. As already noted, it does
not do so. The fact that it grows instead as In(A/m,) is because of chiral symmetry which
makes m, a “naturally small” parameter of the theory. Notice that chiral symmetry can be
formulated only within a relativistic framework where a positron is obligatory. The existence
of a new particle here is therefore linked to the greater convergence of the theory at short
distances (or high energies) and is ultimately related to a symmetry. A similar motivation can
be given for supersymmetry. Supersymmetry, or more specifically the existence of sparticle
superpartners with masses near the weak scale, cures the problem of quadratic divergences
through cancellations between fermionic and bosonic loops. This can be understood on the
basis of symmetries as follows. Supersymmetry links boson masses to fermion masses, which
are “protected” by chiral symmetry®. The weak scale My, can then be naturally chosen
to be many orders of magnitude below the Planck scale Mp; or the hypothetical scale M,
of grand unification and kept protected. Operatively, the nonrenormalization theorem of
supersymmetry (cf. Ch.6) provides this protection. Thus supersymmetry holds the key to
the stability and naturalness of the weak scale vis-a-vis My or Mp;. This really is the raison
d’étre for the extension of the phenomenologically successful Standard Model of particle
interactions to the Minimal Supersymmetric Standard Model to which a large part of this
book will be devoted. In the next sections we shall illustrate this main argument through
explicit calculations at the one loop level.

6We note in passing that supersymmetry also allows one to “naturally” choose arbitrarily small, even
vanishing, scalar self couplings, by relating them either to gauge or to Yukawa couplings.
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1.2 Quadratic Divergence and Unnaturalness

We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through
an explicit calculation. The example studied is that of the two point function (inverse
propagator) of the Higgs scalar at vanishing external momentum, computed at the one loop
level. This quantity is roughly —: times the squared scalar mass appearing in the Lagrangian.
This particular object has been chosen since its calculation is simple and yet suffices to

highlight the problem. Let ¢ be the SM neutral Higgs field with v = \/(1/vV2Gr) ~ 246
GeV defined to be v/2(¢) so that the shifted physical field A is given by

1
Re p = —=(h+v). 1.2
¢ \/5( ) (1.2)
Take f to be a generic matter fermion field (of one species) with a Yukawa coupling to ¢ via
the term (we follow the conventions of Bjorken and Drell [1.14])

£ff¢ = —/\ffoRd)-Fh.C.
)\f - )\fv -
——=hff———=ff, 1.3
NG If a If (1.3)
where f7, g are left, right chiral components of f. Thus, on account of spontaneous symmetry
breaking, the fermion develops a tree level mass m; = Afv/ﬂ.
Let us now proceed to compute the one loop f-f contribution to the scalar two point
function, as illustrated in Fig.1.2. We have

Fig.1.2. Fermionic loop contribution to the scalar two point function.

w0 = 00 f gt (08) = (08)

_ _w/ d*k K +mj
)yt (2 = m3)?

d*k 1 2m?2
= -2\ / + L. (1.4)
] (2m) [kz — mfc (k2 — mfc)2

The first term in the final RHS of (1.4) is quadratically divergent and is moreover independent,
of the scalar mass mg. First of all, this divergence is very severe. Suppose the integral is
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cut off by a A parameter which is then set equal to the Planck mass Mp; ~ 2.4 x 10'®
GeV, the highest scale known in physics. Then the one loop correction to m% would be 30
orders of magnitude larger than m% itself since mg is restricted [1.15], by the requirement of
perturbative unitarity in the amplitude WW~= — W+W~ tobe < O (1 TeV). Furthermore,
the correction (1.4) being independent of mg is an indication of the fact that mg is an
unnatural parameter in the SM. Setting mg = 0 does not increase the symmetry of that
theory. That means that there exists no symmetry in the SM which protects the Higgs
mass. For simplicity, we have dealt with only the fermion antifermion loop contribution
to the Higgs self energy and ignored the gauge boson loop and (self-coupled) Higgs loop
contributions. Each of the latter contains a quadratic divergence and has the same problem
as above’.

Of course, one could simply renormalize such quadratic divergences away in the same way
that logarithmic divergences are disposed of. But the legacy of the severity of the quadratic
divergence would still remain. Thus the residual finite correction in (1.4) would be or order
m3A%/(87). Such a correction would be managably small for a standard model fermion like
the top quark. However, the SM is expected to give way to a more fundamental theory, e.g.
a Grand Unified one [1.16] unifying all forces in it, at a high energy scale My ~ 10'6 GeV.
In this case the leading contribution will come from a fermion-antifermion pair which can
couple to h and have the highest mass, with m; expected to be O(My), causing the loop
correction to the scalar mass squared, i.e. dm%, to be O(M%). One would have to do an
unnatural amount of fine tuning (1 in 10°°) between the bare scalar mass squared mg, and
the renormalization dm?% in order to keep the renormalized mass squared

me =mg, + omg (1.5)

to less than a (TeV)2. The argument can be amplified through the consideration of quartic
scalar couplings.

To make the above discussion more concrete, let us take the Grand Unifying group to be
[1.16] SU(5) with X (H, H) representing Higgs fields in the 24 (5,5) representation. While
the mass of ¥ is expected to be O(Mp), that of the weak doublet parts of H and H should be
of O(Myy). At the tree level, the unifying scale M is generated via My = gy (X), where gy
is the unified gauge coupling strength. The one loop effective action contains an interaction
term NHY?H, from the graph of Fig.1.3, where the wiggly lines represent gauge bosons of
the SU(5) theory. If we take momentum scales at the two external H and ¥ lines to be of
order My and My respectively, we shall have

4 2
g M
NME) ~ MNME) + 16’; 1nM—;f :
w

(1.6)

The induced mass of all components of H is A(3)2. Even if \ is taken to be very small at the

"In principle, one can cancel the total one loop quadratic divergences by explicitly cancelling bosonic and
fermionic contributions through some postulated relation between the boson and fermion masses. However,
because such a cancellation is ‘accidential’, rather than being enforced by a symmetry, it will not work in
higher loop order.
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tree level, A\(M{;) becomes O(gf;) after the one loop correction. Without an extreme fine

Fig.1.3. One loop graph for the HX2H vertex in an SU(5) Grand Unified theory.

tuning of A(M,), the induced mass of the weak scale Higgs doublet will then be at an
unacceptably large level. Moreover, the fine tuning would be very different in different
orders of perturbation theory. This, basically, is the gauge hierarchy problem arising out of
the radiative instability of scalar masses: the latter like to be close to the highest mass scale
in the theory.

1.3 Naturalness, Nonrenormalization, Supersymmetry

Loops induced by other scalar fields, contributing to the Higgs two point function, can also
be considered. Let us construct a toy model [1.17] by introducing to the system of §1.2 two
additional complex scalar (“sfermion”) fields fr, fr with the following coupling to the Higgs
field:

Liry = MlOPUSLP +1frl) + (A\rAsofofh +uc)
1- - - - - -
= APl + 1 fRP) + oAb fil” + | frP?)
h

V2
In the second step of (1.7), we have rewritten, by means of (1.2), the interaction in terms of
the h-field and have displayed only the h-dependent terms. The coefficient of the last RHS
term is, in fact, arbitrary; the factor Ay, multiplying the new unknown coupling strength

Ay, has been put in only by convention. (1.7) makes the following additional contribution
to the two point function via the loops of Fig.1.4:

i < d*k 1 1
f —
I, (0) = _)‘f/ (27)4 <k2 —m2 T k2 —m?2 ) +
fr

[ d% | I
(Arv) /(2@4 [(k2—m2~ Bl )2]

fr

d*k 1 1

ApAg|? : 1.
AL [ e (13)
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Fig.1.4. Sfermion loop contributions to Higgs self energy

Only the first line in (1.8), which comes from the leftmost diagram of Fig.1.4, contains a
quadratic divergence. This, however, can be cancelled with that in the fermionic contribution

(1.4), ie. T, (0) + H{;h(O) becomes free of any quadratic divergence, provided the following
coupling constant equality is obeyed:

Ap = =) (1.9)

Note that the inequality 5\f < 0 is required in (1.7) to keep the Hamiltonian bounded from
below. Another important point to note is that the above cancellation of the quadratic
divergence is independent of the masses mj, , mj, or the coupling strength Ay.

Now that the quadratic divergence has disappeared from TIZ, (0) + T/, (0), the remaining
logarithmic ones can be cancelled by contributions from logarithmically infinite countert-
erms introduced in the Lagrangian density as part of the renormalization procedure. In
the MS renormalization scheme® [1.18], one can replace the logarithmic divergence in our
loop integrals by the logarithm of the square of the renormalization scale p. Utilizing
the By-function of Passarino and Veltman, we can then make [1.19] the following types of
replacements:

[y
im2 \k2—m? kZ—m}3

2
(= ) B0, o (11 )

i
m2
—mj (1 —In —j) : (1.10a)
i
d*k 1 m?

8 A caveat is in order here. The MS scheme was originally proposed with dimensional regularization which
has a problem in supersymmetry since the numbers of bosons and fermions do not match as one goes off four
dimensions. For supersymmetric loop computations, one needs to adopt the modified dimensional reduction
or DR scheme where the momentum integrals are evaluated in continued dimensions and the subtraction is
performed as in MS, but the Dirac algebra in the numerator is done strictly in four dimensions. A more
extensive discussion of the DR scheme will come in Ch.6.
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The consequent expression for the sum of (1.4) and (1.8) can be simplified by choosing

me - m.fR

= mj . (1.11)
The choices (1.9) and (1.11) as well as the substitutions (1.10) lead to the result:

; A2 m? m
I/, (0) + 11/, (0) = i—L [ —2mj (1 —In —f> +4m7n —
m 7

Thus, if along with (1.11), we also require the relations

mp=mj, (1.13a)
A;=0, (1.13b)

we will have )
I/, (0) + 11/, (0) =0 . (1.14)

Eq. (1.14) can be restated as follows. If the fermion Yukawa coupling strength squared
equals the quartic coupling between the Higgs and the scalars fLR, if the masses of the
fermion f and of the scalars fL, r are identical and if the Ay parameter is zero, the entire
one loop renormalization of the Higgs self energy II,,(0) vanishes.

We are now ready to give a supersymmetric interpretation of the above. In an exactly
supersymmetric theory, the two scalars fL, r are the left and right superpartners (sfermions) of
the fermion f. Moreover, the coupling strength equality (1.9), the mass equalities (1.11) and
(1.13a) and the required null value of the (supersymmetry breaking) parameter Ay (1.13b)
are all ensured by supersymmetry. Indeed, with these conditions, the vanishing of the
renormalization of the Higgs self energy holds in all perturbation orders as a consequence of
the nonrenormalization theorem (cf. §6.7) valid in supersymmetric theories. This is the
essence of naturalness due to supersymmetry. The naturalness aspect is also made clear by
the introduction of a certain kind of small supersymmetry breaking, namely that the breaking
is confined to the masses my and mf being different and to A; being nonzero but does not
change the coupling equality (1.9). These are specific instances of parameters typical of softly
broken supersymmetry, i.e. as coefficients of supersymmetry breaking operators of mass
dimension less than four in the Hamiltonian. Suppose we characterize this supersymmetry
breaking in terms of two small parameters Ay and ¢, with

0% =mi —mj . (1.15)
(Here we have chosen to maintain® (1.11) while relaxing (1.13) via a small mass splitting.)
Thus ¢ characterizes the mass splitting within the f- f supermultiplet. With the assumption

°In a more general discussion, one could introduce another supersymmetry breaking mass parameter,
splitting my, and my,, which would then enter the RHS of (1.16). But the basic conclusion would still be
the same.
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that 0], |A¢| < my, we can approximate ln(mf;/,uz) ~ In(m}/p?)+06°/m7 and rewrite (1.12)
as

: A2 m>
T/, (0) + T/, (0) ~ _2‘16;;2 46% + (26% + | A7) In M—Zf + 08, |Af26%) . (1.16)

Hence the one loop renormalization of the Higgs self energy is linearly proportional'® to the
small supersymmetry breaking parameters 6 and |A;|?, restricting the correction to one of
modest magnitude, though my may be quite large.

Thus the introduction of the superpartners fL, r with the interactions of (1.7) has served
two purposes: (1) the quadratic divergence in the scalar self energy is cancelled; (2) the
scalar mass is shielded from large loop corrections involving heavy particles so long as the
mass splitting between the heavy fermion and boson superpartners is itself of the order
of the scalar mass. This then is a toy model example of how naturalness is restored by
supersymmetry in the scalar sector of the SM. We have confined ourselves here to discussing
fermion and sfermion loop contributions to the Higgs self energy. But the same conclusions
follow mutatis mutandis if loop contributions from gauge bosons and their superpartners are
combined or Higgs bosons and their superpartners are added together.

Fig.1.5. Additional one loop graph for the HX?H vertex in the supersymmetric SU(5) theory.

Returning to the discussion, given at the end of §1.2, of the supersymmetric SU(5) Grand
Unified Theory, there will now be a new one loop diagram contributing to the HX2H vertex
in addition to Fig.1.3. This is shown in Fig.1.5 where the solid lines represent appropriate
fermionic superpartners of SU(5) gauge bosons and Y-fields. The two graphs cancel in the
leading terms and the quartic coupling strengths A at those two different scales are now
related by
M3

M M) ~ A(ME) In w7

!9The persistence of the renormalization scale y in (1.16) need not worry us since the LHS is not a
physically measurable quantity.
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Hence the previous hierarchical instability does not materialize and the problem of the ra-
diative instability of the gauge hierarchy is solved'' [1.20] as a consequence of the nonrenor-
malization theorem of supersymmetry (cf. Ch.6). The earlier additive term in the RHS of
(1.6), proportional to gf, has got cancelled. The multiplicative logarithmic factor comes in
the following way. The scalar quartic coupling is a coupling in the superpotential (cf. Ch.5).
Since the latter is not renormalized (cf. Ch.6), the renormalization of such a coupling has to
be balanced by the wavefunction renormalizations of the multiplying superfields. Owing to
dimensional reasons, the latter can at most have a logarithmic dependence on the two mass
scales. The same must then be true of A\. These issues will become much clearer after the
discussion in §6.6.

In our introduction and overview, as given in this chapter, we have tried to provide a
motivation for softly broken supersymmetry other than just its mathematical beauty. It
is needed as a stabilizer of the weak scale My,. The latter is radiatively unstable in the
Standard Model; the instability of the Higgs mass my accrues via the Higgs VEV to My .
Stabilization within the Standard Model can be achieved only by fine tuning. As a result,
despite its logical consistency and impressive experimental support, the Standard Model is
an unnatural theory. Supersymmetry with soft breaking makes the theory radiatively stable
and natural, provided the sparticles are not much heavier than a few TeV.

"This is a far cry, however, from explaining the origin of the hierarchy, namely the ratio of the magnitudes
of the weak and the unification scales within a supersymmetric grand unified framework.
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Chapter 8

BASIC STRUCTURE OF THE
MSSM

8.1 Brief Review of the Standard Model

We discuss in this chapter the minimal extension of the Standard Model (SM) [8.1] that is
needed to incorporate softly broken N=1 global supersymmetry in the latter. This is called
the Minimal Supersymmetric Standard Model (MSSM) [8.2]. The prefix “minimal” is used
to distinguish from nonminimal extensions which we shall come to in Ch.14. In order to
supersymmetrize the SM, we need (cf. Chs. 1,3) to introduce for every particle a superpart-
ner. The latter differs from the former in spin by half and in mass generally by some positive
amount O(Mj), but with all other internal quantum numbers kept identical. In the SM all
matter fields (pertaining to quarks and leptons) are spin half fermionic fields while gauge
bosons have spin one. The superpartners of the former cannot have spin one. Since they
are supposed to be matter fields, they are not gauge bosons while the only known consistent
relativistic field theories of spin one particles are those of gauge bosons. Thus superpartners
of matter fermions are taken to be spin zero scalars and are described, along with the latter,
by chiral superfields. These scalars are called sfermions and they can be classfied into scalar
leptons or sleptons and scalar quarks or squarks. Similarly, since even at the classical level,
the only consistent interacting field theory of spin 3/2 particles has to include [8.3] gravity,
the superpartner fields of the SM gauge bosons are chosen to have spin 1/2; they are called
gauginos. Gauge bosons and gauginos are described by vector superfields. Gauginos can
be further classified into the strongly interacting gluinos as well as the electroweak zino
(corresponding to the Z boson) and winos (corresponding to the W bosons). Spin zero
Higgs bosons are described, along with their spin half superpartners (called higgsinos), by
chiral superfields. We shall later see that electroweak symmetry breaking mixes the EW
gauginos with the higgsinos making physical charginos and neutralinos.

To begin with, let us set up the notation by briefly summarizing some basic ingredients
of the SM itself. The gauge symmetry group is SU(3)c x SU(2), x U(1)y, with subscripts
C, L,Y referring respectively to color, left chirality and weak hypercharge. All matter (quark
and lepton) fields are fermion fields with left chiral ones transforming as doublets and right
chiral ones as singlets of SU(2);. The hypercharge Y} of each fermion field is related to its
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electromagnetic charge )y and the third component of its left chiral weak isospin T{L by

Y
Qr =Tf, + Ef : (8.1)

The electroweak gauge transformation properties of the left chiral, right chiral fermion fields
fo= %(1 —%)fs fr= %(1 +75) [ are:

fr(z) — e_igYaY(x>Y/2 e—iQQC?Q(I)‘f/QfL(x) , (8.2a)

fa(x) — eTigvay (@)Y /2 oy (8.2b)

where gy, ay(z) and gy, dy(x) are the U(1)y and SU(2) gauge couplings, functions respec-
tively. Moreover, Y is the hypercharge operator and the Pauli matrices 7 act in the weak
isospin doublet representation space.

Fields for the three generations (generation index i = 1,2, 3) of leptons and quarks, along
with the dimension of the corresponding SU(2), representation and the Y quantum number
are listed below.

i, = (”?’) 7i.e.m=(”e> 7521;:(1/“) ,egL:<”T> L (2,-1),
€i L € L H L T L

elp = €p, €ap = g, 3 =Tp @ (1,—2),

Us; . U c t 1
¢, = ! , Le. g1, = < > y Qa1 = < > y Q3. = < > : <27—> ) (8-3>
<di>L d L S/ b I 3

4
Ujg = UR, Usr = CR, U3gr = IR : <1,§ ;

2

dirg = dg, dogp = sg, d3g = bg : <1,—§>-

The color gauge transformations of quark (¢) and lepton (¢) fields are:

—igsa(x)A/2

qrr(r) =€ qrL.r(x), lpr(x) = (L R(T) , (8.4)

with g5, a being the SU(3)c gauge coupling, functions and A* being the Gell-Mann SU(3)
lambda matrices acting in the triplet (3) representation space. The quark fields of (8.4)
transform as color triplets (3) of SU(3)c whereas the lepton fields of (8.3) are color singlets.
The SU(2)y, singlet right chiral fermion fields can be converted into left chiral ones by charge

conjugation. For instance, uy = (u),, is such a field with T} = 0, Y = —3 and transforming

as a color antitriplet (3). Again, e = (e})¢ and so on.

The gauge fields gf, (a = 1,--+,8), Wu and B, transform according to the adjoint represen-
tations of SU(3)¢, SU(2),, and U(1)y respectively. The eight gluons ¢ are always massless
while the three SU(2);, gauge bosons W 23 and the one U(1)y gauge boson B are massless
only in the limit of exact electroweak symmetry. At the weak scale, the SU(2), x U(1)y

electroweak (EW) symmetry gets spontaneously broken to U(1)e,,. The unbroken symmetry
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group at energies lower than the weak scale is thus SU(3)¢ X U(1)en. This spontaneous
ot
¢0
Y = 1 and is signaled by a real nonzero vacuum expectation value (VEV) for this field,
arising from the minimization of the Higgs potential term V' (¢) and given by

<¢>=L <0> (8.5)

While the photon 7 remains massless, the weak bosons W* and Z acquire masses though
the VEV v in (8.5). The latter is related to the masses Myy,z and the couplings goy as well
as to the Fermi constant G by

1 1 1 \Y2
My = — M, =— 2 2 = ~ 246 GeV. 8.6
w = 5920, Mz =354/9v +95 0, v (ﬂGF> e (8.6)

The fields Wj, Z, and A,, which are mass eigenstates, are given respectively in terms of
the fields Wu and B, introduced earlier, as

symmetry breakdown is driven by an SU(2);, doublet of scalar Higgs fields ¢ = < with

1

Wit = ﬂ(Wf TiWy) (8.7a)
92 gy
7= Vi + ggwg V= g%Bu
= — sin Oy B" + cos Oy W1 | (8.7b)
At = cos Oy B* + sin Oy W5 (8.7¢)
with
e = g9 sin By = gy cos Oy . (8.8)

The nonzero VEV, introduced in (8.5), is also responsible in the SM for generating
fermion masses through Yukawa interaction terms characterized by coupling strengths f and
generation indices' i, j. For the latter, we can write:

Ly = —filipdeir — [ Grodir + hoc. (8.9)
in case of “down type” right chiral fermions (e;r,d;r) and

,C%/ = — i%*%TéCUjR + h.c. (810)

for “up type” right chiral fermions u;z. The complex conjugate f* has been chosen here
for convenience in later supersymmetric generalization (cf. 8.33) and i, are summed on

repetition. Furthermore,
. "
d)C’ — ZT2¢* — < B
—0

'We shall not use here the type subspace formalism, introduced in Ch.5, with both superscripts and
subscripts. Thus all generation indices will henceforth be subscripts.
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is the “charge conjugated” Higgs doublet field. Note that leptonic couplings are absent from
(8.10) since there is no vg. The substitution of (8.5) into (8.9) and (8.10) leads to the
fermion mass terms. Suppose, for a set of Dirac fermions v;, we define the mass matrix m,;
by writing the fermion mass term in the Lagrangian density as

£FMT = — (%mijvﬁm + hC) .

Then one can write the charged lepton, down type quark, up type quark mass matrices [8.1]
in generation space as
1 ex 1 dx Ux
(m);; = Al = Me; 03, (Mg)ij = Noik ks (my,);; = 7l
the first being brought into a real diagonal form without loss of generality on account of
the assumed masslessness? of the neutrinos. However, the up type and down type quark
mass matrices do not have this advantage and can be put into real diagonal forms only by
biunitary transformations. Thus if the mass eigenstate left, right u- and d-quark fields are
unitarily transformed to the corresponding flavor eigenstate ones by U%, U%r and U’
U‘r, the quark mass matrices transform as

v, (8.11)

(U“EmuUuR)ij = [ng)]Z] = mul(sw , (812&)
(UdTL l’IldUdR)i]’ = [ng)]Z] = mdiéij . (812b)

In (8.12) m.” and mElD) are the physical real diagonal mass matrices for up and down type

quarks respectively.

Baryon number B and lepton type numbers L., . (and hence lepton number L = L, +
L, + L) are conserved in the SM. These ‘accidental’ global symmetries are a consequence
of the particle content and the gauge group. As will be discussed in more detail later,
the situation is quite different for the MSSM. The latter can accommodate several types
of renormalizable interactions which violate some or all of these symmetries. For the time
being, let us nonetheless restrict ourselves to a version of the MSSM where these symmetries
are conserved by the assumption of R-parity invariance (cf. §4.5).

8.2 Superfields of the MSSM

We now proceed to introduce a chiral superfield for every chiral fermion of the SM. Apart
from these chiral fermions and auxiliary fields, such superfields will contain new scalar fields.
For the first generation, these scalar fields can be enumerated as

u

(= (éﬁ) , 1R = €R, i = <J> , g = fig, dip =dg . (8.13)
L L

2An important example of a term that violates the lepton number symmetry is a Majorana neutrino
mass. Since neutrino masses can be introduced without significantly altering the specific supersymmetric
aspects of particle phenomenology, we postpone a detailed discussion of this point to Ch.14.
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Here (1 are called left sleptons (more specifically, left selectron and sneutrino) while ép is
called the right selectron. Let us denote by L; (Q1) and E; (U, D;) the left chiral lepton
(quark) doublet and antilepton (antiquark) singlet chiral superfields respectively. Thus, for
the first generation of leptons and sleptons, we can take the superfields

I = <LL> By (8.14)

Contained in these are the fields ¢, (11, e, £ = €% and &, ;5 = & corresponding® respectively
to Yo, oy, ¥.p ¢ and ¢._ in the notation of Ch.5. There is no singlet neutrino superfield
since the SM does not contain any left chiral antineutrino. Similarly, the first quark (and
squark) generation is represented by the superfields

Q1= <gz> ; Uy, Dy . (8.15)

; ~ c _ , C C _ JC ~ x _ ~* 7% _ J*

corresponding to g1z, Gqies Vyss s Yap » Gu— and ¢q_ respectively.

The above procedure can be repeated for the second and third generations. Thus we
denote matter superfields corresponding to these generations by L;, E;, Q;, U; and D; with
1 =2,3. So we have

L — Q _

Lo=1{ "), E, = “), Uy Dy, 8.16

(), e (2, o2

. . = C _ C ~ %~ % o C _ C

respectively containing the fields lor, lor, e9r” = pg’, €35 = g, Gorn, Qor, Ugg = Cg,

oy =5, dof = 5,5, dypy = 5. Furthermore, there are

_ (L) g _ (@) 7 7

L3 - ( LT > ) E?n QS - (Qb) aU3aD3 ) (817)

respectively containing the fields (3, lsg, e = T, Eap = T4y @sp, Garn, usS = t,€,

~ ok % C_pC J *_7*
Uzp =t dyg = by s d3g = bg.

Supersymmetry, by itself, does not provide any clear answer to the generation or family
problem and, in the MSSM, one simply replicates the superfields thrice for the three genera-
tions. Within each family, however, the counting of fermionic and bosonic degrees of freedom
must match for every supermultiplet, as described by a chiral superfield. Corresponding to
a massive Dirac fermion field, f, say, with four on-shell degrees of freedom (two spin states
for the particle and two for the antiparticle, as embodied in the complex chiral fields f,,
and f,r), there are two corresponding complex scalar fields fur and fug. BEach of the lat-
ter, together with its complex conjugate, stands for particle and antiparticle fields; thus the
components match. Note further that f,, and f,r have different SU(2);, x U(1)y quantum
numbers just as f,r and f,g do. Another point needs to be emphasized here. Since the
superpotential YV can contain only left chiral superfields, one is obliged to use the left chiral

3Cf. §5.6, except that we have dropped the +, — subscripts and used overbars for singlets.
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charge conjugates of the SU(2)y, singlet right chiral fermion fields, i.e. f, = (f¢) etc., and
the complex conjugates of their superpartner right sfermion fields, i.e. f;R etc. These are
contained in left chiral superfields with quantum numbers of the conjugate representations.
Finally, all matter superfields are taken to have odd matter parity (cf. §4.5).

In the gauge sector we introduce one vector superfield corresponding to each gauge field
in the gauge group SU(3)c x SU(2)p x U(1)y. Thus we have the U(1)y, SU(2)r, SU(3)¢
gauge fields B, Wu, g,, and the corresponding spin half (four component) Majorana gaugino

fields Ao, X, g® contained in the superfields
Y W a
Vv v (8.18)

respectively. Every gaugino field, like its gauge boson partner, transforms as the adjoint
representation of the corresponding gauge group. Moreover, each such field has left chiral
and right chiral components which are charge conjugates of each other:

(Mor) = Aok - (8.19)

Next, we turn to the supersymmetrization of the Higgs sector of the SM. The latter has
only one SU(2);, doublet field ¢ with a hypercharge Y, = 1. As discussed earlier, the same
Higgs VEV v can be used to give masses to the T3, = 1/2 and T3;, = —1/2 fermions via the
Yukawa interaction terms of (8.9) and (8.10). In particular, (8.10) has been made possible
only by use of the conjugate Higgs field ¢© which has Yy = —1. Such a term, however,
will not be allowed in a supersymmetric theory. There the Yukawa interactions are derived
from the superpotential YW which has to be an analytic function of left chiral superfields (see
§5.1). Hence interaction terms, derived from the same superpotential, cannot contain both
¢ and ¢. Therefore, in order to make the T3, = —1/2 fermions massive, a second Higgs
doublet is needed. We must then have — in a supersymmetric theory — two Higgs doublets
with hypercharges Y = —1 and 1 which we shall denote by h; (down type) and hs (up type)
respectively. If the superscript D is an SU(2) doublet index taking values 1,2, we can write
for D =1, hl = hY and hi = hJ while, for D = 2, we can write h? = hi, h3 = hY:

S W T W N 4
= (M) = (1) = () = (%) 520

Their Yukawa interactions can be written down simply by replacing ¢ and ¢¢ by —imyh* and
iToh% respectively in (8.9) and (8.10). The Higgs VEVs, after the spontaneous breakdown of
electroweak symmetry, are now given by real, positive quantities (cf. §10.2) vy o which arise
from the minimization of the Higgs potential term V'(hq, hy) and are shown below:

(hy) = % (%1> ) = % (f) | (8.21)

It is well known [8.4] that this two Higgs doublet extension of the SM, with the up and down
type fermions coupling to separate Higgs doublets, is perfectly compatible with all FCNC
constraints* since it obeys the Glashow-Weinberg/Paschos condition [8.1]. The only change

4This is true even including one loop corrections.
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is that (8.6) and (8.11) are now respectively modified to

1 1 I
My = Sga\ [} 03, Mz = S\Ja} + g3y Jol + 08, \Jur+ 03 = ( 5e ) ~ 246 GeV
(8.22)
and
1 ex 1 dx 1 Ux
(m)i; = me,dij = Sl (myg);; = Jalu (m,)ij = Vo (8.23a)
ex 92 dx 92 ux 92
ex _ )y, [ = P gy, [ = (my),; . (823D
ij \/§MWCOSB( )J J ﬂMWCOSﬁ( d)y J ﬂMWSinB( )J ( )
The relations in (8.23b) have been obtained by inverting those in (8.23a). The ratio
%2 _ tang (8.24)
U1

becomes a free parameter of the theory in so far as fermion masses are concerned.
The left chiral fermionic partners of the Higgs bosons of (8.20) are given by

P (M (MY g (Y (s
hlL:(iL%>_<iL1_ L, hQL: B% = Bg L. (825)

In (8.25) we have defined higgsino fields h9;, hy;, hi; and h9;, which are two component
spinorial fields in the (1,0) representation (cf. §3.2) and identified with A}, h?, s and h3
respectively. Generalizing, we can denote the left chiral superfields containing hq, hip and
ho, hoy, by Hy, Ho respectively. So we have

_(H _(H,

as the down type, up type Higgs superfields with Y = —1, 1 respectively. They are assigned
even matter parity since they are perceived to be quantalike (cf. Table 4.1). Note that, for
quarks and leptons, the need to have a massive Dirac fermion makes it necessary for us to
introduce SU(2), doublet and singlet chiral superfields. This is unnecessary in the case of the
Higgs superfields since h%; and (h3;)C can combine to form a four component spinorial field
and ditto hy, and (h;)C. There is therefore only one four component neutral higgsino field
and similarly only one four component charged higgsino field®. The two Higgs superfields
of (8.26) are thus sufficient. These, together with those in (8.14) — (8.18), comprise all the
superfields of MSSM. They are all listed in Tables 8.1a and 8.1b.

5This is true with unbroken electroweak symmetry. The broken symmetric case is more complicated and
will be discussed later.
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LEFT CHIRAL MATTER SUPERFIELDS
Lepton doublets | (color multiplet, T57,Y) | Quark doublets | (color multiplet, T57,Y)

Li = <Lve> (1’%’_1) Q= (Qu) (3’%’%

Le (1,—%,—1) Qu (3,_%

W=
N———

/N
w
DO[—
Wl

NG
N———

/N
w
|
D=

&~
w
Il
7 N
~
N
5
S~
‘.r—‘
D=
|
—_
—
O
w
Il
7N
OO
[STEECN
S~
o
—~
w
D=
ol L=

N——

w
|
D=

Antilepton singlets | (color multiplet, T57,,Y") | Antiquark singlets | (color multiplet, T57,,Y)

E, (1,0,2) Ul’ D, (3’0’ _%> ’ (3’0’ %)
B, (1,0,2) Us, D (3.0.-3).(3.0.3)
3 (1.0.2) U, Dy (3.0.-3).(3.0.3)

Table 8.1a. Matter superfield content of the MSSM.

GAUGE SUPERFIELDS | LEFT CHIRAL HIGGS SUPERFIELDS

Notation Name Doublets Name Y
HO
VY Hypercharge | Hy = <H1_> Down type -1
1
vw Weak isospin
H
vy Color Hy = < HY > Up type 1

Table 8.1b. Gauge and Higgs Superfield content of the MSSM.

A question can be raised at this point as to whether one could have been more economical
with the contents of superfields in the MSSM. The requirement that all the component fields
in each superfield must carry the same internal quantum numbers would quickly convince
anyone that the above is necessarily the minimum set. The components of H; and L;, for
instance, have the same electromagnetic charges, but they differ in lepton number (including
lepton type) and matter parity. We have already given the raison d’étre for the existence of
two Higgs superfield doublets with Y = —1 and Y = 1, namely the generation of masses for
both T3, = —1/2 and T3 = 1/2 fermions respectively. In fact, even in the supersymmetric
extension of a matterless SM (with only gauge and Higgs fields), the two Higgs doublet
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superfields H; and H, are necessary for self-consistency. The condition of anomaly cancel-
lation [8.5] in the higgsino sector, a requirement of renormalizability, demands in particular
that E;LY; = 0 where Yj is the hypercharge of each higgsino field h. Thus one doublet hs

with Y; = 1 has to be compensated by another hy doublet with Y; = —1. (Gauginos,
which are another set of new fermions in the supersymmetric theory, are in the safe adjoint
representations and do not cause anomaly problems.) We see finally that all the superfields,
introduced above and tabulated in Tables 8.1a,b are indeed necessary for the minimal ex-
tension of the SM keeping intact its local symmetries, such as electromagnetic charge and
color, as well as its global symmetries through the conservation of baryon (B) and lepton
(L) number (including lepton type). As stated earlier, the exact conservation of R-parity is
an assumed additional requirement. Within the MSSM the assumption of B and L (includ-
ing lepton type L;) conservation® is equivalent to that of R-parity conservation’. But, for
superpotential terms and supersymmetry breaking operators in the Lagrangian density, this
is a highly constraining requirement.

Of course, states corresponding to all component fields of the superfields, described above,
are only ‘interaction’ eigenstates. In the real world, the absence of mass degenerate particle-
sparticle pairs requires supersymmetry to be broken. We shall discuss in the next chapter
why such a breaking cannot be spontaneous within the framework of the MSSM itself. Suffice
it to say here that it has to be explicit and soft (cf. §7.7). This breaking of supersymmetry in
the MSSM can be parametrized in terms of a few explicit soft terms added to the Lagrangian
density. We choose the most general terms of this kind. But they are first introduced in
an ad hoc manner, though some rationale for them will be given in Chs.12 and 13 on the
basis of high scale physics. The contents of these terms will be discussed in detail in Ch.9.
Let us remark, for the moment, that they can induce mixing between different sparticles
with the same charge and color. Indeed, even without supersymmetry breaking, electroweak
symmetry breaking alone causes mixings between gauginos and higgsinos (cf. 5.30). Thus,
for instance, charged gauginos mix with charged higgsinos through a 2 x 2 mixing matrix.
The two physical mass eigenstates from that are called charginos )21%2, the subscript 1 (2)
conventionally referring to the lighter (heavier) sparticle. A more elaborate discussion will
appear in §9.2.

We can immediately see yet another need for two Higgs doublets in this theory. The two
doublet superfields Hy, H, are left chiral ones and they contain the left chiral higgsinos of
(8.25); the conjugate superfields HI,H; contain the corresponding right chiral ones. The
left chiral charginos comprise four orthogonal states: the positively charged Y|, Y3, and the
negatively charged \i;, X57- Let us define charged gaugino (wino) fields

- 1 /- S
3= = (/\1 =S Mg) =3E 40 (8.27)
where the superscripts 1,2 are Cartesian SU(2), indices. The massive \i; and 3, are
orthogonal linear combinations of A} and hj; while \;; and Y;; are formed by similarly

6Strictly speaking, even B and L (also L;) are violated at the loop level through anomalies both in the SM
and the MSSM, only %B — L; is exactly conserved. But these violations are very tiny in a zero temperature
field theory.

"This equivalence is not necessarily valid in extensions of the MSSM. Of course, supersymmetric Grand
Unified Theories usually violate B and L but may respect R-parity.
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combining 5\’ and le’L (N B. there is no E;L or leL ) Correspondingly, the right chiral
charginos Y, p, Xop and X{r, \op are orthogonal linear combinations of the charge conju-
gates of the above pairs of gauginos and higgsinos, viz. Py R h2 r and pea B h1 r respectively.
Evidently, we require both h 57, and hlL, as appear in the two Higgs doublets, otherwise some
chargino field, lacking a partner to make a Dirac mass term in the Lagrangian density, would
remain massless. Thus we see how the two higgsino doublet fields in the MSSM are used, in
combination with the charged winos, to generate two massive Dirac charginos.

Similarly, there is mixing among the neutral gauginos, which can be described by four
component Majorana fields. There are two, namely Xo and A3, which mix with the neutral
higgsinos 7Y and A? through a 4 x 4 mixing matrix. In this case the four physical mass
eigenstate Majorana fermions are called neutralinos Y9 (i = 1,---,4), the subscripts being
monotonically ordered in the direction of increasing mass, by convention. Once again, a de-
tailed description of the mixing among charge neutral gauginos and higgsinos, forming mass
eigenstate neutralinos, will be given in §9.2. In fact, similar mixings can occur among dif-
ferent squark generations or among different slepton generations (if lepton type number gets
violated) as well. Also, one can (and does) have left right sfermion mixing. Not much more
can be said a priori about mixing between different interaction eigenstates in the sparticle
sector. These depend on the detailed structure of the supersymmetry breaking terms and
their relationship with EW symmetry breaking. Such details about sparticle mass eigen-
states will be taken up in the next chapter after we have discussed the soft supersymmetry
breaking terms at length.

An enumeration has been given below (Table 8.2) of sparticle fields in the minimal globally
supersymmetric extension of the SM which follows from the construction described earlier.

Sfermions Gauginos and higgsinos
Name Symbol | Name Symbol
(left, right) selectron | ér r | gluinos g°
(left, right) smuon LR
(left, right) stau 7r,r | lighter charginos N
e-sneutrino Ve
[-sneutrino vy, heavier charginos f(;c
T-sneutrino Ur
(left, right) u-squark | ar p | lightest neutralino %!
(left, right) d-squark | dj, r
(left, right) c-squark CL,R next-to-lightest neutralino VO
(left, right) s-squark SL.R
(left, right) stop tr.r | next-to-heaviest neutralino e
(left, right) sbottom b r | heaviest neutralino W

Table 8.2. List of sparticle fields in the MSSM. Antisfermion fields have not been listed.

Sfermions of the third generation are likely to have strong L-R mixing; the mass eigenstate
sfermion fields are denoted as 7y o, t1 2 and by ». Antisfermionic fields are denoted by conjuga-
tions of sfermionic fields, e.g. €7 p from ér, z and (jLR from ¢r r. However, this is a notation
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that we shall use for fields only, while an antisfermionic particle — the superpartner of an an-

tifermion — will be labeled f, i.e. &, for the right spositron and @y, for the right u-antisquark.
Additional particles and sparticles may be needed by theoretical schemes which go beyond
this minimal extension. For instance, the gravitino G, which is needed in a spontaneously
broken N=1 supergravity (SUGRA) theory, has not been included here.

8.3 Supersymmetric Part of the MSSM

In this section we will introduce and discuss those interaction and mass terms in the La-
grangian density Lyssy which come from the exact supersymmetrization of the SM. Soft
interaction terms with mass dimensions less than four as well as mass terms, which describe
the heavier masses of sparticles as different from those of their particle partners, arise from
supersymmetry breaking and will be addressed in a later section. The general form of the
Lagrangian density is

Lyissm = Lsusy + LsorT (8.28)

and in this section we will give explicit expressions for Lsysy only. In order to write down
the supersymmetric interactions among the dynamical fields enumerated in §8.1, we will
essentially use the forms of the Lagrangian densities of SQED, SQCD and SyGT of Chapter
5, but covering three families of quarks and leptons. The only really new addition is the
contribution from the Higgs sector. The gauge couplings are the same as in the SM. There
is no need to give the explicit gauge transformations of the matter superfields enumerated
in §8.1. These can be obtained by a straightforward extension of (5.15) and (5.38). But we
can decompose the supersymmetric part of the MSSM Lagrangian density as follows:

Lsusy = Lg+ Ly + Ly, (8.29)

where L,, Ly and Ly are the pure gauge, matter and Higgs-Yukawa parts respectively.

The pure gauge part of Lsusy can be written, in terms of field strength spinorial
superfields W, Wy, and Wy, constructed respectively via (4.39) and (5.45) from V', Viy
and VY according to (5.17) and (5.54):

1 N S
£,=7 / 220 (W;AW_;A W Wa + W;;‘WYA) the. | (8.30)

where the color index a has been summed on repetition. Similarly, the matter contribution
can be given by the generalization of (5.62) as

L :/d49

_|_DT e(gnga;\a + gYVYY)Di + QT e(gsv;;a)\a + QZVW'F + gYVYY> Q. (831)

Llf e(gng.F—F gYVYY)Li 4 EZT ngVYYE‘vi + UiT 6(96‘/;‘5\’1 + gYVYY)Ui

In (8.31) the Pauli matrices 7 act in the weak isospin doublet representation space while
the Gell-Mann matrices A\* (and their complex conjugates A\%) act in the color triplet 3 (and
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antitriplet 3) representation spaces. The subscript i is a family index, summed over 1,2, 3
on repetition. Finally, the Higgs contribution can be written as

2 5 . v )
‘cH — Z / d49 |:H; e(g2VW'T + gYV Y) Hp + WMSSM(S(Q) (9) + WK/ISSM(S(Q) (9) , (832)
p=1

where the superpotential Wyssu is given by
Wassm = p - Hy — ffjHl'LiEj - g‘Hl'QiDj - ;;‘Qi'HZUj . (8.33)

(We use the notation A-B = epp A” B” for two SU(2)-doublet superfields or fields A, B with
D, E being indices in the doublet representation space with the same superscript/subscript
conventions as for two component spinors in Ch.3). The signs in (8.33) have been chosen
so that the f;;’s here are the same as of those in (8.9) and (8.10), as can be checked by
use of (5.3) and (3.28a,b). The second, third and fourth terms in the RHS of (8.33) are
just the supersymmetric generalizations of the Yukawa couplings in (8.9) and (8.10). Only
the first RHS term of (8.33) is new. This term, containing the parameter p, which has
the dimension of mass, can be thought of as a supersymmetric generalization of a higgsino
mass term. We shall later see that a consistent incorporation of spontaneous electroweak
symmetry breakdown requires y to be of the order of the weak scale. The choice of terms in
Whissum has been constrained by the requirement of R-parity (R,) conservation (cf. §4.5)
which is one of the assumptions of the MSSM. Let us remark here that, since baryon number
B and lepton number L are conserved in the SM Lagrangian, the conservation of R, may be
posited as a natural assumption in a minimal supersymmetric extension of the SM which may
be expected to preserve the conservation laws of the latter. Additional terms, that are gauge
invariant with respect to SM gauge transformations, could be admitted to the RHS of (8.33)
if R-parity were violated explicitly. We postpone a discussion of this possibility to Ch.14.
For the moment, we take the conservation of R-parity to be a central assumption
of the MSSM. The terms in Lyssy, that are generated from Wysswu, are obtained from
a generalization of (5.5) with the Higgs VEVs from (8.21) taken into account to properly
incorporate spontaneous electroweak symmetry breaking.

Let us concentrate first on the auxiliary F' and D fields following from (8.31)-(8.33). By
use of (5.56¢), we can identify seventeen (including i = 1,2,3) F fields from (8.33). For
the SU(2) doublet representation space, we can employ the two spinor subscript /superscript
notation of Ch.3, i.e. Hip = eppHY and F}? = —9W/OH,p| etc. This enables us to write

Fi) = —phy + iejé;RgiDL + fiL;J}quDL ; (8.34a)
FD = ph? — frilpdl | (8.34b)
FiP = —f5h7&g (8.34¢)
Fp = fjez'hl'gjL ; (8.34d)
Fon = —f5h0dpo + f5h 5,

* _ d ~
F5., = fiihGjra
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F[i,a = f%qua'hQ- (834g)

In (8.34e-g) the subscript a is the floating color index, whereas in (8.34a,b) appropriate
color contractions are implied. Now the three D fields, corresponding to the three factors
U(1)y,SU(2), and SU(3)¢c of the gauge group and ignoring a possible field independent
term in Dy, cf. (5.22b), are given respectively from (5.56¢) by

1 1, 2.
DY =——gy (h£h2 - h]{hl + _QZLQiL - —UiRUl-LR + —diRdl'LR
2 3 3 3
— 0l 0 + 2éiRé:R) , (8.35a)
, |
b =g (hfrhl + hi7hs + il 7o + zlLTezL) (8.35b)
1 (L a
De = 5 (qu)\ QZL—FUR)\ R+d )\d*>
1 .
= =590 (@ N"Gis + W\ isn + dlpA"din) (8.350)

Here a is a color index and we have utilized the hermiticity of \* in the last step. It may be
noted that, in both (8.35a) and (8.35¢), 4,7, d, 7 and é,* are the equivalents of ¢ in (5.56¢).
Finally, the supersymmetric scalar potential is given (cf. 5.56b) by

17~
Vsusy = FiFi + 5 D?>+ (DY)’ + D"D"| . (8.36)

k referring to the type of superfield (including any internal symmetry index) and repeated
k and a being summed.

The interaction part can be written down in terms of component fields in four component
notation in much the same way as shown in Ch.5. The major difference now is that we want
to incorporate the spontaneous electroweak symmetry breakdown SU(2), xU(1)y — U(1)em
and obtain the consequent mass terms and mass eigenstates, i.e. equivalents of (8.5) to (8.10).
Let us consider non-Higgs vertices for the moment. We postpone all discussions of inter-
actions involving Higgs bosons to Ch.10; in particular, these include Yukawa, Higgs-gauge
and Higgs-Higgs interactions and some of their supersymmetric generalizations. Further-
more, those vertices with physical sparticles, which involve supersymmetry breaking, will be
treated in Ch.9. In the next section of this chapter we consider (A) fermion-fermion-gauge
boson, (B) triple gauge boson, and (C) quadruple gauge boson vertices in the Standard
Model. We also discuss from the MSSM those (D) sfermion-sfermion-gauge boson, (E)
gauge boson-gaugino-gaugino, (F) fermion-sfermion-gaugino, (G) gauge boson-gauge boson-
sfermion-sfermion and (H) sfermion quartic vertices which have to do with only the purely
supersymmetric part of Lysgy and without left right mixing. Some subsets of these as well
as other non-Higgs vertices crucially involve supersymmetry breaking and both generation
as well as left right mixing in a physical situation. Those will be covered in Ch.9, which will
contain the corresponding final physical vertices with the said mixings.
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8.4 Some Non-Higgs Vertices of the MSSM

First, we recount the non-Higgs SM vertices in (A), (B) and (C). Subsections (D), (E), (F)
and (G) contain the new supersymmetric extensions.

(A) Fermion-fermion-gauge boson vertices
We can discuss the strong and electroweak vertices separately.

(i)

Quark-quark-gluon vertices

These are the same as in QCD, vide §5.5. The only additional remark is that all six
flavors of quarks (p = u,d, ¢, s,t,b) have to be included with all interactions being
diagonal in flavour space. Thus, with p henceforth summed on repetition, we have

Logg = _ngZQpTa’V“QP ‘

This form is valid in any basis for the quarks that can be reached from the current
basis by a unitary rotation in generation space. Thus flavor mixings of quark mass
eigenstates are inconsequential here.

Fermion-fermion-electroweak vector boson vertices

These follow exactly those given in §5.6. The only differences arise on account of y— 7
mixing, cf. (8.7) and (8.8). Furthermore, one has to replicate for three generations.
We can now employ the notation of (5.65), understanding f,, 4, to be either a quark or
a lepton of generation i with fuiL = Pquiv fuiR = PRfuw fdiL = PLfdw fdiR = PRfdi
and Ppp = %(1 F ;). Then, with f, f" and v respectively chosen as two fermions and
one EW vector boson generically, we can write

g — =
Ly = —725(1/1/; fuV"Prfa; + W far"Prfu,)
—e Ay (Qp Pt Fus + Qpufar fa) — —2— 27, -
12 wJ U Uj dJ 7 2COS€W 12

Fut" {(1 = 2Qy, sin® 6w ) P, — 2Qy, sin® 6w Pr} fu,

— fa " { (1 +2Qy, sin® 0w ) P, + 2Qy, sin”® O Pr} fu |- (8.37)

In (8.37) @y, and Qy, are the electromagnetic charges of the up type and down type
fermions f,, and f; respectively in units of the charge of the positron. Thus Q,, = %,
Q4 = —3, Qe = —1, Q,, = 0. Referring back to (8.3) and comparing with (5.65), we
note that for quarks, we can write

¢ir, = <§ZIL> y Uir = f’lMR? diR = fdiR . (838>
iL
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Similarly, for leptons, the notation is

Ui, = (?”) y €ir = fan - (8.39)
d;r,

However, the above quarks are gauge interaction or “current” basis eigenstates. When
we go to physical mass eigenstates, we will need to incorporate the Cabibbo-Kobayashi-

Maskawa (CKM) matrix for charged current couplings in the quark sector. This part
can be written as

_ 9

V2

where the u;, d; etc. are now understood to be mass eigenstate quark fields. In (8.40),

Vit are the elements of the CKM matrix [8.1] V¥ = UL U in the notation of (8.12).
Electromagnetic and neutral current vertices, of course, do not involve these on account
of the GIM mechanism [8.1]. Finally, the vertices and Feynman rules for i, can be
written as in Fig. 8.1 below.

(Wiu"PLV;"d; +h.c.) (8.40)

Logw+ =

_ 92
W=W L f=diof' =ui =2 PV

W W fmuy, f=d, —92 - pyv
) K 7 \/ivuLU

)
W=W+f=vj,f'=e —-2~,Pd;

V2

1
W:W_,f:ej,f’:ui 192 'VuPL(Sij

V2

f

Y U —ieQrv,
f

192 . .
f ~os o TgfL (1—4T3fLQf sin® QW)'yMPL—4T3fLQf sin’ OwyuPr
u .

z =2 (P — gl P

f COSQW(gL’m L —9RVu R)

Fig. 8.1. Fermion-fermion-electroweak vector boson vertices with T3f ., @ asin (8.1).

Note that in the lowermost vertex g/ stands for T3, (1 — 4T, Qsin? 0y) and g, for
A(TL)?Qy sin? By
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(B) Triple gauge boson vertices

Again, the strong and electroweak cases can be distinguished.

(i) Triple gluon vertex
This is exactly the same as in QCD, vide (5.60) and Fig. 5.2.

(ii) Triple electroweak vector boson vertices
These are generalized from the WHW =3 vertex of SYGT in §5.6, as shown in Fig.

R.2.
VW
g p+q+r=0
r 0 p X = y ie [(’f’ — p),ﬂ}pu + (p - Q)pn;u/ + (q - r)unup]
) .
W+ X =7 igacosOw [(r —p)ulpp + (0 — @) pfpw + (@ — 1) u0p)
m

Fig. 8.2. Triple electroweak vector boson vertices

(C) Quadruple gauge boson vertices

Once more, we can consider the strong and electroweak vertices in different categories.

(i) Quadruple gluon vertex
This is identical to that in QCD, vide §5.5 and Fig. 5.2.

(ii) Quadruple electroweak vector boson vertices
The WHW-WHW ™ vertex is identical to that given in Fig. 5.3. The WTW - W?3W?
vertex, shown there, generalizes to three cases here, as given in Fig. 8.3.

2 (0) .
VW X X = s Y = Y —ie? [277uv77p0 — NupNve — nupnlw]
X =7Y =2 —2ieg;cos Ow [20uNps — Nuplvo — NpTo]

X:Z,Y:Z —igZCOSZQW[QT]UT]O—_n 777/0'_77V770']
u W+ X p 2 nvtp np Pk

Fig. 8.3. Quadruple electroweak vector boson vertices

(D) Sfermion-sfermion-gauge boson vertices

We shall work in the fi-fr basis, deferring a discussion of left right sfermion mixing to
Ch.9. Again, we can consider two cases, pertaining to strong and electroweak interactions.

(i) Squark-squark-gluon vertices
These are the same as the SQCD (vide §5.5) except for the generalization to six diagonal
flavors (index p summed on repetition). Then, in the notation of §5.5, we can write

L g3 = —2igs AL @, 710"y
where the operator [0*] is as defined in (4.28). Each vertex is precisely the same as

that in Fig. 5.2 with ¢ generalized to ¢,. As with quarks, neither flavor nor left right
mixing in squark mass eigenstates will matter here.
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(ii) Sfermion-sfermion-electroweak vector boson vertices
Once more, we generalize from the corresponding interactions of SYGT in §5.6 and
write (with v = W, 7,y and Qy, , as electric charge of f,4 in units of the positron
charge) the terms containing an electroweak vector boson as follows:

Cipy = —iV20 { Wi 0" + Wy Fi, 10 s }

~ie Ay {ag, (Fay [0 fuse + Fion@1Fucr ) + a0 (Fi [0V e + F5010") ) }

192 ; : . , . _
- CcoS 9W Z'u“{f;zL (1 - 2qu Sln2 QW) [8ﬂ]fulL - 2qu Sln2 QWfZ;R [8M]fu23

_f;iL (1 + 2Qfd sin? QW) [au]fdiL - 2Qfd sin” GWfZl(iR [8“]fdi3 }’ (8.41)

with the repeated generation index ¢ summed. As done for quarks and leptons, the

expressions .
q~iL = <f}hL > s aiR = fumv CZZ'R = fdiR (842>
fdiL
can be written for squark fields and
0. — iUiL 5 — f
EZL — y €iR = fdiR (843>
fdiL

for slepton ones. For charged current couplings of mass eigenstate squarks, we can, in
analogy with (8.40), use left chiral flavor rotation matrix elements V%" in generation
space. Here we have used a symbol different® from that of the CKM matrix V% to
take account of the general situation with supersymmetry breaking which may make
Vit + Vi Again, in the coupling of the charged W to two sleptons of different flavor
too, to account for different generation dependent masses for charged sleptons and
sneutrinos, we put in the left chiral flavor rotation matrix element Vl? in generation
space, though such a matrix element is absent in the leptonic sector. Thus we have

Liaw = —iV2gs {WjﬂjLVigL [0M]d; 1, + h.c.} , (8.44a)

Loy = —V20 { W75V 0" + he | (8.44D)

Lis, = —2ieAuQp (F310") fin + Fialo¥) i) (8.44c)

Lo = =192 g {2Tf (1 41! Q:sin? ew) Fo [0 o — 25i0 0 Q 1 [8’"‘]153}.
fiz cos Oy L0 IA i ilir

(8.44d)

80f course, in the limit of exact supersymmetry, VI equals V= of (8.40) and Ve becomes the unit
matrix.
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Here ﬁ(L,R) covers Uiz, R), cii(L,R), €,y and U;p. Eq. (8.44) describes the sfermion-
sfermion-EW vector boson couplings with the left chiral or right chiral squark and
slepton fields understood as mass eigenstates in the limit of no left right sfermionic
mixing. The latter, to be treated in Ch.9, will generate additional complications in
these equations except for the photon vertex. We defer an enumeration of the final
physical vertices and Feynman rules in this case till that discussion.

(E) Gauge boson-gaugino-gaugino vertices

Here also strong and electroweak vertices are distinctly separate.

(1)

(2)

Gluon-gluino-gluino vertices
These are identical to those in SQCD, as discussed in §5.5 (vide Fig. 5.2).
EW gauge boson-neutralino/chargino-neutralino/chargino vertices

Even in the supersymmetric limit, these will not be similar to those of SYGT, Fig. 5.3.
This is because mass eigenstate charginos and neutralinos will involve combinations
of gauginos and higgsinos on account of the breakdown of EW symmetry. Moreover,
in reality, supersymmetry breaking has a significant influence. We shall discuss those
aspects in detail in Ch.9, and give the final physical vertices there.

(F) Fermion-sfermion-gaugino vertices

(1)

Quark-squark-gluino vertex

In the supersymmetric approximation of neglecting the differences between squark
flavor rotations and quark flavor rotations from eigenstates of mass to those of gauge
interactions, these vertices will be the same as in SQCD (§5.5, Fig. 5.2). In reality,
however, these differences need to be recognized. In a broken supersymmetric world
the two flavor rotation matrices will be different. We have already introduced the
matrices Ut:% and U in (8.12) for quarks. Let us define analogous flavor rotation
matrices U%% and UL for u- and d-squarks respectively. These take mass diagonal
squarks to flavor eigenstate ones. If we define u, d as three component column vectors
in color space, then the relevant terms in (5.60) can be generalized to
Lz = —V2g, {ﬂiPRTaﬁa (UUEU{LL) g — il (U%UUR> 3 gaTaPRUj:|
ij ij
—V2g, {diPRTan (UdEUdL) dp—dl, (Ud%UdR) .4§GT“PRdj]+h.C., (8.45)
1 )
i, j being generation indices. The interaction L5 is obviously the hermitian conjugate
of (8.45). These forms are valid in the absence of left-right mizing for squarks. The
corresponding physical vertices will be given Ch.9 after accounting for the latter.
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(2) Fermion-sfermion-neutralino/chargino vertices

Once again, we postpone a treatment of these to Ch.9 because of their essential de-
pendence on supersymmetry breaking via both flavor rotations and gaugino higgsino
mixings.

(G) Gauge boson-gauge boson-sfermion-sfermion vertices

These will be given in three categories since there are mixed strong and electroweak
vertices apart from purely strong and purely electroweak ones.

(i) Gluon-gluon-squark-squark vertex
Since the two squarks at this four point vertex have the same flavor, the corresponding
flavor rotations cancel out. Thus this vertex is exactly the same as in SQCD (§5.5,
Fig. 5.2) with a trivial flavor generalization ¢ — §;.

(ii) Electroweak vector boson-electroweak vector boson-sfermion-sfermion ver-
tices
These are present in SYGT and can, therefore, be read off from (5.64) with f general-
ized to cover three generations of sleptons and squarks. The neutral gauge bosons W?
and B get, transformed to Z and A via (8.7b,c). As before, we work in the f;-fx basis,
neglecting left right sfermion mixing for the moment. The corresponding interaction
terms in the Lagrangian density can be written as

Lt =
§W:W” <fzszulL + fchfdiL)

g2 g2 sin’ O

2 (pa 270 W
+\/§<e . cos Oy

+ A, L Q3 (Fiy Fuw + Fipfuin) + Q3 (Fiy Fa + Finfin) }

ZM) YfL (f;iLfdiLWqu + fchfuiLWu_>

2
g ; . 2 =~ ) L
+ 4(1083 Ov ZuZ“{f;L (1 - 2qu sin” QW) fuiL + 4@?% Sln4 ve:inuiR

ok . 2 7 . i 7
+ fdiL (1 + 2Qfd S1n2 9W> fdiL + 4@% Sln4 QWfdindiR}

ga€ « . < ' s
- 00329W AuZ" [Qf“ {fuu (1—2Qy, sin® Ow) fu,, —2Qy, sin? HquinuiR}

— Qp { Fi, (14 2Qp, 5% Ow) fu, +2Qg, sin® O fi fun | |.
(8.46)

A summation over the generation index i is understood. The relations between f, , .,

fdiL, » and the corresponding squark/slepton flavor eigenstate fields are given in (8.42-
3). Elements of the CKM type matrix V% arising out of flavor rotations between



180 CHAPTER 8. BASIC STRUCTURE OF THE MSSM

sfermionic mass and flavor eigenstate fields (cf. 8.44), enter the }_Ff"yW and }_Ff’ZW

interactions but not the® ffvvy, ffZZ and ffyZ ones. All these can be rewritten in
terms of mass eigenstate sfermion fields. They then read

‘Cfid’vW = ;L\/ei M( ~1 VQLd LW’” +dT VqLujqu > (8.47&)
2 2
g5 sin” Oy R S gl )
Cogmw = —L220 W 7 (Gl vird, we' +df, Visa, we ), (8.47b
q zw 3\/§COS9W u( JL JL ( )
g2€ ~ _
ﬁzg,,yw = —%A < VZLe]LW“++ezLV v, WH >, (8.47¢)
g2 sin? Oy - .
Fiiaw = ﬂTsGVVZ i Vi e W "‘ezLV ’/JLW ; (8.47d)
Lipy = 62’4#@?‘ (folR+szsz) (8.47e)
2 - 2
_ _ 92 f ) 7
‘Cffzz - 400829WZ#{ <1_4T3LQfSIH 9W> firfic
+4Q2 sin* iy f fm} (8.47f)
2gqe 7 i o A 7
Iz = cos QWAﬂQf{T3L (1 — 4T3,Qfsin 9W) fific
—Qjsin’ GwﬂEﬁR}Z“ : (8.47g)
g
Cipww = SWiW" flifu. (8.47h)

In (8476*}1) fi(LyR) COVQI’SIO ﬂi(LR), J’i(L,R)a é'i(L,R) and I;z’L WhiCh, as in (844), are now
understood as mass diagonal fields in the limit of no left right mixing. Since we have
yet to include the left right mixing of sfermions and this will be done in Ch.9, we
postpone a listing of the vertices and Feynman rules till then.

(iii) Electroweak vector boson-gluon-squark-squark vertices ~
These mixed terms can be written, with the CKM-type matrix elements V;}L put in
and with @, = 2/3 or —1/3 for ¢ = u or d respectively, as

t
Loty = V2gog,AL(WHii] LTV + W djLTaijdjL)

+2g,6Q A" A%G TGy

+2g5g2(cos QW)_lZ“Achi*(TgL — Qg sin” Oy )TG; (8.48)

9Sfermion flavor mixings do not matter here because of the GIM-mechanism [8.1].
10Read f* for fT in case of sleptons.
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In (8.48) go, gs are the SU(2)r, SU(3)c coupling strengths, as before, while v can be
W or Z or v, and i in ¢; is summed over all flavors as well as left and right chiral
fields. Here all squark fields are supposed to be mass eigenstates in the limit of no L-R
mixing. The corresponding vertices and Feynman rules will be listed in Ch.9 along
with the proper L-R mixing factors put in.

(H) Scalar quartic vertices without Higgs

These can be picked out from the supersymmetric potential (8.36) and the detailed
expressions for the F- and D-terms given in (8.34) and (8.35) respectively. One can then
write the corresponding interaction term in the Lagrangian density in the limit of zero left
right mixing as follows.

Lhipiad =
9 tyral D)uh Uing,, |2
T 2MZ,sin? B (I U U m{P U U g
W
+|CZ2UJEUuLm2(LD)Uu}r%UﬁR&R|2>
WO UeLm 'URéR —l—dTUdLUdL )UngJRCZRF
cos
+|I7TU17T ng)UéRéR + QNLTLUﬁTL UdL m((iD)Ud;?UJRJRP)
92 2 T 7 2 T 2
= | 30 (Volsel? + Vol lalgitsal? + |l + 2l e — 20l
(2]

—2lil, dig|* — 2|d!, ijr|* — 2|d},d;r]* + 2|azRJJR|2>

LU (1l + 1 = il — 1) ¥

2

2 5 5 o ~
- %2 [{ > (Wul2 — || + |7)* — Iéz-L|2) } +4|lal vird, + ﬁTV"LéLP]

2 2
than Qw{ (]_~ 9 1, -~ 9 4~ 2
- 5| Sldin]” — S |u;
< El 3|UL| +3| Ll 3|UR| +

2 . ~ R 5 2
§|diR|2 — |I/i|2 — |eiL|2 + 2|eiR|2)} . (849)

In (8.49) i,j are generation indices. Moreover, m'” is the physical real diagonal charged
lepton mass matrix of (8.11) in the generation space; the unitary flavor rotation matrix
U°% transforms the mass eigenstate charged right slepton fields to the corresponding flavor
eigenstate ones, while U2 and U” do the same for charged and neutral left slepton fields
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ér, and v respectively. Similarly, m.” and m((iD) are the real diagonal quark mass matrices

of (8.12). Thus we needed to take into account not only the unitary left, right squark flavor
rotation matrices U%r, Ur, Ut U’% defined in analogy with U%.% and U”, but also the
corresponding ones for quarks, namely U"%, U%r, U4z, U?r of (8.12). Finally, V¥ and V‘r
are respectively the left squark and left slepton versions of the Kobayashi-Maskwa matrix
Vi cf (8.40). Thus

Vie = ULyl (8.50a)
v = urue. (8.50b)

These may be called ‘super-CKM’ matrices. We shall enumerate the physical quartic sfermion
vertices in Ch.9 with left right mixing taken into account.

This brings us to the end of our discussion of supersymmetric vertices in the MSSM except
for the ones which are significantly affected by supersymmetry breaking parameters as well
as L-R mixing and possible gaugino-higgsino mixing. Those will be discussed extensively in
the next chapter.
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Chapter 9

SOFT SUPERSYMMETRY
BREAKING IN THE MSSM

9.1 The Content of LyopT

We now turn to that part of Lyssy through which supersymmetry breaking is explicitly
introduced. But first we need to demonstrate [9.1] the impossibility of effecting a spontaneous
breakdown of global supersymmetry purely within the framework of the MSSM. We follow
the reductio ad absurdum procedure in assuming such a spontaneous breaking and applying
the supertrace mass sum rule (7.50). Let us separately consider the mass squared matrices
M? for the charge —1, M for the charge +3, M for the charge —5 and M for the neutral
matter fermion sfermion supermultiplets of any generation. Assuming charge and color
conservation, the RHS of (7.50) now can receive possible contributions from the generators
T3 and Y/2 only. We can sum over all possible left and right chiral supermultiplets in the
supertrace, except that the latter have to be conjugated since (7.50) has been written for
a left chiral supermultiplet. We can then use the results (T3)., = —31, (Y/2),, = —1,
(Ty)e, =0, (V)20 = 1, (Ta)u, = L, (V/2)u, = &, (Ty)ye, = 0, (V/2),0, = —2, (Th)a, =
—%, (Y/2)q, = é, (T3>dCL =0, (Y/2>dCL = %, (T3),, = %, (Y/2),, = —%. Thus we have!

STrMeZ = 92<D3>—9Y<Dy>a (9.1a)
STrM? = —gy(D?) + gy(D"), (9.1b)
STeMy = g2(D%) — gv(D"), (9.1¢)
STrM? = —gy(D*) + gy (DY). (9.1d)

Two positive combinations of the above four supertraces are seen to have vanishing RHS,
namely

!These M’s are the mass matrices of (5.10) and (7.50) taken for each generation and summed over left
and right chiral supermultiplets. Thus STrM? = STrM?, + STrM? =mZ + m?Z_ —2m? etc. Though we
have not included generation mixing in this argument, (9.2) can be generalized to cover generation space.

183
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STrM? 4+ STrM? = STrM? + STrM7 =0 . (9.2)

Eq. (9.2) can be satisfied only if in each family some slepton/squark is lighter than the
corresponding fermion. This is manifestly contrary to observation, except possibly for the
third squark family. Hence the starting assumption is wrong and, if one sticks to MSSM
fields alone, supersymmetry has to be explicitly broken.

In principle, one could introduce an extra U(1)y- factor in the gauge group in a way such
that all left chiral fermionic fields carried the quantum number Y’ = 1. The Dy/-term (cf.
7.50), corresponding to this U(1)y+, could be given a nonzero VEV, spontaneously breaking
supersymmetry. (9.2) would now have a nonzero RHS and the compulsion of having some
sfermions lighter than the corresponding fermions could be evaded. But then there will be
an additional weak neutral gauge boson Z’, mixing with the Z, whereas such mixing is now
severely constrained by experiment. Moreover, an extra U(1)y, gauge factor would introduce
[9.2] uncancelled ABJ anomalies [9.3] and make the theory nonrenormalizable. A great many
extra superfields would be needed to cancel all anomalies and it would be difficult in general
to keep all sfermions heavier than extant lower mass bounds. Furthermore, gauginos would
not acquire masses at the tree level.

We can then conclude that, though the spontaneous breakdown of supersymmetry is a
theoretically desirable feature, such a mechanism will have to involve fields beyond those
of the MSSM. Phenomenological constraints point to such fields being significantly heavier
than the electroweak scale and hence carrying masses much larger than those of the MSSM
sparticles. Much theoretical speculation has taken place so far regarding the specifics of such
a mechanism and the current wisdom on it will be elaborated in Chs.12 and 13. Two broad
characteristics can, however, be mentioned at this juncture. Spontaneous Supersymmetry
Breakdown (SSB) needs to be effected in a sector of fields which are singlets with respect
to the SM gauge group and known as the hidden or secluded sector. SSB can take place
there at a distinct scale denoted by A,, say. Supersymmetry breaking is then transmitted to
the gauge nonsinglet observable or visible sector by a messenger sector (associated with
a typical mass scale M), that could, but need not, be as high as the Planck mass Mp;); this
may or may not require the introduction of additional gauge nonsinglet messenger superfields.
Fig. 9.1 is a cartoon depicting this.

Fig. 9.1. Cartoon showing the transmission of supersymmetry breaking from the hidden to the
observable sector.

It is nonetheless true that this messenger scale must be at least two (and perhaps many
more) orders of magnitude above the mass of the MSSM fields. Hence, when the former are
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integrated out at lower (electroweak) energies, the residual theory is described (cf. 7.40) by
the supersymmetric Lagrangian density of the MSSM, namely Lsr75y plus some soft explicit
supersymmetry breaking terms, collected in Lsopr and characterized by the supermultiplet
splitting mass parameter M, (cf. Ch.1). In Chs. 12 and 13 we shall discuss in detail two
alternative broad scenarios in which the messenger sector consists of

(1) higher dimensional operators [9.4] suppressed by inverse powers of the Planck mass,
or,
(2) fields with gauge interactions [9.5] at lower energy scales.

For (1), the mechanism of Fig. 9.1 can generally proceed at the tree level leading to M, ~
A2/Mp;. For (2), the origin of M, may be seen in terms of a one loop supergraph such as
that of Fig. 9.2, in which the letters V, M and H refer to superfields in the visible, messenger
and hidden sectors respectively, yielding M, ~ (gauge coupling)? A2/M,;. The occurrence
of the square of A, in the numerator in either case is easy to understand if supersymmetry
breaking in the hidden sector arises through the VEV of an auxilary F- or D-field (cf.
§7.4-8§7.6). Finally, then, a total Lagrangian density of the form of (7.40) can provide a
phenomenologically realistic description at least for a range of energies above the EW scale.
That will be our starting point here.

As

\% M \%

Fig. 9.2. Possible one loop supergraph implementing the scheme of Fig. 9.1.

We wrote the most general form of Lsopr in (7.42) for a supersymmetric gauge theory.
An appraisal of the different terms in it shows that, for the MSSM, Lsoprr can have no Cj-
type terms. This is due to the fact that the model does not contain any scalar field that is
invariant under SU(3)¢ x SU(2) x U(1)y gauge transformations. All other types of terms,
shown in (7.42), are possible. Thus we can write

—Lsorr = G (M2 + (Mg + dip(M2)idir + i (M2)i6r,
+E;r(M32)ijéRr + [hl ir(fPA%) i€ + haGin(FAY)iid) g
+q~1Lh2(quu>tjﬂ;R + hC] + m?|h1|2 + m§|h2|2 + (B;thhg + hC)

]_ = ~ = ~ ]_ 2 = 2 =
+5 (M AP + M Ao Prdo) + 5 (MoAPLA + M;APRA)

1 24 ~q =0 ~a
+§(M39 Prg* + Mg Prg*®)

VsorT + gaugino mass terms. (9.3)



186 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSM

In (9.3) M, 55 are the (generally complex) gaugino (Majorana) mass parameters in the La-

grangian density pertaining to Ao, A and §* which are (cf. Ch.8) the U(1)y, SU(2), and
SU(3)c gaugino fields respectively while my o are the real Higgs scalar mass parameters.
Furthermore, 7,7 are generation indices with summation implied by repetition. Thus the
squared left squark mass /\/lg- and the squared right squark masses M2, /\/lfz as well as those
for left sleptons M? and those for charged right sleptons M? are all 3 x 3 hermitian ma-
trices in generation space. The products f¢A¢, f?A? and f"A", which form coefficients of
the trilinear scalar terms in (9.3), are general 3 x 3 complex matrices in the same space.
These are the soft supersymmetry breaking A terms of (7.43), each written as a product
of a superpotential coupling f of (7.41) times an A parameter with the dimension of mass,
cf. (7.44). Similarly, we have scaled the coefficient of the SU(2); x U(1)y-invariant Higgs
bilinear term by the supersymmetry invariant Higgsino mass p. This ensures that the soft
supersymmetry breaking parameter B (cf. 7.44) also has the dimension of mass. Note fur-
ther the absence of any linear term in the Higgs fields, which would have been a C-type
term, cf. (7.43). If we allow all the new parameters, introduced in (9.3), to be complex,
we would be dealing with some one hundred and twenty four [9.5] unknown real constants
of which nineteen were already in the SM and one hundred and five are new. Fortunately,
many processes are sensitive only to a small subset of these parameters, at least at the tree
level®. In fact, in practical calculations in the MSSM (e.g. those for supersymmetry searches
at colliders) several simplifying assumptions are usually made in order to drastically reduce
the number of these additional parameters to only a handful. The final set of parameters
is determined by the specific assumptions made. Different assumptions (usually motivated
by different scenarios of supersymmetry breaking) result in different versions of the Con-
strained Minimal Supersymmetric Standard Model (CMSSM). Let us remark that, though
well motivated, these assumptions do need to be tested in experiments and such tests form
an important part of supersymmetry phenomenology at colliders. Of course, once again R,
conservation has been assumed in (9.3). The introduction of R, violation in the soft super-
symmetry breaking part of £, without R, nonconserving supersymmetric terms present in
the superpotential W of (8.33), generally makes the scalar potential unbounded from below.
We shall consider the latter kind of terms in Ch.14, when dealing with extensions of the
MSSM.

Yet, another issue confronting us is that of phases. As mentioned earlier, many of the
new parameters in the part Lsopr of (9.3) can, in general, be complex in a CP noninvariant
theory. Two of these can be chosen to be real by appropriate phase rotations of the fields
appearing in Lgopr without compromising the form of Lgysy in (7.41). However, many
different nontrivial (i.e. in principle measurable) phases remain in the MSSM in addition to
the single CP violating phase of the CKM matrix of the SM. On the other hand, some of these
phases are subject to strong phenomenological constraints [9.6, 9.7] which come from the
lack of observation of any additional, beyond-Standard-Model CP violation in low energy
experiments so far. For example, if the phases in the gaugino/higgsino sector are large,
effective cancellation mechanisms need to be devised [9.6] to meet those constraints. The

2For instance, negative search results from LEP, cf. Ch.15, already imply that both |Ms| and |u| must
exceed My . Herein lies the origin of the pu problem about which we shall have more to say in §13.4 and
§14.2.
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simplest way to satisfy the experimental bounds on new sources of CP violation is to assume
[9.8] that the phases of all soft supersymmetry breaking parameters are small. In fact, most
analyses of CP conserving processes in softly broken supersymmetric scenarios have been
performed under this assumption. Our phenomenological discussions will be mostly based
on such a framework, but the mass matrices and couplings, given in this chapter, allow for
the possibility of CP-violating phases.

Once supersymmetry and (at a lower energy scale) EW symmetry get broken, different
sparticles of the same electric charge can mix. The sparticles, listed in Table 8.2, then no
longer remain eigenstates of mass. Left squarks (sleptons) mix with right squarks (sleptons);
there can be generation mixing as well. The EW gauginos and higgsinos mix too, as men-
tioned in Ch.8. The mixing patterns and mass values of sparticle mass eigenstates depend
crucially on the manner of supersymmetry breaking. These masses and mixing angles, in
turn, determine the experimental signals of supersymmetry. This is true both for sparticle
production as well as decay analyses and for low energy signatures caused by the exchange
of virtual sparticles in loops. We therefore need to study all nontrivial restrictions on spar-
ticle mass matrices implied by low energy physics constraints, mainly from the absence [9.8]
of FCNC processes in nature. These constraints also play a crucial role in relating softly
broken supersymmetry to some higher scale physics which causes the transmission of super-
symmetry breaking to the MSSM fields in the observable sector. The mass values of matter
sfermions as well as of nonmatter fermions (i.e. gauginos and higgsinos) are controlled by the
explicitly supersymmetry breaking soft operators, introduced at this higher scale. One then
needs to consider the subsequent modification of these via renormalization group evolution
down to electroweak energies. This scale dependence of the mass spectrum of sparticles will
be discussed in Ch.11 whereas here we concentrate on the extra masses and mixing angles of
the MSSM at laboratory energies. Let us note meanwhile that there is no really satisfactory
theory of soft supersymmetry breaking terms at this point; only speculative models exist.
Thus low energy constraints are the only phenomenological pointers to them that we have
at present and these merit careful attention.

The next section contains a discussion of the masses of higgsinos and electroweak gauginos
as well as of the two cases of mixing among them: one for charged ones and another for
neutral ones. In subsequent sections we shall consider the general mass matrices for sleptons
and squarks incorporating various supersymmetric and nonsupersymmetric mass terms. We
shall also address the different cases of mixing among them and what effects these have on
their interaction vertices.

9.2 Electroweak Gauginos and Higgsinos

We concentrate here on the spin half supersymmetric partners of the electroweak gauge and
Higgs bosons: the electroweak gauginos and higgsinos. While gaugino mass terms are part
of the soft supersymmetry breaking Lsorr of (9.3), the spontaneous symmetry breaking
SU(2), x U(1)y — U(1)en, forces the gaugino fields A* of (8.27) to mix with the higgsino
fields Bli of (8.25), leading to physical mass eigenstate charginos f(fQ. This fact, already
mentioned in §8.2, will receive our attention first. Similar mixings exist in the sector of
neutral EW gauginos and higgsinos and will be discussed later. The soft supersymmetry
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breaking gaugino mass parameters M,(a = 1,2) and the supersymmetry preserving higgsino
mass parameter p of (8.33), plus the ratio tan 5 of Higgs VEVs, cf. (8.24), are the only
parameters of the model that are relevant to our present discussion. In case M, (a = 1,2)
and p are complex, then M, can be chosen to be real and positive without loss of generality.
In this situation two additional parameters enter the game, viz. ®, and ®,, — the relative
phases between M, and p and between M, and M; respectively. However, in some (though
not all) of our discussions below we shall assume these phases to be zero.

The chargino mass matriz

Starting from (5.55), we can isolate in the Lagrangian density the matter-gaugino-Higgs
coupling terms that generate chargino masses. They can be written generically in two
component notation as

—V/205(T*);0%€;6% + h.c.

Here A\* stands for a gaugino field, while £ and ¢ stand for the fermionic and bosonic com-
ponents of a Higgs chiral superfield respectively; T is a gauge group generator acting in the
representation space of £ and ¢ typified by indices i, j. Here & are two component spinorial
fields in the (3, 0) representation (cf. Ch.3) while their barred versions are the correspond-
ing conjugate fields in the (0, §) representation. Once the fields h{, of (8.20) acquire VEVs
v12 on the spontaneous breakdown of the EW symmetry, the above expression generates a
sum of mixed gaugino and higgsino mass terms. We further need to add to the above the
supersymmetry breaking gaugino mass terms from (9.3) and the supersymmetric bilinear
higgsino mixing terms contained in the pH;-H, part of the superpotential (8.33). Thus the

mass terms of the nonmatter charged fermions can finally be written as

c _ g2
MASS — _ﬁ
1

In (9.4) h? and Al are two component spinorial higgsino fields in the (5,0) representation
carrying Y = —1, Q = —1 and Y = 1, Q = 1 respectively, cf. (8.25). Moreover, the two
component charged gaugino fields A* are defined as (v/2)~'(\; F iAy). The mass term of
(9.4) can now be rewritten in terms of a 2 x 2 matrix X as follows. Define two column vectors
Y*, each consisting of one gaugino field component and one higgsino field component, as

(AT 4+ A hl 4+ he) — (MpAYA™ + ph?hd +he) . (9.4)

o= (5) wr=ona, (9.50)

_ AT _ _
o= () wr=o . (9.5b)
Let us denote the components of 1= by ¥ with m = 1,2, i.e. ] = At etc. Now we can
make use of (8.22) and (8.24) to rewrite (9.4) as
—Lass = (7)) X" +hee. (9.6)
with

_ M V2Myy sin 8
X = ( \/QMWQCOS 5 LV ) : (9.7)
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One can find unitary matrices ¢ and V such that
UXyt=m> (9.8)

where M? is a diagonal matrix with real nonnegative entries Ml and Mz. The two component
chargino mass eigenstate fields can then be identified as

Xi = Vimt (9.9a)
Xr = Umty, (9.9b)

with & = 1,2. These two component Y* fields enable one to recast (9.6) as
—Liyass = X (MD)km Xy, +hoc. (9.10)

We are now in a position to define four component Dirac chargino fields

<§T> , (9.11a)
Xa = (1_2‘;) (9.11D)

By using (3.28a), the mass term (9.10) can be rewritten in terms of these Dirac chargino
fields as

X

~Lirass = Mix{xy + Mo Vs - (9.12)
By convention, Y{ is chosen to be lighter than Y3, i.e. M; < M,. M, are actually the
positive square roots of the eigenvalues of the matrix X"X. From (9.8) we see that

(MP)? = yXIXY™! = i XX ()™, (9.13)
i.e. U,V are the unitary matrices which diagonalize the hermitian matrices XX and XX

respectively. For such 2 x 2 matrices, the eigenvalues and mixing matrices are easy to write
down analytically. The squared masses are given by

—~. 1
M3y = 5| IM3+ () 200 £ {(1ME] = |4?)?

1/2
+ AM;y, cos® 23 + AME, (| MZ| + |14%] + 2Re( Mypu) sin 26)} ] . (9.14)

If the phases of M and p are ignored, all the entries of X become real. We work in the
convention where M, is positive, but p can have either sign (N.B. tan  is always positive,
cf. §10.2). Then the mixing matrices can be written as

U = 0,, (9.15a)

by { 0, for det X >0, (9.15b)

030, for det X < 0,

O, = <COS¢”’“ Sm%’”), (9.15¢)

—sin @y, COS Py y
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where

22 My (psin B + My cos 3)
M2 — p? — 2M32, cos28

22 My (1 cos B + My sin 3)
M3 — p? +2M32, cos 23

tan 2¢, (9.16a)

tan 2¢, (9.16Db)

The corresponding expressions for complex X can be found in Ref. [9.9]. Eqs. (9.16) are
invariant under the change ¢ — ¢ + 7/2. However, these solutions are not equivalent. One
has to check whether (9.8) holds in order to decide which of the four solutions of (9.16) is
the correct one.

It is convenient at this stage to relate the starting two component charged gaugino® and
higgsino fields to the four component weak interaction eigenstate ones of (8.25) and (8.27):

\To= (%}) (9.17a)

) i
hi

The relations between these and the four component mass eigenstate chargino fields y* are:

PLAY = VEPLY (9.18a)
PpAY = U PRy, (9.18D)
PLht = VLPINT (9.18¢)
Prht = UnPrYy . (9.18d)

Using these equations, we can also derive similar relations for the charge conjugate and
adjoint spinors,

Pr(AN)Y = VuPr(\{)°, (9.19a)
PL(h)S = Uy PL(), (9.19b)
NP, = UL, Pr (9.19¢)
HtPr = Vo, Pr . (9.19d)

Eqgs. (9.18,19) and similar relations will prove useful later in deriving the interaction vertices
involving various particles/sparticles and charginos.

3We should emphasize that our convention on gaugino field components is different from that of Haber
and Kane [9.10]. However, our Feynman rules are the same as theirs except that § is the complement of
their 6,. Our V and U matrices are the same as the V and U respectively of Gunion and Haber [9.10].
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The neutralino mass matrix

Let us now take up the issue of mass eigenstates for neutral non matter fermions. Again,
the corresponding mass terms receive contributions from Vsopr, from the superpotential as
well as from the matter-gauge-Higgs couplings with the neutral Higgs fields replaced by their
VEVs. Retaining only terms relevant to the neutral sector, the mass term in two component,
notation reads

brass = =50 (0t = k) + 5o (1nhd = vaff) + B
i I
—§M2A3/\3 — §M1)\0)\0 +h.c. (9.20)

In (9.20) we have extended the notation of (9.4) for two component EW charged gaugino
and higgsino fields to the corresponding neutral ones. In general, the three mass parameters
My, M, and p, which determine the neutral nonmatter fermionic mass matrix and the mixing
contained therein, are completely arbitrary. However, in simple grand unified theories M;
and M, are related to each other. Such theories predict that M; = M, at the high scale
where the gauge couplings are presumed to unify. The gaugino mass M, will be shown in
Ch.11 to evolve (at one loop) with the momentum scale in a way identical to that of the
square of the corresponding gauge coupling strength g,, the subscript « referring to one of
the factors of the SM gauge group. The unification condition then implies
My(My) = gtanZ O Mo (M) ~ %MZ(MZ) , (9.21)
Ow being the Weinberg angle. As explained more clearly in Ch.11, the factor 5/3 appears
in (9.21) from the difference between the normalization of generators in a simple unifying
gauge group and that of the electroweak hypercharge generator in the SM.
Define a row vector (¢°)7 with two gaugino field components and two higgsino field
components:

(W)= (Ao As by 3) - (922)
Eq. (9.20) can then be recast as

1
Mass = 3 (¢O)T M + hee. (9.23)

In (9.23) the 4 x 4 mass matrix M™ is given by

M1 0 —MchSW Mzsgsw
n__ 0 M2 MZc,gCW —Mzsﬂcw
M = —MzcﬁSW MZc,gCW 0 iy ’ (924>
Mzsﬂsw —MZSch iy 0

where sy = sinfy, ey = cosby,sg = sinff, cg = cos S in the notation of Ch.8. Let us
denote the components of ¢/° in (9.22) as ¥?, with n = 1,2,3,4, i.e. ¥} = Ay etc. Now we
can define two component neutralino mass eigenstate fields x? by

Xt = Zinty (9.25)
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where [ = 1,2,3,4 and Z is a 4 x 4 unitary matrix, as defined by Gunion and Haber [9.10],
satisfying
ZM"Z7' =MP | (9.26)

M2 being a diagonal matrix with only nonnegative entries. The latter can be computed
from

(MDY = ZM™ M"Z (9.27)

Sometimes, for simplicity of calculation, the possible phases in the entries of M™ are ignored.
Now the rows of Z can be either purely real or purely imaginary. A common practice in the
literature is to choose a real, orthogonal Z. In this case, however, the eigenvalues of M can
sometimes be negative. Then those neutralino mass eigenstates, which correspond to such
negative mass eigenvalues, need to be redefined with chiral rotations so as to make the latter
positive. It is difficult to keep track of this during calculations, since one has to introduce
an explicit iv5 factor whenever a neutralino corresponding to a negative eigenvalue of M”
appears at a vertex. So we shall not make such an assumption. There is one point to be
noted, though. In many applications, it is sufficient to keep the sign of the neutralino mass in
the neutralino propagator and in neutralino spin sums without any modification of Feynman
rules.

As with charginos, the masses and mixing angles of the neutralinos are completely de-
termined in terms of a few parameters; here these are M; 5, 1 and tan 3. We can choose to
introduce four component Majorana spinorial fields Y?:

0
- X
e=( ). (9.29

l

Now the mass term of (9.23) takes a simple four component Majorana form, namely
1 ~ =
MASS = ) Z Man?X? ) (9.29)
!

where ]Tfl” = Mo are the nonnegative diagonal elements of MP. The eigenvalues ]\’ZZ” and
the matrix Z can most easily be obtained numerically. If all entries of M™ are real, an
analytical calculation of the former is possible [9.11]. However, the expressions are quite
cumbrous and will not be given here. The neutralino eigenstates are labeled? in the mass
order Mo < Mgy < Myg < Mo by convention. In most phenomenological discussions of the
MSSM (unless there is a lighter gravitino or a violation of R-parity), the lightest neutralino
\) is assumed to be the Lightest Supersymmetric Particle (LSP).

It is instructive to relate the mass eigenstate neutralino fields \) to four component
gaugino and higgsino fields which are weak interaction eigenstates. Let us consider the
latter first. They are the Majorana spinors

A3 = ( }”T > : (9.30a)
3

4Caution: the subscripts 1,2,3 in X1,2,3 do not have any specific association with the subscripts of the
gaugino mass parameters M s 3.
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Ao = ( jog > : (9.30b)

5 h!
h) = ( —r ) , (9.30¢)

hl

1

Then the desired relations can be given as follows:

Pihy = PLZiYY, (9.31a)
Pro = PrZnx}, (9.31Db)
Py = PLZ5YY . (9.31¢)
Prls = PrZpy), (9.31d)
Pih? = PLZp, X0 . (9.31e)
Prhd = PpZj X} - (9.31f)

Note that the index [ in (9.31) spans the values 1,2, 3,4, while the index s covers 1,2 only.

Similar relations can be written for AP, etc. using (9.31).

We can study and comment on the nature of the chargino and neutralino sectors in some
limiting cases. If |p| > | M| > My, the two lightest neutralinos Y7, are gaugino domi-
nated. If (9.21) is assumed, it follows that ! is mostly the U(1)y gaugino (“bino”) field
Ao and Y3 is largely the neutral SU(2);, gaugino (“wino”) A*. The two hlgher mass neutrali-
nos )22,4 are then predominantly higgsinos. Similarly, the lighter chargino Y is more or less
the charged “wino” and the heavier chargino is largely the charged higgsino. Furthermore,
the magnitude of the y parameter and the masses of the chargino and neutralino masses are
roughly related by M+ ~ Mg ~ 2Mo and |pf = Mo = Mg = Mex > M. In the oppo-
site limit || << | M, 2| the lighter neutralinos and the hghter charglno are mostly h1ggsmos
with masses close to |u|, whereas the heavier chargino is predominantly the charged “wino”
Finally, when |u| ~ |M,]| or |M|, strong kinds of mixing occur between gauginos and hig—
gsinos in the formation of physical nonmatter fermions; in general, the masses are no longer
related in any simple way. If |u, Ma| > My, and (9.21) is assumed, then the approximate
relation Mo =~ M+ holds [9.12] irrespective of the ordering and the relative magnitudes of
|pe| and | M »|. All these statements are insensitive to variations in tan S within the usually
covered range (cf. Chs. 10 and 11).
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9.3 Chargino and Neutralino Interactions with Gauge
Bosons

Chargino-Neutralino-W¥ interactions

These receive contributions from two sources: (1) the analog of the fourth term in the
RHS of (5.55) corresponding to the SU(2);, gauge group and (2) the analog of the first term,
for the two Higgs superfields, for the SU(2); x U(1) gauge group. It is clear that only the
gauge field part of the covariant derivative will contribute to the interaction. With 7,.J as
gauge group representation indices and subscript s (= 1,2) distinguishing the two higgsino
two component spinors, the latter reads,

9

T a9y
—hs[ O'M <7YhS5[JBﬂ + 2

()W) s

The resulting charged weak boson terms in the Lagrangian density, expressed in the four
component notation and in the weak basis after using (3.28¢c,d), read:

= ~ ]_ ~ ~ ~ ~
Lotgows = Wy [Awﬂﬁ -7 (hngLfﬁ - hf;wPRfﬁ)] +hec. (9.32)

One can rewrite the interaction (9.32) in terms of chargino and neutralino fields by using the
chargino and neutralino mixing matrices using (9.17,18) and (9.30,31). The final expression
is

Eifi?wi = QQWM_)N(_?’YM (CﬁPL + C;]EPR) )22— + h.c. s (933)

where the couplings C}; and Cf are given by

1
Cip = _7§ZZ4V]:2 + Zi2Vi (9.34a)
1
Clt = —=Zjlha + Zjlsa - (9.34b)

V2

In (9.33) and (9.34) the subscript & takes values 1,2 while [ goes from 1 to 4. The generic
vertex corresponding to (9.33) is shown in Fig. 9.3. Note that an arrow has been put on
the Majorana fermion line also in accordance with the convention in Appendix D of the first
paper of Ref. [9.10].

‘ Fig. 9.3 is included in Appendix A ‘

Neutralino-Neutralino-Z and Chargino-Chargino-(Z, ) interactions

In the four component basis of (9.17) and (9.30), after using the Majorana identities
(3.29¢,d) and the definitions (8.7), we can write in analogy with the previous case
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N N 1 = -
Lzoxx = Cg_;/Zu <_C%/V/\+7M)\+ — 5 Cos 20w h*v“hJ’)

g — ~ _ ~
+ﬁZu (h?v“%h? - h%v’“‘%hg)
—eA, (X_wﬂﬁ + E_wﬂiﬁ) . (9.35)

The second line of (9.35), when rewritten in terms of the mass eigenstates Y9, yields the
ZX%Y interaction. The use of (9.31) leads to

Lzzo50 = Qi—QWZ X" (NG P+ Nt Pr) X, - (9.36)

Here the couplings Nlﬁ’R are given by
N = —% 1325 + %ZMZ,’;1 : (9.37a)
N = — (Nlj;;)*' (9.37D)

Referring back to (9.27), note that, under the assumption of a real M™, the Zy?\" interaction
will always involve a pure vector (axial vector) coupling, for a negative (positive) value of
cos[2Arg(Z, Zpy)]. In this situation the cosine is just a signature factor.

Turning to charginos, the last term in the RHS of (9.35) gives the Y} \, interaction as

W T —eAy, ﬁ’w (Vi Vit + V2 Vi) Pr

X" U Ut + UpUyo) Pr| X5
= —eA TR (9.38)

where we have used Ut/ = VIV = 1. Finally, the Zy,,\; interaction follows from the first
RHS term of (9.35). Rewritten in terms of the mixing angles, it reads

ZXmXf j—;%ﬁ% (05 Pr + O Pr) X (9.39)
with the couplings 05{1? given by
1
Opr = —VmViy — §Vm2V]:2 + kST (9.40a)
R * 1 * 2
Omi = —Unnllin = 5Upoliz + Omrsyy - (9.40b)

The unitarity properties of the V, U/ matrices have again been used in deriving (9.39). The
vertices corresponding to (9.36), (9.38) and (9.39) are given in Fig. 9.4. Those corresponding
to (9.36) have an additonal factor of 2 in the Feynman rules [9.10] which appears due to \?
being Majorana fermions. Once again, we have put arrows [9.10] on lines corresponding to
the latter.

‘ Fig. 9.4 is included in Appendix A ‘
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9.4 Masses and Mixing Patterns of Sfermions

Slepton mass terms

There are three sources of slepton mass terms in the Lagrangian density: 1) explicit
mass terms as well as trilinear A-terms from the soft part of the scalar potential Vsgopr, cf.
(9.3), 2) the contribution to the scalar potential by the F-terms of (8.34), which arise out
of the superpotential W of (8.33) and 3) the contribution to the scalar potential from the
D-terms given by (8.35). The F- and D-contributions, as well as those from the trilinear
terms in Vsopr, materialize after the neutral Higgs fields acquire nonvanishing VEVs on the
spontaneous breakdown of the SU(2), x U(1)y symmetry. On the other hand, each sfermion
mass term in Vsopr is invariant under SU(2);, X U(1)y transformations. If all sfermions are
heavier than the electroweak gauge bosons, as indicated by present null search experiments,
their large masses could be due to these terms. The pieces in the sfermion mass terms due to
trilinear scalar couplings, as well as the terms which orginate from the higgsino mass term
in the superpotential WV, mix the left and right sleptons €;z and €;,. Depending upon the
nature of Vsopr, there can also be generation mixing for charged sleptons. However, we will
show later that, under some simple assumptions about Vsopr, one can often neglect some of
the generation mixing in the slepton sector, once one has imposed the restrictions implied
by strong experimental limits that exist on the nonconservation of lepton flavor.

The relevant terms in V' (and hence in —£), which contribute to slepton masses, can be
written, using (9.3),(8.33)-(8.35) and (8.36), as

V=Vl + VE+VE . (9.41)

The different terms in the RHS of (9.41) can be shown, with repeated indices summed, as
follows:

Viorr = (M), Ty + i M2) ;50 + [hl-zﬁ,.L( fOA%) 8 + h.c.] . (9.42a)

= - ~k pEx ~ 2 ex ~ 2
Vi = |1hy — B fER] + B — €L f e R|
~ |2
+ E fihilin| + fi505€ R R (|h?|2 T hfh;) ’ (9.42b)

1 ~ -
Vh = gl = 1hel) Y (1l - 20einf?)
1 N
+9 (17 + h7ms ) 8,7 (9.42¢)
When the neutral Higgs fields acquire vacuum expectation values, as per (8.21), (9.42)
lead to the following mass terms in the Lagrangian density.

to= <M§+M§cos26 (1/2)]1),,1734

m
]
+é5 [M? — M%cos23 (1/2 — sin® Oy )1 + mg]l] L
]
+éty (M2 — M7 cos 23 sin” Oy 1 + mi_]l)ij éin
- [éfL (me; A + medijptan 3)ér + h-C-] . (9.43)
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In writing the above mass term, we have absorbed the electroweak couplings and VEVs
V12 in Mg, 3 and Ow; m,, stands for the mass of the charged lepton e; (cf. 8.23) and
1;; = di5. Moreover, we have used (8.23a) for ff;. The choice of the signs in front of the
JeA° etc. terms in (9.3) was made in accordance with the convention established in §7.7 and
determines the sign of the A°-term in (9.43). The opposite signs of the terms proportional to
M2 cos 2(3sin? Oy in the second and third lines of (9.43) are noteworthy. The coefficient of
this term is essentially decided by the electric charge of the slepton field. The chiral superfield
E; contains e;r and hence carries the electric charge of the positron, unlike L; containing €;,
with the opposite charge. Furthermore, the term containing M cos 23 is proportional to Tz,ﬁt
and hence changes sign between the left selectron and the sneutrino. Clearly, the states é;r,
érp and 7;, which appear in (9.43), are the interaction eigenstates; the corresponding mass
eigenstates will be linear combinations of these. In principle, both lepton flavor mixing® as
well as L-R mixing are now possible.

Squark mass terms

The supersymmetric and nonsupersymmetric mass terms for squark fields can be written
in a manner analogous to that for slepton ones with the correspondence lr = Gr, U; — i,
Eil.R — JiL,R. Just the additional singlet fields u;g, that are present, need to be included.
Moreover, the nontrivial CKM mixing, present in the quark sector, needs to be taken into
account. Expressions similar to those appearing in (9.42) can be written for the squark scalar
potential. In the following we first write the relevant part of the squark scalar potential which
will contribute to squark masses as

Vi= VgOFT + Vzg + Vg ) (9-44)

without any specific assumptions about the supersymmetry breaking parametric matrices
A? A", We then have

VLgOFT = Cjz]'LL (Mé)iﬂﬂ + dzTR(M%)ijde + aIR(M%%jajR

+ [hl -q},;(fdAd)ijJ;R + Gip-ho(f" A" )i R + h.C.] , (9.45a)

5 _ _ x ¥ 2 * ~ I 2 ~ 2
VE = \wthy =l fE dig| 4 |ty = dl de‘ + > | fhhagii
[

*7 4+ Toru~ 2 *7,0* ~1  puk~ 2 Uk ~ |2
+ ‘—M hi +d;p, ijujR‘ + ‘—M hi + U fii iR +Z ‘sz' ha-GjL|
i

~ . 2 . . u* 1.0 ~ 2
+Z i 0 dir — 5 hy UjR‘ + Z hidip — [ B G| . (9.45D)
; 1 1. . ~ -
VDq = Zg?f (|h1|2 _ |h2|2) [_ gquqiL —+ 22 (Qu|qu|2 4 Qd|diR|2> ]
]- — — ~ —~
+ Zgg(h%hl + hgThz) -4l TG (9.45¢)

>There are currently some scenarios, going beyond the MSSM, which anticipate a large Vy-Ur mixing in
analogy with what is observed in the v,-v; sector by the super-Kamiokande experiment.
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where (), 4 are the electric charges of the u, d-type squarks in units of the positron charge.
From (9.49) the squark mass terms in the Lagrangian density can be written as

—L1 = ay [MZ+ M7 cos283 (1/2 — Qysin® Oy )1 + (mumuf)]ij ,r,
— M7 cos283 (1/2 + Qqsin” Oy )1 + (mdmdf)]ij d;r,
+ QuM?Z cos 23sin” Oy 1L + (my,| mu)] iR

(M

+cizR [ 2+ QqM?3 cos 23 sin” Oy 1L + (mdmd)] dJR
[
[

—ci;-‘L (mdA )l] + p1(my),; tan B] ]R + h.c. (9.46)

In (9.50) m, and my are the up and down type quark mass matrices respectively in generation
space (cf. 8.11). One may note that , just as with sleptons, the squarks are massive even
in the limit of unbroken SU(2); x U(1)y symmetry. Once more, there is a relative negative
sign between the mass terms for left squarks and right squarks for the pieces proportional
to the charge @, and @);. The mixing between the left and right squark fields, given in
the last two RHS terms, is caused by the trilinear A-terms as well as by the higgsino mass
contribution to the F-terms. Because of extant mixing in the quark sector, both L-R mixing
and generation mixing are nontrivial and complicated for squarks.

Sfermion mizing: some generalities

Let us define a six component vector

f= (}{Z) : (9.47)

where fL, fR are each a three component column vector in generation space with components
firs firs [ being the superpartner of any matter fermion field f, quark or lepton. Thus f can
be 7, €, i, d except that we put 7p = 0. The general squared mass matrix for such sfermions
can then be written as a 2 x 2 Hermitian matrix of 3 x 3 blocks in the space spanned by the
vector of (9.47):

frRR

2 2
M2 = (MfLL M ) . (9.48)
f MA M

In (9.48) M?;LL and M?;RR are hermitian in generation space. Now all the sfermion mass
terms of (9.43) and (9.46) can be collected under

—LSFERMION MASS = Z fIME (9.49)
f

Specifically, for sneutrinos, charged sleptons, u-squarks and d-squarks, we can respectively
write from (9.43) and (9.46) the 6 x 6 squared mass matrices in terms of 3 x 3 submatrix
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blocks as
2 2 iy
M2 = (Mz + MZ€3L cos25 1 8) 7 (9.50a)
M2 =
<M% + M%(T:fL — Qesin? Oyy) cos 23 1 + m,m! —m, (A + ptan §) >
—(A°" + p* tan B)m! M2 + Qe M2 cos 2Bsin® Oy 1 + m{m,
(9.50D)
M3 =
<M§+M%(T:?L — Qusin? fyy) cos 28 1 + m,m)}, —my (A" + pcot ) )
—(A"" + p* cot B)ml, M2 + QuM?Z cos 2B3sin? Oy 1L + m}m,
(9.50c)
2 _
M5 =
<M§~ + M%(TafZL — Qqgsin? Oy ) cos 26 1 + mdmzl —mgy(A" + ptan B) )
_(AdT -|—,u*tanﬁ)m2 M§~+QdM% cos 23 sin? Gy 1L +m2md .
(9.50d)

In (9.50) T3fL is the third component of the weak isospin of f, Qs the electromagnetic
charge of f and m; the mass matrix (cf. 8.11 and 8.12) for f in generation space, with (m.);;
being of course m,,d;;. However, M? involves not only my but also the soft supersymmetry
breaking squared mass matrices M? both for the SU(2); doublet left sfermions and for
the SU(2); singlet right sfermions plus the matrix A/ in generation space and finally the
supersymmetric higgsino mass parameter p. Note that A/ is in general a complex 3 x 3
matrix and g can be complex too. Observe furthermore that the D-term contributions are
diagonal in generation space. The offdiagonal LR mixing terms are proportional to fermion
masses and hence appreciable only for the third generation. Otherwise, generation mixing
is really controlled by the soft supersymmetry breaking terms.

Referring back to (9.47), we can define mass eigenstate sfermions through the six com-
ponent column vector £ which is unitarily transformed from f:

fm = w/'f . (9.51)
The 6 x 6 unitary matrices W/ then diagonalize the squared mass matrices ./\/llg Vf:
M) = WMWY (9.52)

Let us introduce the indices s, ¢ running from 1 to 6 while we keep the generation indices as
7, j running from 1 to 3. We make a convention to order the sfermions by mass, f{” being
the lightest and fgl the heaviest among sfermions of a given charge. Eq. (9.51) can then be
rewritten as

fr=wi =W i+ Wl Jfin (9.53)
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the generation index i being summed on repetition. The second step of (9.53) shows the de-
composition of a mass eigenstate sfermion field into left and right chiral interaction eigenstate
sfermions. The latter can be written, by inverting (9.53), as

f = wifm (9.54a)
fin = Wl fm (9.54b)

Two limiting cases of the above most general sfermion mass mixing are also quite trans-
parent.

(a) No L-R mixing

In this case M, , vanishes and (9.48) reduces to

M2 0
M2 = < JLL ) : (9.55)
f 0 M?RR

Now the 6 x 6 unitary matrix W/ has the chiral block diagonal form

; fu
i (ult o
W _< ) UfR>’ (9.56)

where U’ and U/% are unitary submatrices for the distinct left and right sfermion sectors.
In terms of explicit generation indices i,j (= 1,2,3) we can write

Wifj+3 = I/Vzig i=0, (9.57a)
sz; = UZJ;L 7 (9.57b)
Wi, s = UZ.J;R_ (9.57¢)

The 3 x 3 unitary matrices U/Z and U/% in generation space, appearing in (9.56) and (9.57),
are sfermionic generalizations of the flavor rotation matrices U/2, U/ for a chiral fermion f
that we introduced for f = u,d in Ch.8 to put the quark mass matrices m,, mg into diagonal
form via biunitary transformations. The chiral block submatrices of (9.50), for f = 7, é, 4, d,
now have the following respective expressions after diagonalization.

M, = U (M2~ MZcos28 T3, 1)U, (9.58a)
MAD = UL [M2 4+ M3 cos 23(T5, — sin® Oy ) 1+ m2P)] U, (9.58b)
MZD) = Uk [M2 4+ Q.M cos 2Bsin® By 1l + m2P)] U?r, (9.58¢)
M2, = U [M2+ Mcos23(T3, — Qusin® )1+ mim,] U™, (9.58)

M2 = U™ M2+ QM2 cos 25 sin Oy 1 + mfm,] U™, (9.58¢)

My = u't [MZ + M cos 26(T4, — Qqsin® O ) 1L + mgmd] U, (9.58f)

MQ(D) — Ud};

RR M+ QM cos 2 sin” Oy 1L + mgmd] Ui, (9.58g)
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Note that mass eigenstate sfermions will now be ordered by mass within s = 1,2, 3 for left
sfermions and within s = 4,5, 6 for right sfermions, i.e. now we have

mass(fi") < mass(f3") < mass(f3'), (left sfermions) , (9.59a)
mass(f;") < mass(fs") < mass(fg"), (right sfermions) , (9.59Db)

without any definite ordering between the two groups. Thus a program, made to diagonalize
the original 6 x 6 matrix, will not automatically return a block diagonal mixing matrix as in
(9.56) since the program will insist on all mass eigenstate sfermions being ordered according
to their masses. The latter can be obtained just by interchanging certain rows and columns
of W7 without affecting physics.

(b) No flavor mixing

In this limit the 6 x 6 mixing matrix only couples the two sfermionic states labelled by
the indices ¢ and 7 + 3, i.e. the left and the right states of a given flavor. For a real mass
matrix, one has

Wi = W/, =cos 0. (9.60a)

2 13

Wiy = Wl =—sint; . (9.60D)

)

Thus, for instance, mass eigenstate charged sleptons will now be described by
€1
fi1

| A
€2
b2
T2

: (9.61)

i.e. the mass ordering is enforced between f/™ and f/7; and not between different flavor
states.

Before closing this section, we want to comment specifically on the squared mass matrices
of staus, sbottoms and stops. These third generation sleptons and squarks are somewhat
special. It is reasonable to take them to be decoupled from other sleptons and squarks
i.e. assume no flavor mixing for them. On the other hand, they do involve substantial
L-R mixing on account of the nonnegligible masses of their fermion partners. Indeed, they
physically manifest themselves as the mass eigenstates 7y 5, 5172 and 51,2. In this picture the
corresponding squared mass matrices can be written approximately in 2 x 2 form

M = mi —(1/2 - sin? Oy ) M2 cos 23 + m?2 2 —m;(AT* + /.JtQan B) ). 0620
—m, (AT + p* tan j3) mz — M7 cos 23 sin” Oy + m7
M2 mZ, — (1/2 — 1/3sin® Oy ) M7 cos 23 + m; —my(A” + ptan )
b —my(A® + p* tan j3) m? —1/3Mj cos23sin® Oy +my )’

(9.62b)
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M = mZ, + (1/2 —2/3sin® Oy ) M7 cos 23 + m; —my (A" + pcot )
—my(A" + p* cot 3) m# 4 2/3M% cos2[sin” Oy +mi )

(9.62c¢)

The off-diagonal L-R mixing term is particularly large in the stop case, being proportional
to the mass of the top quark. This can in principle make ¢; the lightest sfermion.

9.5 The Flavor Problem in Supersymmetry

Many discussions in previous sections have hinted that there is a generic flavor problem
[9.8] in supersymmetric theories. The origin of the problem is in the occurrence of sizable
flavor dependence in sfermion mass matrices. The latter naturally leads to large induced
FCNC amplitudes which are, however, unobserved by experiment. The lack of observation
of the decay p — ey puts some constraints on the lepton-slepton sector. Though processes
like D° <+ D° and B® « B transitions as well as b — s7v decay yield constraints on the
quark-squark sector, the most stringent restrictions here come from what is already known
about K°-K° mixing. Let us elaborate on this last statement by following the treatment of
Hagelin et al [9.8]. At the one loop level the box diagram of Fig. 9.5 can induce an operator
such as CZL’)/ILSL gL’YMdL

S|_ a_iOL d|_
s G
() ~ D
9 9
T ..... __d;j<0 ........ T
L

Fig. 9.5 One loop squark induced K°-K° mixing

into the effective Lagrangian density contributing to the said mixing. From the product of
two squark propagators and four elements of the matrix U of (9.56) in this diagram, the
transition amplitude for s5.d; — drs;, picks up a factor®

R -
iU Uiy

§ : 18 d ' js
- kz—m2~+iez, k2 —m2 4 e’
7 d; d;

k being the loop momentum. We have set, all external momenta to zero because m?% < m~

Since the unitarity of U% makes this factor vanish in case mdﬁ is the same for d; = d, §, b, it
can be rewritten as
2

! ro (i -my ™),

(k% — m% + ie)t

7 gt
dr, dL 2
E Usi Uid Amd~

2

6We work in an interaction basis where the down quark mass matrix is diagonal.
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where mfi is an average mass squared for charge —1/3 squarks and mfzi = m% + Amfzi.
The aforementioned transition amplitude has the dimensionality of an inverse mass squared.
So after inserting the product of the two gluino propagators and four powers of the QCD
coupling strength g, and performing the loop integration, one is left with an amplitude

proportional to

. 2
gs CZL CZTL 2
6 E Ugi Ui Amyg.

)

13
where 7 = max (mg, My), i.e. the larger of the squark and gluino masses. With [Amg | ~
mg = O(10%) GeV, this yields a contribution which is three orders of magnitude larger than
that from the SM. The latter obtains through the replacement of the gluino lines by W*
lines and of the squark lines by wu;-quark ones in Fig. 9.5 and reproduces the observed value
of the K-Kg mass difference [9.13] rather well.

The above discussion raises an important question : how can such undesirable amplitudes
be suppressed in supersymmetric theories? The structure of the expression in the above
paragraph implies that there are basically three ways in which a suppression of the desired
nature can be achieved. One may also consider various combinations of these options. We
shall describe these three possibilities one by one. Note that we keep our focus on the quark-
squark sector here. Analogous arguments do apply to the lepton-slepton sector, though with
a certain simplification; flavor mixing among leptons can be neglected — at least in the limit
of vanishing neutrino masses. Thus constraints, from the yet unobserved p — ey decay and
muon conversion to electron in atoms, can also be taken care of.

The first choice is to make the prefactor in the said expression small, i.e. to take [9.14]
the masses of sfermions of the first two generations to be very large, in the multi-TeV range.
Of course, the naturalness argument, discussed in Ch.1, requires one to keep third generation
sfermion and Higgs boson masses at or below the TeV scale. However, the smallness of first
and second generation Yukawa couplings allows the choice of quite large masses for the cor-
responding sfermions without destabilizing the hierarchy’. This is a “brute force” solution
of the flavor problem, since all loop corrections involving internal first or second generation
sfermions and external fermion or gauge boson legs are then suppressed, including in partic-
ular those corrections that give rise to FCNC transitions. The prevention of unacceptably
large loop corrections from the hypercharge U(1)y D-terms to Higgs masses requires the
condition . Y,m; S O(1) TeV2. Another problem arises in any attempt to implement such
a spectrum at a ﬂigh energy scale: two loop contributions to the renormalization group
equations due to SU(3)q interactions tend to drive the squared stop masses to negative
values [9.15], leading to color and/or charge symmetry breaking. On the positive side, this
kind of model also easily satisfies constraints on flavor conserving CP violating amplitudes.
In particular, those from the yet unobserved electric dipole moments of the neutron and
electron are respected even though all soft supersymmetry breaking parameters have CP
violating phases of O(1). This kind of “inverted hierarchy” model sometimes goes under the
name more minimal or Effective Supersymmetry, since first and second generation sfermions
essentially decouple from physics at energies that will be accessible in the foreseeable future
at collider experiments.

"If tan 3 is small, the bg, 7 and h masses can also be made large.
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The second strategy [9.16] is to assume a (presumably dynamically generated) alignment
between the fermion and sfermion mass matrices so that both can be made diagonal in the
same basis. In fact, in that case the mixing matrix, appearing in the expression for the box
graph of Fig. 9.5, is diagonal. The expression then vanishes and the problem is solved. This is
actually only a partial solution, since, owing to nontrivial CKM mixing, /\/lg cannot commute
simultaneously with the u and d quark mass matrices (except when /\/lg- is proportional to the
unit matrix; this case will be treated below). As already stated (see also Table 9.1 below),
by far the most stringent constraints come from the kaon sector. Models of alignment hence
usually assume that Mg is aligned with the d quark mass matrix. Since CKM mixing angles
are in fact quite small, an approximate alignment with the u quark mass matrix then also
obtains. However, generically one would expect nonnegligible D°-D° mixing in this class of
models.

The third option is to assume a high degree of mass degeneracy, or universality of
masses, among sfermions with given SU(2);, x U(1)y quantum numbers (including electro-
magnetic charge) but occurring in different generations. In this scenario the K°-K° mixing
expression is suppressed because the Ami are very small. Large flavor mixing is possible

in this option if on-shell sparticles can be produced,® but FCNC amplitudes, involving only
SM particles as external legs, are suppressed by a super-GIM mechanism. In practice, it
suffices to assume a near mass degeneracy between sfermions of the first and second gen-
erations; experimental flavor mixing constraints on the third generation are weak, mostly
because the SM contribution to B%-B° mixing is quite large, and has a sizable theoretical
uncertainty. Indeed, with substantial L-R mixing, one may expect 7, b; and #; to be signif-
icantly lighter than the corresponding mass degenerate charge —1, charge —1/3 and charge
2/3 sfermions of the first two generations, respectively. Note that FCNC constraints do not
lead to any relations between, say, M2, ./\/lz~ and /\/lg«. As will be shown in more detail
in Chs.12 and 13, specific models with high scale supersymmetry breaking nevertheless do
usually imply a high degree of degeneracy between first and second generation squarks with
different SU(2),, x U(1)y quantum numbers. On the other hand, in such models exact uni-
versality only holds at a high scale. Quantum corrections will typically lead to deviations
from universality at the weak scale. We shall see later that many such models, while still
compatible with the present constraints, therefore predict significant new contributions to
certain FCNC processes. In the remaining sections of this chapter we shall hence present
Feynman rules for sfermion interactions allowing for a completely general mixing between
all six sfermions of a given electric charge.

Before coming to the Feynman rules, mentioned above, however, we would like to give a
more quantitative discussion of the bounds on flavor violation in the sfermion sector. This
can most easily be done using the mass insertion method [9.18]. In this approach one works
in a basis where the mass matrix of quarks of a given charge as well as the corresponding
quark-squark-neutral gaugino couplings are diagonal in flavor space. As a result, different
bases need to be used for problems involving external d-type or external u-type quarks.

Flavor violation is then described by flavor nondiagonal entries (Af;-)AB of the sfermion
squared mass matrices in that basis, where ¢ and j are generation indices and A, B € {L, R}

8The effects of such large mixing may be observable as slepton oscillations [9.17] in pp and ¢+ ¢~ colliders.
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labels the four 3 x 3 blocks in (9.48).

205

These off-diagonal entries are treated as two point

interactions in the perturbation expansion, leading to nondiagonal propagators with explicit
flavor offdiagonal mass insertions. The experimental constraints can most conveniently be

quantity r=0.3 r=1.0 measurable
\/‘%e((sg)h 1.9 x 1072 | 4.0 x 10~
‘%6(53 )2, ‘ 79% 107 | 44%x 1073 | Amg
\/‘%e 4 ),1(0%) RR‘ 2.5 % 1073 | 2.5 x 1073
\/‘%e 50.)2 46%10°2 | 9.8x 102
‘?Re((sfg)%R‘ 5.6x 1072 |3.3x 1072 | Amg
\/‘%e 09 10 (65 g ‘ 1.6 1072 | 1.8 x 1072
VIRe(6%)2, | 47%x1072 | 1.0 x 107!
VIRe(65)2 ] 6.3x 1072 | 3.1 x 102 Amp
\/|§Re (68) 0 (0%),e] | 1.6 x 1072 | 1.7 x 1072
Sm(6%) 1L 1.0x 107! | 4.8 x 107! e Jex
Sm(6%) 1k 1.1x107° [ 2.0%x 1077 e Jex
(6%) 11 4.4 8.2 BR(b — s7)
(0%) Lr 1.3% 1072 | 1.6 x 102 | BR(b — s7)
(6%,) 1L 4.1 %1073 | 7.7 x 107 | BR(1 — e7)
(0L 1k 14x10°% | 1.7%x 1075 | BR(jt — ev)
(6%) 1L 15 29 BR(T — e)
(6% LR 8.9 %1072 | 1.1x 10! | BR(1 — e7)
(6%) 11 2.8 5.3 BR(T — 117)
(0L) LR 1.7% 1072 [ 2.0 x 1072 | BR(T — 1)

Table 9.1. Experimental upper bounds [9.18] on flavor violation in the soft supersymmetry

breaking terms of sfermions.

expressed as bounds on the dimensionless quantities (55;)/13 . In the simplest case, (55-)1413 =

(A{;)AB/(E;

Zf')AB, where the

“average”

. . —f
sfermion squared mass is given by (m?;)ap

\/(Mzzi>AA(M§j)BB . Moreover, this formalism also allows the inclusion of higher order
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contributions. Thus, for instance, the second order contribution to ((55) rR 1s given by
i i —57 —5f
(A{k>RL(AIJ~:j>LR/ <(m2ik>RL(m2kj>LR>'

The experimental bounds on the various off-diagonal entries (@G)AB are summarized
in Table 9.1, which has been extracted from Ref.[9.18]. It has been assumed here that
each supersymmetric contribution separately satisfies the overall constraint on the quantity
indicated, i.e. “accidental” cancellations between different kinds of contributions have not

been considered. For simplicity, moreover, (5£)LR and (@G)RL are taken to be equal, though
the assumption could be avoided. The bounds on the slepton sector have been computed
from loop diagrams involving a photino, rather than treating the two neutral electroweak
gauginos separately. It is in this limit that the bounds on (5fj)RR are identical to those on

((5fj)LL that have been listed in the table. An analogous statement holds for the bounds in the
squark sector, which come from diagrams involving gluinos. All these bounds scale inversely
with the relevant sfermion mass. The numerical values, given in Table 9.1, assume a common
squark mass of 500 GeV and a common slepton mass of 100 GeV. Thus the bounds on ¢¢ scale
like m;/(100 GeV) while those on §7 (¢ = u, d) scale like m;/(5000 GeV). Note that we only
quote bounds from contributions involving flavor changing couplings to neutral gauginos
(gluinos or neutralinos) A% values are given for two values of the ratio x = (mso /T 5)°.
Each entry in the last column in this table indicates the physical measurable from which

the corresponding bound has been derived. Note moreover that the bounds on (5;;) rr and

((5{;)}3,; are equal to those on the corresponding (5{]-)”; and ((5{;)RL respectively. As mentioned
earlier, the most severe constraints exist on the mixing between first and second generation
charge —1/3 squarks. The constraint on the mixing between charge 2/3 squarks of the first
two generations is considerably milder. Furthermore, O(1) mixing between second and third
generation squarks is allowed in the LL or RR sector. The constraint on mixing between
left and right sfermions is often much more stringent than that on LL and RR mixing. The
reason is that the relevant effective fermionic operators leading to radiative decays treated
in the last eight rows of Table 9.5, break chiral symmetry, i.e. cause couplings between
left chiral and right chiral fermions, facilitated by the transitions between the corresponding
sfermions.

9.6 Interactions of Sfermions with Gauge Bosons

A sfermion participates in an MSSM gauge interaction in two ways: (1) as a member of a
sfermion pair and (2) along with another fermion. We shall take up (2) in the next Section.
Here we consider (1) and enumerate the different possibilities below.
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Slepton-slepton-electroweak gauge boson interactions

In this category come cubic/quartic vertices involving a pair of sleptons and one/two
EW gauge boson(s). The two sleptons could be various combinations of charged and neutral
ones while the gauge boson(s) would be correspondingly neutral and/or charged. These
interactions were covered earlier in (8.44b—d) and (8.47c-h), but we now describe physical
vertices with mass eigenstate sleptons and general mixing as described at the end of §9.4.
We can collect all such vertices in three groups.

(1) The first group (Fig. 9.6) consists of vertices which involve either only one (two) Z
boson(s) interacting with a sneutrino pair or only one (two) photon(s). These vertices

have the feature that the mixing matrices W/ cancel out. The crucial observation here
is that W/TW/ = 1.

(2) The second group (Fig. 9.7), comprising either a WTW ™~ pair interacting with two
sleptons or a Z interacting with a charged slepton pair, shows a nontrivial dependence
on the mixing matrices W/ only in the presence of left right mixing. Without such
mixing, i.e. if the 6 x 6 slepton mixing matrix has the form (9.56), flavor mixing would
again drop out, owing to the unitarity of the U matrices. On the other hand, if L-R
mixing is present, a nontrivial dependence on the mixing angle emerges even in the
absence of flavor mixing. The relevant Feynman rules for this case can be derived easily
from the general rules listed in Fig. 9.7, using (9.60). Notice that we have replaced
W7 by U” since in the MSSM no righthanded (s)neutrinos exist at the weak scale.

(3) All the remaining vertices, which are in general affected by generation mixing even in
the absence of L-R mixing, make up the third group (Fig. 9.8). In this case a nontrivial
dependence on the mixing angle will survive in both simplified scenarios discussed in
§9.4, i.e. (9.57) and (9.60). For the convenience of the reader we give both the W*[p*

and W~oul* vertices, which are related to each other by complex conjugation.

| Figs. 9.6, 9.7 and 9.8 are included in Appendix A |

Squark-squark-gauge boson interactions

The simplest set of vertices in this category are those that involve only squarks and gluons
in SQCD. The cubic §gg and the quartic GGgg vertices have already been fully discussed in
§5.5 and §8.4. Nothing needs to be added to those discussions, since the mixing matrices
will cancel out in these vertices.

Turning to cubic and quartic vertices of physical mass eigenstate squarks with electroweak
gauge bosons, we can again collect them in three groups as in the case of sleptons. However,
the first group — which is free from any mixing — now has only pure photon vertices, cf.
Fig. 9.9. The second group (Fig. 9.10), involving a WTW ™~ pair or one (two) neutral gauge
boson(s), at least one being the Z, shows a nontrivial mixing dependence only in the presence
of L-R mixing. Only the third group, containing a single W either by itself or in association
with a neutral gauge boson interacting with a squark pair, has the complication of both
types of mixing, i.e. generation as well as left right. These vertices are given in Fig. 9.11.
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As with sleptons, it is straightforward to derive the corresponding Feynman rules if flavor
or L-R mixing can be ignored, using (9.57) and (9.60), respectively.

‘ Figs. 9.9, 9.10 and 9.11 are included in Appendix A ‘

This brings us to the end of the discussion of sfermion-gauge boson vertices.

9.7 Fermion-sfermion-gaugino/higgsino interactions

Fermion-sfermion-chargino interactions

Let us first discuss the fermion-sfermion-chargino vertices in the “current” basis in which
generically fu, I fdi 1, are the left sfermions of the up, down type, fu, R» fdi r are the correspond-
ing right sfermions and f,,, f4, the corresponding fermions following the notation introduced
in §8.4. Our starting points are (1) the gaugino-sfermion-fermion interactions, as given by
expressions analogous to (5.55) and (2) the higgsino-sfermion-fermion couplings arising from
the superpotential (8.33). In the two component spinor notation used in previous sections,
the relevant part of the Lagrangian density reads

Loege = —0o (N €ty + N €h it + A €8, + 76,74
b B (a4 e )
" % (Piet s + hieo, i)
+ % (h251 &n+ My, sz) +hee. (9.63)

We have written out the squark and slepton terms separately. The first term in the RHS
of (9.62) describe the gaugino-fermion-sfermion couplings, while the last three terms corre-
spond to higgsino-fermion-sfermion interactions. The latter are proportlonal to fermlon mass
matrices and vanish in the limit of massless fermions. In this expression §Q and 5 I, ) are the
two component spinors representing the T, = 1/2 (—1/2) fermionic components of a chiral
SU(2);, doublet superfield such as @; or L; of (8.15)-(8.17). Furthermore, {5, and g, are the
fermionic components of SU(2);, singlet superfields. The four component Dirac spinor fields
corresponding to the various matter fermions are constructed out of {y,, &p,,r;,a,. $p;- €x,
(where e.g. £y, = fé?i and so on) as described in (3.20) of §3.2. For example, for the up type

quarks
u; = (g-?) : (9.64)
&

Recall that each of the singlet superfields E;, D; and U; contains the left chiral component
of the antifermion field. Let us define Dirac fields f,, 4, for general up, down type matter
fermions (covering both quarks and leptons) in analogy with the w; of (9.64). In terms of
these generic up, down fermions and sfermions and the four component wino and higgsino
eigenstates defined in (9.17), we can rewrite (9.63) as
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£ff~/*)2i = —092 [fuiPRS‘—i—fdiL + fdiPR(S\+>CfuiL]

gQ(mfd>ij
V2My cos 3
g2(my, )i
V2Myy sin 3
Of course, a sum over all fermions f,,., fs, covering quarks and leptons (and corresponding

sfermions) is implied. On utilizing (9.18) and (9.19), this Lagrangian can be recast in terms
of the chargino mass eigenstates )2?5, k=12, as

[fuiPRﬁJrfde + (ilJr)Cprdj f;L]

[fdiPR(il+)CijR + il_J“PRfuj }F(ZL] + h.c. (9.65)

Lifrge = —0o [Ukl]?uiPR)N(kJrfdiL + mediPR()N(;f)CfuiL]

92(mfd)ij
V2My cos 3

g2(my, )i
V2Myy sin B

In the supersymmetric limit the lepton-slepton-chargino vertices can be read off from
this expression, using (m.);; = m.,d;;, modulo é;-ép mixing in the slepton sector. However,
the existence of the soft supersymmetric breaking terms can change that. In case of the
quark-squark-chargino interaction, there is also the additional complication of generation
mixing which is present even in the supersymmetric limit. A further point to note in (9.66)
is the occurrence of ()ZZ)C The appearance of charge conjugated fermion fields is generic
in supersymmetric theories and gives rise to the explicit presence of the charge conjugation
matrix C in Feynman rules. The basic reason for the necessity of introducing these ugly
C-factors in Feynman rules is the following. In contrast with charged fermions in the SM,
charginos do not carry a “fermion number” like lepton or baryon number. The same field can
thus couple to @d and to dai. If the first vertex is written in terms of an incoming (positive)
chargino field, the second vertex has to be written in terms of the outgoing charge conjugate
of that chargino field (or vice versa).

We are now in a position to write down the interaction terms of (9.66) explicitly for
the quark/squark and lepton/slepton sectors in terms of mass diagonal matter fermion and
sfermion fields. We use quark flavor rotation matrices U“t:® and U%.%  introduced in Ch. 8,
as well as the sfermion rotation matrices U?, W¢, W% and W of §9.4. We employ i, j, k =
1,2, 3 as indices in generation space, while s = 1,...,6 labels charged slepton or squark mass
eigenstates. The physical quark masses are denoted by mgy, and m,,. Finally, quark/squark
fields are taken to be row or column vectors in color space. The quark/squark part of (9.66)
then reads (for simplicity we omit the superscript m denoting mass eigenstates)

Uy [fuiPRf(;jfde + quiL()z;:)CPRfdj]

+ Vie [JaPa(XD)  fuyn + Fi.iXE Prfus] +he. (9.66)

‘Cqélxi ﬂzCZLskPRJsX]: + JZDstkPRaé‘(XkJr)C

+ @l(HCER, Prd; + dix] FE, Pru; + hec. (9.67)
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with
ur,* gQZ/{kQ «
Cly = —golhia E' UMW+ oMy cos o5 2 § quLm Ut (9.68a)
% i V * UR* i

Dia = _gZV’“ZUdL RN Z\;Wk;nﬁ Z Vot “ma Ul Wihg o (9:68b)

ER — _ golhoma; E Ui (9.68c¢)
isk T \/_MW COSﬁ js Relel®
R _ 92V, P

Fl = NI, EyEpd E Uit Wi (9.68d)

The corresponding vertices are given in Fig. 9.12. It may be noted that left (right) fermions
connect to the left (right) components of the sfermions through the gaugino components
of the charginos, which are described by U;; and V. In contrast, the terms coming from
Yukawa couplings, which are proportional to a quark mass, couple a left (right) fermion to
the right (left) component of the corresponding sfermion. If squarks and quarks could be
aligned exactly (see §9.5), all combinations of quark and squark mixing matrices appearing in
(9.68) would reduce either to the unit matrix (in the right handed sector) or to the standard
KM matrix V% (in the left handed sector); however, as discussed earlier, alignment cannot
be exact in the u and d sectors simultaneously. Note finally that, as per the convention of
Appendix D of Haber and Kane [9.10], a charge conjugation matrix Q to the right operates

on the transposed @-spinor @’ or -spinor #7 while a Q ~1 to the left requires a transposed
v-spinor v’ or u-spinor u? to left multiply it.

‘ Fig. 9.12 is included in Appendix A ‘

We turn next to the lepton/slepton part of (9.63). It reads

‘Cez'xi = Uil PrX) + d58i Pr(X)© 1/]—|—ewk(xk) Pre;; + h.c. | (9.69)
with
L é g2Mle; é
L= gl WE 4 e e 9.70a
k golia \/EMW cos k2VVii3 ( )
i, 92Ul Vit (9.70b)
el = =2Me y,ur (9.70¢)

ak V2 My cos 3

The corresponding vertices are drawn in Fig. 9.13; they can be obtained from those of Fig.
9.12 with the replacements u — v, d — e, V¢ — 1, U, U Utr, Uln — 1, W — U?,
W? — We and m,, — 0.
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‘ Fig. 9.13 is included in Appendix A ‘

Fermion-sfermion-neutralino interactions

The neutralino-fermion-sfermion interaction can be written down in a similar fashion.
This time we need to isolate the a = 3 term from (5.55) for the SU(2) gauge group and the
U(1)y analog of the terms in (5.36) and express them in terms of the four component matter

fermions as well as the four component gauginos and higgsinos in the weak interaction basis,
defined in (9.30):

[’ff)zo = —V20fu Z fiPr [T3f5\3 + tan Oy (Qf — T:{)S‘O]

f=e,vu,d

+\/§gg tan 9W fo;}{;\oPth — \/ﬁMg—Zcosﬁ(m2>w |: hN[IJPLCZ}LRdt + CZjPLf;?CL'L
w

. g2 (m*

V2My sing "

_\/ng—Qcosﬁ(m:)” [ RO e, + éjPLhN(l)éiL] +hec. (9.71)
w

>ij [ f;gPLﬂ;Ruz + ﬂjPLﬂgﬂiL]

In (9.71) T{L and @ are respectively the third component of weak isospin and the electro-
magnetic charge of fermion type f and ¢, j are generation indices as before. In terms of the
neutralino mass eigenstates \?, (9.71) becomes

Lo = 2 N (G fil+ Gl finPa)
F=ud,e
g ), 2t o0 it 70
- m [(mu)ijZMUjRXl Pru; + (my,);; 2140, X; PRuj]
- m [(mé)ijzfad;;z)%_?&di + (md)ijZl:),d:-[L)z_?PRdj]
_ m[(mZ)ijZl"gé;Ri_?PLeﬁ(me)ijzlgé;Lg_?PRej]+h.c., (0.72)

where we have used (9.31). The coupling strengths GY* and G/* in (9.71) can be written as
Gt = —V2g, [T, Ziy + tan b (Qr — T 741 (9.73)

G{R = \/EgztanﬁwaZ”. (9.73b)

Once more, we can rewrite the interactions of (9.72) in terms of mass diagonal quark and
lepton fields by performing flavor rotations in generation space with indices ¢, j. Similarly,
the squark and slepton interaction eigenstates appearing in (9.72) can be related to the
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corresponding mass eigenstates through (9.54). The quark and squark fields are also three
component row or column vectors in color space. Altogether the relevant interaction terms
for the quark/squark sector can be written as (we again suppress the superscript m indicating
mass eigenstates):

Lo =N (G P+ G Pr)ilus + (G Py + G PR)dldi| +he. (9.74)
In (9.74) we have defined the couplings
3
o= Gt W“*U“L - —my. 7 U 9.75a
sl [ ]Zl 7t \/_MW sin 5 i <14 ]Zl ]—1—3 ( >
3
GiE o= GYRY W, UMR — —— Ty Yy WHUN (9.75b)
: : ; AR \/_MW sin 3 ]Zl e
3 g 3
Glo= GENTwEUl - Py 2N Wik, U 9.75¢
isl l ]Zl Jji \/EMW COSB d; ~13 ; j+3 s-ji ( )
€l BT NI 1 (N 5 J—L — AN | ' iU 9.75d
isl l Z Jj+3 s ji \/_MW COSﬁ d; 13]21 js “Yji ( )

where the coefficients G7* and G}* are as in egs.(9.73a) and (9.73b), respectively. Feynman
rules for the vertices of (9.75) are given in Fig. 9.14. An arrow has been put on the neutralino
line in conformity with the convention in Appendix D of the first paper of Ref. [9.10].

‘ Fig. 9.14 is included in Appendix A ‘

Let us remark once again that, in the limit of massless fermions, the higgsinos will
decouple from the matter fermion/sfermion sector. Note also that the couplings of neutral
higgsinos to quark mass eigenstates are proportional to the mass of that eigenstate. This is
in contrast to the couplings of the charged higgsinos, where heavy quark masses contribute
to the coupling of light quarks. However, due to the smallness of the KM elements mixing
the third generation with the first two, in practice one can still often neglect the Yukawa
contributions to chargino and neutralino couplings to first and second generation fermions.
In the alignment option of §9.5 the products of flavor rotation matrices can be put equal to
unity in either the up or down quark sector (but not for both simultaneously, as we noted
earlier). On the other hand, if squarks of all three generations are degenerate and LR mixing
can be ignored, all products of rotation matrices appearing in (9.75) collapse to Kronecker-ds,
where either i = sor i+ 3 =s.

Let us now turn our attention to the lepton/slepton sector. The interaction terms with
neutralinos can be written as

ﬁee = X7 |GLuPf Povi + (G5 P 4 Gl Pr)ée; | + huc. (9.76)

isl isl
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In (9.76) we have introduced the couplings

mo= GIUT, (9.77a)
e e * g2

G.L = G Le —m, 7 , 9.77b
isl X \/§MW coS B 13 t+3 s ( )
e e g2 %

Gk = GJ° — ., Z3W | 9.77c
isl z+3 s \/§MW cOS 6 i 13 ( )

The vertex Feynman rules appear in Fig. 9.15. In the alignment option, or if sleptons are
mass degenerate, the slepton flavor rotation matrices U” and W*? can be put equal to the
identity matrix, if ;- mixing is negligible. LR mixing can, as usual, be included in these
options by using (9.60). Once again an arrow has been put [9.10] on the neutralino line.

‘ Fig. 9.15 is included in Appendix A ‘

Quark-squark-gluino interactions

These are now different from the pure SQCD case, cf. (5.60) and Fig. 5.2. However, with
the armory of quark and squark flavor rotation matrices that have been developed already,
we can write the relevant interaction terms in a straightforward way as follows®.

Logs = V20, Y @ U WL PR — U W],y Pr| T34, + b (9.78)

q=u,d

We have again suppressed the superscript m denoting mass eigenstates, and have written
(s)quark fields as vectors in color space. The corresponding Feynman rules are given in Fig.
9.16; we have used them already in §9.5, in the basis where U% = U’ = 1.

‘ Fig. 9.16 is included in Appendix A ‘

Eqgs. (9.68), (9.75) and (9.78) are in a general basis of the quark and squark interaction
eigenstates. Not all the rotation matrices appearing in these equations are separately physical
quantities. Despite the occurrence of the matrices U*% and U“% in some of these equations,
one can only measure the products of quark and squark mixing matrices which appear in these
couplings. Note that exactly one factor in these products is always the hermitian conjugate
of a rotation matrix. This shows that only any misalignment between righthanded quarks
and “righthanded” (SU(2) singlet) squarks is measurable. That can also be seen by defining
U™ qir and U™ §ir as new “interaction eigenstates”. This redefinition does not modify any
of the gauge mteractlons in the MSSM Lagrangian. The righthanded quark mixing matrices
would then disappear from (9.68), (9.75) and (9.78); more exactly, they would be absorbed
in the squark rotation matrices W9, which are not invariant under this redefinition of the ¢z
“interaction eigenstates”.!” Indeed, practical calculations are usually performed in this basis,

9The s subscript of g, referring to the strong coupling, should not be confused with the squark mass
eigenstate label s.

00f course, products of rotation matrices that appear in couplings of mass eigenstates are invariant under
redefinitions of current eigenstates.
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because the relevant couplings are simpler than in a general basis. One can even go one step
further and chose the SU(2); doublet (s)quark interaction eigenstates in such a way that
either the up or the down quark mass matrix (but not both!) becomes diagonal. The only
quark rotation matrix appearing in the quark squark chargino/neutralino/gluino couplings is
then the KM matrix. Of course, such a procedure will yet again modify the squark rotation
matrices. In these bases our interactions are modified as follows: U#, U% — 1, and either
U’ — 1,U% — (V)' (in the basis where my is diagonal), or Ut — 1, U% — V4 (in
the basis where m,, is diagonal).

Flavor mixing in the fermion-sfermion-bosino couplings is of much greater phenomeno-
logical importance than the “super-CKM mixing” introduced in §8.4. The latter appears
in the coupling of W bosons to squarks and sleptons; the only process of current interest
where these couplings play a role is slepton production at hadron colliders, which is however
difficult to detect anyway (see §15.3). In contrast, the couplings listed in this section not
only determine the constraints on flavor mixing described in §9.5; they also largely determine
how sparticles decay. For example, the “flavor” of a squark is usually defined through the
quark to which this squark decays. However, in the presence of significant flavor mixing this
definition may not be unique: several different quarks might couple to the same squark mass
eigenstate. The relative branching ratios into different quark flavors may even depend on
the -ino that is produced in that decay. For example, different combinations of mixing ma-
trices appear in squark to neutralino plus quark decays, described by the Lagrangian (9.74),
than in squark to gluino plus quark decays described by (9.78). Conversely, these couplings
determine which (combinations of) flavors are produced in the decays of gluinos, charginos
and neutralinos. For example, (9.76) and (9.77) show that the observation of decays of the
type X) — X000, with [ > 1 and ¢ # (', would be an unambiguous sign for slepton flavor
mixing.

This completes our discussion of vertices with gauginos/higgsinos interacting with a
fermion-sfermion combination.

9.8 Quartic Sfermion Vertices

The final nongauge and nonHiggs interaction that needs to be discussed is the interaction
of four sfermions. These vertices appear e.g. in one loop corrections to sfermion pair pro-
duction processes, and in two loop corrections to reactions without external superparticles.
In (8.49) we gave the relevant part of the Lagrangian in the absence of fi-fr mixing. In
that case sfermion mixing matrices only appeared in the F-term (Yukawa) contributions,
and in the part of the SU( )z D-term that couples @y, to dy squarks, and 7 to é€f, sleptons.
However, since fr, and fp have different gauge quantum numbers, nonvanishing f7-fz mix-
ing means that sfermion mixing in general affects almost all terms in the quartic interaction
Lagrangian. This is true even for the SU(3)c D-terms, since the ¢ squarks reside in left
chiral superfields that transform as triplets under SU(3)¢, while the ¢}, reside in antitriplet
left chiral superfields: The SU(3)¢ D-term contributions from the two therefore differ by a
relative sign, as shown in (5.60). The only exception is the term involving four sneutrinos,
since the MSSM assumes the absence of SU(2), singlet sneutrinos with weak scale masses.
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The relevant part of the Lagrangian can now be written as

L= ) Z ) Y{fi, fo fos il fy oS5 F (9.79)
f1.f2,f3,fa

where the Y are constant (field independent) coefficients. In (9.79) the indices f; of Y have
been written in the form of arguments, rather than as superscripts or subscripts, in order
to avoid an excessive proliferation of subscripts. The sum in (9.79) runs over sfermion type
(@, j, é and 77), mass eigenstate labels, and color indices.

The Y coefficients of (9.79) are given explicitly by

9 3
~ax ~a ~bk ~ g ik *rril i * wp TR/ 0%
Y[ae, ag, ay',a)] = m Z Wi UﬁﬂLmukU;kR Wis UL my, UMEW o

w ig.klmn=1
g: 1 . o 1
+ Zs 5sv5tu - g(sstduv —4 Z WZZ*WJUQ u <VV2'21L;W]?L+3 t gI/ViQ;W]erS v>
i,7=1
2 2 3
g tan” Oy TR
b 2 (1 ) S Wi
ij=1
2 2 3
g5 tan” Oy, ik i G Tk i
+ ZT Z (Wit Wiy = W W) Wi Wi, (9.80a)
2,7=1
g2 3 : ; ~ ;
Jax  Ja  Jbx 7l w7 7d dp* dr,* *
Y[d‘; ,df,dz vd?}] - m Z Wii UikLmdeﬂf ng+3 thCzl;Uznﬁ mdegﬁngﬂ u
w i,7,k,l,mn=1
J: 1 S dvird Lo drrrd
+ Zs 5sv5tu - géstéuv —4 Z I/Vis*Wj-t:S i <Wiij+3 t gVVith-Hi v>
ij=1
2 tan’ @ i T T
2 (14 B0 S Wi
i,7=1
g2 tan® iy O PR Ford\ prde pid
+ T35 Z (I/Vi-l-3 Wiks — Wi VVZ’t) Wits Wiisw s (9.80D)
ij=1
Fox b 92 - i iyyrd* d i i detyrd
viae i & d) = =2 | Gudu =2 Y0 (WEWIW Wiy, + Wi Wi, W)
ij=1
2 ta 29 3 . . . -
- 2 (1— 5 W) > WEWEWWS,
t,7=1
2 2 3
g5 tan” Oy ik r e ;
+ ZT Z |:VVZQ; I/Viqu]d-i-Z% uW]d+3 v

ij=1

+2Wis Wiis (Wﬁf w4 owd Wi, )] . (9.80¢)
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2 3 . B
~ax 0 bx ~b _ 92 § : dx7rur UWR* 117U drrur* wR 1A%
Y[us 7dt’du ’uv] - 2M2 Sin25 I/Vzu Uzk mukUjk Wj—|—3 vVVltUlm mumUann+3 s
w i,j,k,lmn=1
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In (9.80) we have used s,t,u,v =1,...,6 to label sfermion mass eigenstates, i, j, k,l,m,n =
1,2, 3 are generation (or sneutrino mass eigenstate) labels, and superscripts a,b = 1,2, 3 are
SU (3)-color labels. Note that there are two different color connections for w*tid*d vertices,
as shown in (9.80c,d). These two color connections are equivalent for interactions of four
squarks of the same type, since they can be transformed into each other by simply exchanging
mass eigenstate labels, which are summed in (9.79). When computing the Feynman rules
from (9.79) and (9.80), care must be taken to symmetrize properly. The result is displayed
in Fig. 9.17.

‘ Fig. 9.17 is included in Appendix A ‘

We conclude with a remark (cf. ftnt.9). The mixing matrices appearing in (9.80) are
again not separately invariant under redefinitions of the “current” eigenstates. However,
the products of mixing matrices appearing in these expressions are invariant under such
redefinitions, since they describe couplings of physical particles (i.e. mass eigenstates).
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Chapter 10

HIGGS BOSONS IN THE MSSM

10.1 Higgs Potential in the MSSM

As discussed in Ch.1, low energy supersymmetry has been theoretically motivated to sta-
bilize the mass and the VEV of the Standard Model Higgs boson with respect to higher
scales. This makes the Higgs sector of a supersymmetric extension of the Standard Model
especially interesting. We have already shown in Ch. 8 that the minimal supersymmetric
model requires two Higgs doublets hyo (with D as an SU(2) doublet index and YV = —1,1

respectively):
h; hY h} hy
D _— 1) = 1 D _— 2 | — 2
v= ()= G) w=00)=(2) o1

We shall see in this chapter how these doublets lead to five physical Higgs particles h, H, A, H*
and what one can say about their masses and couplings [10.1], [10.2]. A noteworthy fea-
ture, specific to this supersymmetric extension, is that all quartic self couplings of the Higgs
fields get related to the gauge couplings of the electroweak theory. This is quite unlike in
nonsupersymmetric theories where the former are a priori arbitrary. This restriction is the
key to various mass bounds and relations [10.3] which exist for physical Higgs particles in
the supersymmetric extension of the Standard Model. A second important feature is that
the couplings of the neutral Higgs particles to quark mass eigenstates turn out to be flavor
diagonal. This happens because up type quarks obtain their masses purely from the VEV
vy/v/2 of hY while down type ones do so from the VEV v;/y/2 of hY. In the language of
Glashow and Weinberg [10.4] the Higgs sector of the MSSM is a special case of the ‘type 2’
two Higgs doublet model.

We have already given the MSSM superpotential and the soft explicit supersymmetry
breaking terms in Chs. 8 and 9 respectively. The tree level scalar potential is

V = Vsvusy + Vsorr , (10.2)

where Vsuysy was defined in (8.36) and Vsopr in (9.3). Recall that
Fiy = —0Wissw /0] |, Wussm = uHy-Hs — fLH-LiE; — fEH,-QD; — f1Q-HyU; . (10.3)

219
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As before, i, j are generation indices and, for any two SU(2)-doublet superfields A” and B”,
A-B = epp AP B¥. Moreover,

hk s (104&)

hy (10.4b)

where we are now using the subscript H to refer exclusively to the Higgs sector and £ is
summed. Needless to say, both D and DY will have additional bilinear terms involving
squarks as well as those with sleptons.

The tree level Higgs potential follows from (10.2) — (10.4) by inputting Vsopr from (9.3)
and utilizing the relation Tap-Tep = 204pdpc — 6apdep. Using the notation hfh = |h|?, it
can be written as

1 2
Vi = g(g}% + gg)(|h1|2 - |h2|2)2 + % |h]{h2|2 + |,u|2(|h1|2 + |h2|2) + VH,SOFT , (105&)

Virsorr = mi|hi|* + m3|ho|* + (miyhi-ho + hec.) (10.5b)

with coefficients m?, m3 and m?, = By, cf.(9.3), having the dimension' of squared mass. In

following the steps to (10.5), it may be noted that hy-hy = hlhy where hy = imyh? is an SU(2)
doublet with ¥ = 1. (10.5a) and (10.5b) can be rewritten as

1 2
Vie = (6% + ) (il = 1o+ L ol 2 o P iy ol + (o + hoc.), (10.6)

where
mi% = m%,z + |M|2 . (10.7)

The sign of the last RHS term in (10.6) has been chosen with care. It will be seen later that
m?, = By is expected to be positive.

10.2 Spontaneous Symmetry Breakdown and VEVs

A Higgs induced spontaneous symmetry breaking will take place if the minimum of Vy is
attained at nonzero values of the Higgs fields:

(hy) = % (%1> () = % (i) | (10.8)

In (10.6) one can? always absorb a relative phase between h; and h, by redefining one of
them with an additional phase; this freedom enables us to define v; ;, as real and positive

'We remind the reader that B is a soft supersymmetry breaking parameter with the dimension of mass,
while p is a supersymmetry invariant (higgsino mass) parameter.

2Any VEV for one charged Higgs field can be rotated to zero by an SU(2) transformation and then the
minimization condition means a vanishing VEV for the other charged Higgs. This is a consequence of inbuilt
U(1)em invariance which thus remains unbroken.
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and also to treat m?, m3 and m?, as real. Recall from §8.2 that these VEVs can be related
to the W and Z masses by

2 2\1/2
M = 202 402 2y = I gy (10.9)
i.e.
(02 4+ 02)'? = (V2Gg) ™" ~ 246 GeV. (10.10)

Let us consider the parameter tan 3, as introduced in (8.24), namely
tan § = vy /vy. (10.11)
Now, our phase freedom to define v, » as positive restricts 5 to the range
0<p<7/2.

Though tan 8 will generally be left undetermined in this book, current theoretical widsom
suggests [10.5] that the value of tan /3 is restricted to the range 1 < tan 8 < 60. The lower
and upper bounds both stem from the desired requirement (cf. Ch.11) of radiatively induced
electroweak symmetry breakdown by which one of the eigenvalues of the neutral Higgs mass
squared matrix, evaluated at vy = 0 = wvy, is driven to be negative by the top Yukawa
coupling via Renormalization Group Evolution. They come also from the requirement of all
the couplings participating in the RGE equations remaining perturbative upto a high grand
unifying scale like 2 x 10' GeV. These issues, including additional experimental constraints
on tan 3, will be discussed more thoroughly in Ch.11.

Near the minimum, characterized by the VEVs (h{ ) = v12/v2, (hi) = 0 = (h3), it is
sufficient to explore the Higgs potential retaining only the neutral Higgs fields. This part of
the Higgs potential can be written from (10.6) as

1
Vi = (6% + BRI — 1BSP)2 + mid 182 + m3 WS — i (RIS +hc) . (10.12)

where the negative sign before the last RHS term proportional to m?, has arisen because
€12 = —1. The quartic terms in (10.12) vanish along |h)| = |h}|. By further choosing
hY = £hY, we see that the fact that V) must be bounded from below requires that

m3, +my, = mi +ms +2|u> > 2|mi,| . (10.13)

Because of quantum corrections and renormalization group evolution (cf. Ch.11), mf,, m3,
and m?, become running quantities — varying with the energy scale, cf. §6.9. However,
(10.13) has to be valid at all scales. On the other hand, the quadratic part of V3 can be

written as 5 2 0
uaar. * m -m h
sy gy (M ) (), s

—Miy My,
For the nonzero VEVs v; 5 to develop, at least one of the eigenvalues of the mass squared
matrix in (10.14) has to be negative. Since (10.13) requires the matrix to have a positive
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trace, one is led to the necessary condition for spontaneous symmetry breakdown that its
determinant be negative, i.e.

miy > miymay, = (mi + |uf*)(m3 + [l - (10.15)

(10.15) is valid only at and below the energy scale where the spontaneous breaking of elec-
troweak symmetry becomes operative. Furthermore, (10.13) and (10.15) become mutually
incompatible in the supersymmetry invariant limit when m?, = m3, = p?. Hence there
is an intimate connection between the breaking of supersymmetry and that of
electroweak symmetry in the MSSM.

Let us return to (10.6) and explore Vj at its supposed minimum, i.e. at hy s = (hy2), as

given by (10.8). Thus

1 1 1
Vir™ = 35(9v + 3) (vf = v3)” + Smiy vl + Smayvs = miyoivs (10.16)

The consistency conditions for the above mentioned minimum is the vanishing of V7" /0v,
and OV /Qvy. These respectively imply the relations

9 U2 1

mi, = mnv_1 - 5(932/ +g3)(vf —v3) (10.17a)
2 21, 1o, 20,2 _ 2
Man = Mz~ + gy +a2) (i —v3) . (10.17h)

By using (10.7), (10.10) and (10.11) in (10.17), the latter can be recast into the following
equations:

—2Bp = —2mi, = (m? —m3) tan 23 + M%sin 23 , (10.18a)
1
|1|? = (cos 28) ™ (m3sin® B — m? cos® B) — §M§ : (10.18hb)

10.3 Higgs Masses at the Tree Level

Though we shall see in §10.6 that there are significant radiative corrections to Higgs masses
in the MSSM, we first discuss their tree level values here. The mass squared matrix of the
Higgs scalars can be obtained from the quadratic part of Vg, i.e. V}(IZ) = %mfm@qﬁm with

, ] 0V

where ¢; is the generic notation for the real or imaginary part of any Higgs component field
and the double derivative is evaluated at the minimum. The 8 x 8 Higgs mass squared matrix
then breaks up diagonally into a set of 2 x 2 matrices.
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Charged Goldstones and Higgs

The total charged Higgs mass term, obtained by using (10.8) in (10.6), is given by

d
V};]j:a ro_
(R h3) (m%h * %(g% ;—g%)l(vi —u3) + ig%v% 2 1 ;n%Q —2 ig%msz 12 2> (hl_>
Lo mis + 7950102 my;, — 59y +93)(vi —v3) + 79507 hy

2 2 —

m12 ]_ 2 + + U2 V1VU2 hl
= - hi™ h L 10.20
<0102 + 492> (" hy) ooy 03 hy ) ( )

where — in the last step — eqs. (10.17) have been used. The vanishing determinant and the
nonvanishing trace of the matrix in the RHS of (10.20) imply massless as well as massive
charged modes. The former are the Goldstone boson pair G* which combine with the
massless W¥ to give them mass. The latter pertain to the physical charged Higgs particles
H*. Thus one has

mie =0, (10.21a)
mi, 1
It follows from (10.20) and (10.11) that the corresponding mass diagonal fields are
H* =sin 3 hi +cosf hy | (10.22a)
G* = —cos B hi +sin 3 hi | (10.22b)

The couplings of G* in a general R-gauge are given in Ref. [10.1]. However, we formulate
our discussions in the unitary gauge where G* are set equal to zero.

Neutral Goldstone and CP odd Higgs

Choosing ¢, in (10.19) to be Im h?z, we have the corresponding mass squared matrix:

Mgy, po =
<m%h + %(Q% JFQQ%)(U% —3) ) . 2”””%2 N > = m2, (Uz/v1 1 >
mys map, — g(gy + g3)(vi — v3) 1 V1 /vy
(10.23)

once again using (10.17). As before, the vanishing determinant and the nonvanishing trace
imply a massless neutral Goldstone mode G (which combines with the massless Z) and a
neutral scalar which is CP odd on being a linear combination of the imaginary components
of the neutral Higgs fields. In fact, we have

mze =0, (10.24a)

2
my = 2 (2 4 g2) = S 2 (10.24b)
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N.B. since sin 23 is restricted to be positive, (10.24b) makes sense only if m?, is positive —
at least at electroweak energy scales. This is the explanation of the choice of the sign of the
last RHS term in (10.6). The mass diagonal fields corresponding to (10.24) are

7 = 3m hisin B+ Sm h)cos 3, (10.25a)
GO
7= —3m A cos B+ Im hYsin 3 . (10.25b)

In the physical basis, the CP odd neutral Higgs mass term in the Lagrangian density becomes

s (" a) (9)

and the correct normalization of m? in (10.24b) can be checked from this. The couplings
of G® in a general R-gauge can be found in Ref. [10.1], but again, in the U-gauge of ours,
G =0.

Neutral CP even Higgs

Turning to the Re h(l),2 components, we find the corresponding mass squared matrix in
an analogous way to be

md . = L (meh oV + ) Bed — ) 2y — quia(ey +63) )
‘ 2 —2miy — 3v1v2(9y + 93) 2m3y, + 1(9v + 93)(3v3 — v{)
B m? sin® B+ M%cos> 3 —(m? + M%) sin B cos 3

— \—(m% +M2)sinBcos B m%cos? B+ Misin?p )’

where (10.10), (10.17) and (10.24b) have been used. The eigenvalues of the matrix in the
RHS of (10.26), standing for the tree level physical squared masses of the two CP even Higgs
scalars (H,h) of the MSSM, are

(10.26)

1
migp = 5 [ + M & {(m + M7)* — AM7m? cos® 28}177] (10.27)

In (10.27) we have defined H to be the heavier of the two, i.e. m;, < mpy. The corresponding
mass diagonal fields are

1 U1 1 .
—H=Reh? — —=)cosa+ (Re hd — —uy)sina , 10.28a,
\/5 ( 1 \/5) ( 2 \/§ 2) ( )
1 1
—h=—(Re h - 2) sina + (Re h) — —=wvy) cos . (10.28b)

V2
A B), the angle of rotation « in (10.28) is

V2 V2

Referring back to the matrix of (10.26) as B C

seen to obey the relations [10.1], [10.2]
2B __my+my
VA=-CP+4B2  mp—m;

sin 20 = sin2p , (10.29a)
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A-C 2 — M2
cos2a = = _m; 500325 ,
V(A—=C)? +4B2 my — mj,
m; +m? m% + M}
tan2q = —h L T H 4 on928 = A T T2 40195
an 2q Z_M%anﬁ mi_M%anﬁ

Since 3 is in the range 0 < 3 < 7/2, (10.29a) restricts « to the interval
—r/2<a<0.
A geometrical depiction is given in Fig. 10.1. Note that we always have

sin(f — a),cos(B+a) >0 .

hS h
7] R ot
I e

| H

Fig.10.1. Geometrical depiction of physical CP even neutral Higgs states.

Relations and constraints
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(10.29b)

(10.29¢)

The Higgs mass spectrum is completely controlled by two new parameters which can
be taken to be m, and tan /3. These strongly influence the other masses, e.g. m;, — 0 if
ma — 0. The following tree level relations and constraints [10.1-10.3] emerge from (10.21b),

(10.24b) and (10.27):

2 2 2 2 9
miyx = m>y + My, > max (My,,m%) ,

m; +m7 =m% + M, |
my, < min (ma, Mz)| cos25| < min (ma, Mz) ,
mpg > max (ma, Mz) ,

mi, (M7 — mj)

mi(my —mp)

cos’(B —a) =

(10.30a)
(10.30b)
(10.30c)
(10.30d)

(10.30e)

Thus the charged Higgs bosons H* are predicted to be heavier than the W. Of the CP
even neutral ones, one light Higgs h is expected to be lighter than the Z and one heavier H
is expected to exceed the Z in mass. The mass of the CP odd Higgs A is expected to be
between those of the two CP even ones. The contents of (10.30c) and (10.30d) are illustrated
in Fig. 10.2 below where my. and mpy. are the absolute (f-independent) upper and lower
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bounds on my, and mpy respectively. For large tan 8 (i.e. |cos2f| — 1), my saturates my.
from below and my comes down to mp. from above. These are all tree level predictions;
we discuss radiative effects on these mass bounds in §10.6.

My>

Mp<

| m A

Fig.10.2. Tree level upper and lower mass bounds on h and H as a function of m 4.

10.4 Higgs-particle Vertices

The electroweak parameters of the Standard Model, together with tan 5 and «, completely
determine the couplings of the physical Higgs particles to the Standard Model gauge bosons
and fermions. We shall first discuss those and then come to Higgs self couplings. A discussion
of Higgs couplings to sparticles is relegated to §10.5. In (8.32) we have already given the
Higgs contribution to the supersymmetric part of the MSSM Lagrangian density. From this
one can obtain all the Higgs couplings to fermions and gauge bosons in terms of the originally
introduced but unphysical Higgs fields h[i2 and hfZ. The conversion to couplings with mass
diagonal Higgs fields can be easily done through the transformations (10.22), (10.25) and
(10.28). One should also put G* = 0 = G° in the unitary gauge which we choose. For
simplicity, we confine ourselves to one generation of up and down type fermions (masses

f ul
far

Generation effects can be obtained by interpreting m,, 4 as 3 x 3 diagonal quark mass matrices
and multiplying the charged Higgs coupling to fermions by the Cabibbo-Kobayashi-Maskawa
matrix V.

The Higgs-fermion-antifermion Yukawa interactions can then be written as

m, and mg respectively): fr = < > . fur, far, where f covers both quarks and leptons.

gamyq 1gamg tan 3 _
Ly QMWC()Sﬁzfdfd Hcosa — hsina) + W;fd%fdfl
g2y . . igamy, cot
_m ; fufu(Hsina + hcosa) + oA, Z Fuvsfud
+ 92 Z [H+fu(mu cot f P, +mgtan 8 Pg)fq+ h.c.} , (10.31)
V2 My 7

with f being summed over quarks and leptons. The corresponding vertex couplings (7 times
the coefficients of the interaction terms in L) are given in Fig. 10.3. We do the same for
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the trilinear gauge-gauge-Higgs and Higgs-gauge-Higgs as well as the quartic gauge-gauge-
Higgs-Higgs vertices instead of writing out the algebraic expressions in L.

‘ Fig. 10.3 is included in Appendix B ‘

We can make the following comments on the couplings of Fig. 10.3.

e Tree level Higgs couplings to fermions are parity conserving and that of A to matter
fermions involves a 7;. That is why, in contrast with the ‘scalars’ h and H, A is
sometimes called the ‘pseudoscalar’ Higgs. But, in the presence of CP violation, loop
effects can mix the ‘scalar’ and ‘pseudoscalar’ Higgs bosons, especially since the MSSM
admits additional sources of CP violation beyond the CKM phase.

e The parameters m, and m, refer to masses of up and down type quarks respectively
for each generation.

e Bose statistics forbids the ZHH and Zhh trilinear couplings, while any ZhH coupling
is forbidden by CP invariance. Since the latter is violable, a ZhH coupling could exist.

e The absence of any tree level ZW*HT or yW*HT coupling is not surprising since
neither can occur [10.1] in any model containing just SU(2);, doublet and singlet Higgs
fields.

e The couplings for the vertices (W*W~h and WHW~H), (WTHH~ and WThH"),
(ZHA and ZhA), (ZZH and ZZh) and (ZZh and ZhA) are pairwise complementary,
i.e. if one is suppressed by the combination of mixing angles, the other is nearly full
strength.

e For large tan 8 and moderate «, the neutral CP even Higgs couplings with the down
type fermions get enhanced relative to those with up type ones. For the CP odd Higgs,
this statement is true independent of «.

Turning to the self couplings of the Higgs bosons, we notice that they follow from the
Higgs potential Vg of (10.5) on using the formulae for the physical Higgs fields, namely
(10.22a), (10.25a) and (10.28). Following Ref. [10.1], one can introduce the convenient
differential operators

Dy = (V2) Ycosa(d/0h® + 8/0n%*) + sin a(d/dhS + 8/0nS*)] ,
D, = (V2) '[-sina(d/oh) + 0/OhY*) + cos a(d/OhS + 9/ORS)] ,
Dax = (V2) ti[sin (9/0h) — 3/dhY*) + cos B(D/OhY — B/INS)] |
Dy- = sinf 0/0hy + cos 3 0/0h,

Dy+ = sinf3 0/0hi + cos 3 9/0h; .
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Now the cubic and quartic vertex factors listed beside each vertex below (with legs, a,b, ¢
spanning h, H, A and a,b,c,d spanning h, H, A, H¥) can be obtained respectively from
D,DyD. Vi and D,D,D.DyVy evaluated at (h)) = vy /v/2,(hy) = 0 = (h$), (hY) = vo/V/2.
We list these cubic and quartic self coupling vertices of the physical Higgs bosons in Fig.
10.4.

‘ Fig. 10.4 is included in Appendix B ‘

The decoupling limit in the Higgs sector of the MSSM is attained [10.5] by taking m4
to be very large : ms — oo. (In practice, this usually obtains once my exceeds 250 GeV).
From (10.27) and (10.30) we now have the results

my, — My|cos28|, cos?2B — m} /M, (10.32a)
m3 — m?4 + MZsin?28 (10.32D)
|cos(B — )| — MZ|sin4p]/(2m?%) . (10.32¢)

In this limit we have my ~ my ~ mpg+ and cos(f — o) ~ 0, i.e. f—a — 7/2 and
sin a >~ — cos 3 up to corrections O(M2%/m?). Thus the lightest Higgs particle h saturates?® its
upper mass bound M| cos 23| while the other Higgses all become uniformly heavy. Moreover,
a perusal of the gauge couplings of the Higgs particles, all described above, shows that the
vertices HW*W, HZZ, ZAh, W*HTh, ZW*HTh and yW*HTh are all proportional to
cos( — a) while the vertices hZZ, ZAH, WTH*H, ZW*HTH and yW*HTH are all
proportional to sin(f — «). Hence any vertex involving at least one vector boson and exactly
one heavy Higgs particle (H, A or H*) vanishes as cos(3 — a) when m4 — oo. Turning to
matter fermions, the coupling strengths of the CP even neutral Higgs scalars to down type
and up type fermions — relative to those of the Standard Model Higgs — are given below

hfifs: — 5B sin(f — a) — tan fcos(f — ) , (10.33a)
hfufu: C?Sg =sin(8 — a) 4 cot Bcos(f — a) , (10.33Db)
Hfqfa szg = cos(f — a) + tan Bsin(f — a) , (10.33c)
Hfufu: :Eg = cos(f — a) — cot fsin(B — a) . (10.33d)

Fig. 10.3 and (10.33) imply that, in the decoupling limit |5 — a| — m/2, the couplings of
the lightest Higgs scalar h to fermions and gauge boson pairs are identical to those of the
Standard Model Higgs. Likewise, Fig. 10.4 shows that the self couplings hhh and hhhh also
reduce to their SM values in this limit. Thus, for a heavy A with m4 > My, the effects of the
extra scalars H*, H and A in the MSSM decouple and the residual scalar h, while saturating
its appear mass bound, looks just like the SM Higgs boson ¢°. The onset of decoupling is

3The reader is reminded that the present discussion is at the tree level.
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controlled by (10.32c), and is depicted in Fig. 10.5 where the functions sin*(3 — ) and
cos?( — a), i.e. the squared coupling strengths of h and H respectively to WW (cf. Fig.
10.3) relative to that of the SM Higgs, are plotted against m, for two characteristic values
of tan 5. Though the tree level results, mentioned above, change somewhat on account of
radiative corrections (cf. §10.6), this last statement remains valid. The low energy effective
scalar sector of the MSSM indeed becomes indistinguishable from that of the SM in the
decoupling limit, except that, unlike in the latter, the mass of the lightest Higgs particle
perforce remains bounded from above.

sin®(8 — a)
08
MSSM Higgs couplings

0.6 - tan§ =3 ——

tan 3 =30 ------

04

0.2 F

cos’(B — a)

my [GeV]

bt Tl L
100 150 200 250 300

Fig.10.5. Squared coupling strengths of h and H to WW |, relative to that of the SM Higgs, as
functions of m 4, courtesy A. Djouadi.

10.5 Higgs-sparticle Vertices

Higgs couplings to neutralinos and charginos

The couplings of the Higgs bosons to the electroweak neutralinos and charginos originate
from the gauge strength Yukawa couplings of gauginos to the scalar and fermionic component,
of a given chiral supermultiplet. In two component notation these are given by the last RHS
term in (5.36) for abelian interactions, and by the fifth RHS term in (5.55) for nonabelian,
presently SU(2), interactions with the Higgs superfields H; and H; being the relevant chiral
superfields. The corresponding terms in the interaction Lagrangian density can be rewritten
in terms of the four component gaugino and higgsino fields of (9.17) and (9.30) by using the
identities (3.28a,b) and (3.29a,b) to obtain the result

V2
Y (\/§E+PRX+ _ i}gPRig) v hd

Lue = —2 [h? (E_?PRX3 + \/§S\_+PRB+> +hy <\/§B_?PR5\+ - 5\_3PR71+)
(ilJrPRS\S + ﬁjx_*PRilg)]

_% (14 Prdo + n33PRAG — BRS PR — by doPrh* ) + hic. (10.34)

Finally, we use (9.18), (9.19), (9.27), (10.22a), (10.25a) and (10.28) to express (10.34) in
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terms of chargino, neutralino and Higgs mass eigenstates:

. 1— .
Lusy = —g2(Hcosa — hsina) [Xk (PrQrm + PrQr.) Xoh + 2xn (PrQ", + PLQY) 0}
o 1—
—gs (Hsin v + h cos ) [)2: (PrSkm + PrSE0) XoH — 2 X0 (PpS"y + PLSI™) ¥ ]

—1goA {Xk [Pr (Qrm sin 8 + Sgm cos 3) — Pp (Q,,sin B+ iy cos B)] oy
]'~_ " . 1 lIE] % ~
—1—5)(2 [Pr(Q,,sin B — S/, cos B) + Pr (S, cos B — Q) sin 3)] X?}
_ [gQH*y(_? (PrQiF + PLQE) T + h.c.] . (10.35)

In (10.35) we have introduced the following quantities:

Qrm = \/—Vmumz : (10.36a)

Skm = kaguml : (10.36b)

Qif =sin 3 [Zz:sum - ﬁu,ﬁ (Zp5 + tan QWZ”)] , (10.36¢)

Ik =cosf3 [z;;v;l + %v,:g (Z}, + tan ewzg;)] , (10.36d)

Qu = % [Zn3 (Z1o — tanOw Zpn) + Zi3 (Zna — tan Oy Z,1)] (10.36e)
St = % (Zna (Z1o — tan 0w Zpy) + Ziy (Znz — tan Oy Z,,1)] - (10.36f)

We have closely followed the notation of Ref.[10.2] in defining the above quantities. The
only difference is an overall factor of g, in the definition of Q"% and Q' which have been
put in order to conform with the convention used for the other coefficients in the interaction
Lagrangian density (10.35). The corresponding Feynman rules are given in Fig. 10.6 in the
Appendix, the only nontrivial feature being an extra factor of two in vertices involving two
Majorana (neutralino) fermions.

‘ Fig. 10.6 is included in Appendix B ‘

Recall from Ch.9 that Ui, Vi1, Zr1 and Zyo label gaugino components, while Uyo, Via, Zi3
and Zy4 label higgsino components. Thus eqs. (10.36) clearly reflect the origin of the quanti-
ties defined from Higgs—higgsino—gaugino interactions. These couplings are not proportional
to the masses of the corresponding charginos and neutralinos. In fact, as discussed in §9.2,
gaugino—higgsino mixing in the chargino and neutralino sectors is often suppressed. The neu-
tral Higgs bosons will then predominantly couple to two different charginos and neutralinos.
However, chargino and neutralino final states can nonetheless play a prominent role in the
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decays of the heavy neutral Higgs bosons A and H if my, myg < 2m; and tan S is not large.
Conversely, final states containing the light neutral Higgs boson h can play an important role
in the decays of the heavier neutralinos and charginos into lighter ones. On the other hand,
the lower bound Mg+ > 100 GeV, which comes from chargino searches at LEP, implies that

the decays H~ — Y\, X} can dominate only over the small region of parameter space where
Myt +mgo < my+ <My + My, Indeed, LEP searches imply that Myt +mgo > 140 GeV, if
the “gaugino mass unification condition”, cf. (9.21), holds. Finally, note that the couplings
of h, H and A would be scalar and pseudoscalar respectively, were all rotation matrices in
the chargino and neutralino sector strictly real.

Sfermion Higgs couplings

The couplings between Higgs bosons and sfermions receive contributions from the super-
symmetric F- and D-terms in the scalar potential, as well as from trilinear soft supersymme-
try breaking terms. The same terms also contribute to sfermion mass matrices and have been
collected in (9.42) and (9.45) for sleptons and squarks respectively. We use (10.22a), (10.25a)
and (10.28) to move to the Higgs mass eigenstate basis. The quartic F- and D-terms then
also give rise to trilinear interactions of a single Higgs particle with two sfermions, due to
the VEVs of the neutral components of the Higgs fields. We first present the relevant pieces
of the interaction Lagrangian density in the current basis for sfermions. This allows easier
comparison with results in the literature. Moreover, as discussed in §9.5, in many realistic
SUSY models intergeneration sfermion mixing can often be neglected, in which case the mass
eigenstates are essentially equal to current eigenstates. For ease of presentation, we show
the trilinear and quartic interactions of Higgs bosons with sleptons and squarks separately.
For any angle ¢, we use s4, ¢4, ts and (ct)s to mean sin ¢, cos ¢, tan ¢ and cot ¢ respectively,
except that the corresponding symbols for Oy, are sy, ey, ty and (ct)y respectively. The
results for the relevant cubic and quartic interactions are

L7 = g2 H+{’7;éjR [M (me)ij - (meAe*)i]’ tﬁ]

V2My
+0; €1 [(meml>ij tg — M%V&-jsw] }

92 ~:LéjR |:(meAe*>ij (HCQ - hsa - ZASﬁ)

QMche

+p(me);; (Hsq + heg + iACﬂ)] + h.c.

9 e s L
+ WQCQ [eiLejL (meml)ij + €iREIR (mlme)ij] (hSa — Hca)

M N -
P (i — Hetum] 32 10 (14 ) — foul? (1 #)

3

—2|Eir|* thy] . (10.37)
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Ly = - H+{aILCZJ'R [“ (ma);; — (mdAd*>ij tB]
e ()5 — (muAY), (e)s]

[
+iildjr {(m“mL)ij (ct)s + (mdmL)
(

tg — M3v5z'j82/3]
)

m/mq),. (5 + (ct)p) }

[CZILCZjR{ (mdAd*)ij (Heq — hsq —iAsp)

+p (ma);; (Hsa + heo + iAcs) } + h.c.]

+ 5 z\j;sﬁ [ajLajR{ (M, A", (Hso + heo — iAcy)

+p (my);; (Heq — hsa + 1Asg) } + h.c.]

92
MWc,g
92
MWs,g

+  g2(Mw /2) Z {Wz‘ﬂg (1—t3/3) = |d

(hso — Hey) {Jgﬂzﬂ (mam}) -+ ddin (mhma) ]

]

(Hsq + heg) [a;[LajL (mumL)ij + a;[RaJ'R (mLm“>zg]

Y1+ 3)

1L

)

diR

2
+(2t%/[//3> <2 |aiR|2 — >:| [hS(OH,B) - HC(Q+B)] . (1038)

S — 92 + % s 58 f .
£HHZZ - ml—[ v; 6]'L{% (meme>ij (HCOc - hSa + ZASﬂ)

— M by [H(ais) + hears) — iAcss] |+ he.

(H?c, + h?s., — Hhsyo + A°s3)

' [é:(Lé’]L (meml)ij + érRéjR (mlme>ij:|
2t2
— ﬁ[’]*’[—]_ |:I7,L*I7] (mem};)ij + ér);RéjR (m};me)ij]
2

+ 2 (1 = H?) oo+ 2Hhssq + Acyg]
Z [|77i|2 (1+1t5) — Bk (1—t3) — 2t |éiR|2]
2
P2 [+ Hcop S 1l (1=13) = el (L+£) + 25 [6rl*] . (10.39)

%

4
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2
g ~t 3 Cp .

Lyngz = WHJF{UILCZJ'L[ (mumL)ij % (Hsq + heq — 1Acg)

+ (mdm2> - i—g (Heo — hsy + 1Asp)

2] ﬂ

— My 0ij (H(a45) + he(ass) — iAcs) ]

- 2
+ilpdir [He 5 = hsa-p] — (mima),; } + hec.

S23

2
95 2 92 2 2 2 2
_ 4M5Vc§ (H c. +h’s. — Hhsao + A 8[3)

. [JILCZJ'L (mde i +lpdin <m£md)ia}

9
4M 5[, s%

(H?s2 + h*c + Hhss, + A2c§)

. [QIILQNL]'L (mumfl)ij + QNL}LRQE]‘R (mLmu)w]

9
22,

H+H_ |:ﬂILﬂjL <mdm2)ij t% + CZILCZ]'L (mumL)ij (Ct)%
+€LZR&jR (mLmu)ij (Ct)% + dIRde (mLmd> t%:|
ij
2
+ L0 = H?) 30 + 2Hhs30 + A0y

8

>3 {|a,»L|2 (1—#3/3) — |d

~ |2
L
7

(1 + t2w/3>
2 ~ 2 2
+(2ty /3) | 2ltir]” —
g% § : ~ 2 1 2
— ZHJrHiCQg - |:|U1L| <1 + gtw> —

(28 /3) (2 anl? —

diR

2

(1 =1 /3)

2)] | (10.40)

e The hermitian conjugation in these equations acts only on terms to the left of the
h.c. as written, terms to the right being already hermitian after summation over the
generation indices 7 and j.

diL

diR

The following points about (10.37)-(10.40) are noteworthy:

e The coupling of one Higgs boson to two sfermions is again not proportional to the
sfermion mass. In the case of third generation sfermions the usually most important
contributions to such a trilinear coupling are those proportional to g or one of the
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A—parameters, since the absolute values of these quantities can be significantly larger
than My, . Indeed, in principle, such couplings offer the only direct experimental access
to the A—parameter. In practice, however, these couplings are difficult to measure
since they involve three as yet undiscovered particles.

e The only significant contributions to the Higgs couplings to first and second generation
sfermions are the pure gauge terms. In contrast, the quartic interactions of third
generation sfermions are often dominated by contributions proportional to mfc

e The F-term contributions to the couplings of SU(2)r-doublet, “left chiral” sfermions
are proportional to mfml, while those of SU(2)-singlet, “right chiral” sfermions are
proportional to m;mf. This is analogous to the LL and RR entries of the squared

squark mass matrix listed in (9.46).

e The relative sign between the SU(2) and U(1)y D-term contributions to the quartic
interactions differs for neutral and charged Higgs boson pairs. For example, the HtH~
pair couples more strongly to é; pairs than to 7 pairs, while the opposite is true for
pairs of neutral Higgs bosons.

In the final step, (9.51) and (9.54) are to be utilized to convert the current eigenstate
sfermion fields in (10.37)—(10.40) into mass eigenstate ones. We can use a notation similar
to that in §9.8. The final result for Higgs-sfermion interactions can then be written as

Lyf= Z Clo, f, Flof f + 2; Do, &, f, flod' f*f, (10.41)
o, f,f 0,0 f,f

where ¢ and ¢ stand for any of the five physical Higgs fields of the MSSM, while f and f’
are sfermion fields. Invariance under SU(3)¢ implies that f’ must be a squark if and only
if f is a squark; both squarks must then have the same color index, which therefore need
not be displayed. Moreover, we shall again assume that the superpotential is written in a
basis where the leptonic Yukawa couplings are flavor diagonal. The coefficients describing
slepton-Higgs interactions can then be written down. First, we display the coefficients of the
various cubic Higgs-slepton-slepton terms. They are

3
. o 92 U é &
C[H+7 I/iv 68] = \/§M { Z Uk}l [Mmeka+3 s + (mgktﬂ - MI%VSZﬁ) Wk}s:|
W " k=1
3
- Z ts (meAe*>lcj Ui Wiis 5}7 (10.42a)
j k=1

10.42b
10.42¢
10.42d
10.42e

C[H_aésaﬁi] = (C[H—l_al;iaés])*a
C[Ha ﬁiaﬁj] = _Cg[ﬁ]CaJrﬂ(sij )

C[hv ﬁiv 17]] = cg[ﬁ]8a+,85ij )

P N
~— ~—  ~—  ~—

C[H, €, &) = calés, é]ca + culés, €1]5a — C4lés, Et]Cass
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Clh, €5, €] = —calés, €i]sa + Culés, €r]ca + ¢4és, E€t]Sass (10.42f)
g >
~ o~ 2 % é % €x é
ClAene] = g 3 (e WEWe = wme Wiy W)
i=1

3
+1s Z |:(meAe>ij Wjéj;3 sVVzi - (meAe*) WB*W]eJr?) t] }
ij=1

(10.42g)

All coefficients C[¢, £, '] not listed in eqs.(10.42) vanish. One could rewrite the matrix mgA*
in terms of its eigenvalues and corresponding 3 x 3 rotation matrices. We have not done so
since the eigenvalues of this matrix have no special physical meaning, in contrast to those of
the SM matter fermion mass matrices. Moreover, we have introduced the quantities

~s, ~ — Wé*Wé Wé* Wé
CA[e et] MWCB { Z m 18 it + i+3 sV i43 t)
1 3
5 Z [ meAeT We*W Tis e T (MeA?), Wi, sVVﬁ] }v
(10.43a)
g 3
~  ~ 2 & éx é
Cul€s, €] = 2 Mwcs Me, (KW Wiy + 0 Wi W), (10.43b)
i=1
M
)= 22" (1442), (10.43¢)
3
~ o~ M Ex/€ ex é
e el = BN [WEWE (= 1) =265, Wity Wi ] (10.43q)
i=1

The coefficients of the various quartic Higgs-Higgs-slepton-slepton interactions can
also be displayed. They are

2 242 3
Ny 932 92t Dw
k}:
DH* H,é,,¢] = Z {92426 [(WEWE (1 +65) — 265, WEs Wiy ]
=1
th ex é
2M§v me Wils Wi t}7 (10.44D)
D[H™, H,0;,é,] = —dy[0;, &|5a45 + dy (03, &lcq (10.44c)

DIH ,H,é, ;) = (D[H', H,i1,&)", (10.444)
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D[H+, h, ﬁi, és] = —dg[lji, és]CaJrg — dy[ﬂi, és]Sa s (10446
(

DIH™, h,é, ;) = (D[H", h, i, é])" 10.44f

D[H+7 Aa Dia és] = ng[]j“ 63]625 + ZdY[ﬁza és]sﬂ ) (1044g
D[H™, A, é,, ;) = (D[HT, A, i, &))", (10.44h

)
)
)
)
D[H, H,v;,v;] = —dg[V]can 0i5 (10.44i)
D[H, h, 1, ;] = 2d,[7]524 04 (10.44j)

DI[h, h, 0;, j] = dg[V]cag 0i5 (10.44k)

DA, A, v;, ;] = d,[P]cap 645 (10.441)
D[H, H,é,,¢] = —dyl[és, é/]c2 — dy[és, E]caa (10.44m)
D[H, h,é,,¢,] = dy[és, &)59a + 2d,[és, €524 » (10.44n)
Dlh, h, &, &) = —dy[és, &]s2 + dy[és, é]caa (10.440)
DIA, A, é,,¢] = —dy[és, é]s5 + dglés, é)cas - (10.44p)

We again list only the nonvanishing coefficients; for example, D[H*,HJf,f, f’] = 0, for
f # f'. The Lagrangian density in (10.41) is nonetheless hermitian. Moreover, we have

introduced the quantities
2

d, [ = 9—82 (1+13), (10.45a)
B <
dy[i, ¢, = ﬁ S Unwy, (10.45D)
j=1
5 3
dglés, & = _9_82 Z [Qt%,Vij:3 Wis 1 +WEWS (1 - t%v)} , (10.45¢)
i=1
935 :
- o~ 2°8 2 7rUxY17€
dy[l/i,es] = m Zmerji W]s s (1045d>
1=1
9 3
dy[és, &) = 4]\;}% Z me, (WEWi+ Wik Wis ). (10.45e)
wes =

The analogous expressions for Higgs interactions with squarks are complicated by non-
trivial quark flavor mixing. In addition to rotating the squarks into mass eigenstates using
the matrices W% and W9, we also need to diagonalize the quark mass matrices using (8.12).
The coefficients of the various cubic Higgs-squark-squark interaction terms are given
below. They are
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3 3
+ ~ 7 _ 92 Uk J dr, dpx* _ dx
C[HT tis,dy] = oM ”221 {Vst Wiis t[;MUik ma, Ujy (maA )z’j tﬂ]
3
W WS U m, U — (i AY), (et)
k=1
3
FWEWE| ST (Ulem2 U (ct)s + U3, Ut )
k=1
—M5v5ij82ﬁ]
3
+Wity sW]d+3 ¢ (ts + (ct)p) Z U ma, Vg ma, U;llR*}v
k=1
(10.46a)
ClH™,dy, i) = (0[H+, s, Jt]) , (10.46h)
C[H, ds, Jt] = CA[JS, d~t]ca + cu[cis, Jt]sa - cg[cis, czt]caﬂg , (10.46¢)
Clh, ds, Jt] = —cA[czs, czt]sa + cu[czs, Jt]ca + cg[cis, czt]saw , (10.46d)
CH, s, U] = callls, Ug]Sa + Culls, Urlco — Colls, UglCays (10.46e)
Clh, s, U] = caltis, U]co — cpllls, Uplsa + colis, U]Sats (10.46f)
iy < e e
73 2 * % * *
ClAdd] = 3iF Zl {ts [(maa?), Wi, Wi — (maa®) wiwi, |
1,j=

3
dr, 7 rdr*yr,dxtr d wrrdpxyrd T 1
+ Zmdk [MUsz (leé2 I/Vzci Wjd+3 t M UikL UjlfW]d+3 sVVZ(z] }7
k=1

(10.46g)

. 3
~ o~ tg * AU U i wk U I
ClA, a5, 1] = 2]\/[2W Z {(Ct)ﬁ |:(muA )ij Wils Wi — (my, A )ij Wi Wil t]

i,j=1
3
+ Yy (U UGE W W — U Ui Wi, Wi }
k=1
(10.46h)

The quantity V}// appearing in (10.46a) is an element of the Cabibbo-Kobayashi-Maskawa
matrix of (8.40). Moreover, we have introduced the quantities
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3
L. 1 S . .
caldy,d) = Mij% S {5 Wi (maat), + Wik, Wi (mya), |
1,7=1
3 -~ -~ -~ -~
=S md, (U U wE W vgrurwis wik ] b,
k=1
(10.47a)
% 1
~ o~ 2 Uk U Uk Uk U * AU
caltis, ] = My ss Z {5 [I/st Wiis (m,A >ij +Wils Wi (myA )z]]
i,7=1
3
_ Zmzk [Uﬁf U;LkL*mz;*Wﬁ + UgCRU]ykR*M/;fg SWJ?‘+3 t] }7
k=1
(10.47b)
g - o ] i
7 3 2 * * * * *
] = gy S g [ WEW L U W, VD] 070
irj k=1

3
~ o~ g u UR* Uk U XTTUL*T TU Uk U
Culiis, i) = ==2— N " iy, [pURFUSEWE W+t USE U Wi, W], (10.47d)

QMng )
3
M M e d 1 2z ;
cldy, ) = —E Y [W;i*vv;i (1 + 51&%) + Wi Wik ttﬁv] , (10.47e)
=1
My < . 1 i )
eqlits, iig] = 22 5 = [th <1 - §t§V> + Wi Wi ttgv] : (10.47f)
i=1

Similarly the coefficients of the various quartic Higgs-Higgs-squark-squark interac-
tion terms can be written down. They are

3

2
- 3 3 g § : d dpR* T 1
D[H+7 H ) dsv dt] = - 2]\422 |:Usz m?lk U]l? VVYZ(%I% SW]d+3 tt%
W ;i k=1

U, U W Wi et)3]

Uk

g3c ] 1
2928 deyyrd 2
+ ;{Wiswﬁ(l—gtW)

2
_§Wii3 Wi tt%/[/:| . (10.48a)




10.5. HIGGS-SPARTICLE VERTICES 239

3

2
— ~ ~ g * * i
D[H", H™ s, @] = —QMZQ §j [UEme, U Wiy Wi ()
W i g k=1

U3, U Wi Wit ﬁ]

G20o5 o 1
2028 ERT eeT 2

4 _
_g[/V;j:S R tt%,v] , (10.48Db)

D[H+, H, am Jt] = dYu[am Jt]sa + de[am Jt]ca
+dYud[a57 Jt]ca—,@ - dg [INLS, Jt]8a+5 s (1048(3)

DIH H,d, i) = (D[H+,H, as,d}]>*, (10.48d)

D[HJrahaadet] = dYu[QSaJt]Ca_de[QSaJt]Sa

—dyudlils, d)8a— 5 — dylits, di)cays (10.48e)

DIH h,d,, ;] = (D[ch,as,dt])*, (10.48f)
D[H*, A, iy, dy) = —idy,[is, di|cs + idyalis, di)sg + idy[iis, dj]cap (10.48g)
DIH™, A,d,, )] = (D[H+,A,as,cit])*, (10.48h)
D[H, H,d,,d,] = —dyd,, d}]c® — dy[dy, dj]caa , (10.48i)
D[H, h,ds,d}) = dy][ds, d}]ssa + 2d,[ds, di]s20 (10.487)
Dlh, h,ds, dy) = —dy[ds, dj)s* + d,[d, di]caq (10.48k)
DA, A, dy, d;) = —dyld,, d)s% + dy[ds, di]eas (10.481)
D[H, H, i, 1] = —dy /[t ]5 — dgts, Ui]c2q (10.48m)
D[H, h, g, 1;] = —dy[us,ut]sa + 2dg[ts, U] S20 (10.48n)
Dih, h, fig, @y) = —dy [T, )2 + dy[its, ) can (10.480)
DI[A, A, iy, W) = —dy[its, )5 + dgliis, T)eas - (10.48p)

In (10.48) we have introduced the quantities

~ 7 9265 U WL, * Uk d
dyfiin, di) = NI § j Uttm?, U WEWE (10.49a)
~ 28 3
dydlit, d) = —22 " Ul Ul WwIWE (10.49b)

2 .2
2\/§MWCB i,j,k=1



240 CHAPTER 10. HIGGS BOSONS IN THE MSSM

3

~ 2 - ~
dYud[as, dt] = \/5]\?7228 U;ffmuk quledl U;IZR*W;f:; SW]d+3 to (10.49C>
W26 4 5 k=1
~ ~ 2 3 ~ ~ - -
dY[dsv dt] = 4]\4922 C2 Z m?zk |:U34L U;ilf*m/zi*wydt + Uz’iRU;lIf*VViﬁkS sW]d+3 t] ’ (1049d>
W&B i k=1
9 -
dy[is, ] = 55— > oml [Upr U Wie Wi + USrUS Wiy Wi ], (10.49)
W8 4 5 k=1
~ g2 3 .
d, iy, dy] = 2—\;5 > wiw (10.49f)
=1
s B[ 1, 2 i yid >
dylds, i) = =2 w1+ Stiv | + 5Wiks Wiis s tan® O | (10.49g)
=1
g3 k 1 4
i) = LY [wawh (1- 3 ) + 3w Wi ). (10.49h)
=1

The corresponding Feynman rules are shown in Fig. 10.7.

‘ Fig. 10.7 is included in Appendix B ‘

10.6 Radiative Effects on MSSM Higgs Particles

The properties of the Higgs particles in the MSSM and the relations among them, following
naturally from supersymmetry, have been discussed in §10.3-6§10.5 at the tree level. How-
ever, it is now known [10.6] that significant changes are induced radiatively in many of the
expressions and relations, appearing in those sections, by quantum loop corrections. We
shall discuss some of these effects at the one loop level, confining ourselves largely to the
mass of the lightest Higgs h. That is where they are most spectacular and are of the greatest
importance to experiment. Before going into the details, let us make three general points:

e One needs to be clear about the meaning of a physical Higgs mass when radiative effects
are to be taken into account. The on-shell mass is defined as the square root of that
value of ¢* for which the real part of the inverse scalar propagator ¢ — m?... + Z(¢?),
Y(q*) being the one loop self energy correction, vanishes. However, we will compute
radiative corrections to static Higgs masses.

e Radiative corrections to the mass of h are dominated by loops involving the top quark
t and its stop partners 7,5, cf. Fig. 10.8. This domination occurs owing to the large
Yukawa coupling that these states have with h. Contributions from loops mediated by
other states are negligible by comparison and will be ignored.
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e In the limit of exact supersymmetry, tree level Higgs masses are protected by the
nonrenormalization theorem discussed in Ch.6. This explains why radiative corrections
to those masses are controlled by M, the scale of soft supersymmetry breaking.

t o
>

Fig.10.8. One loop self energy diagrams for h.

The radiatively corrected Higgs sector of the MSSM has been the subject of considerable
study over several years. We do not go here into the initial and orginal works, but a detailed
discussion with a historical perspective and a complete set of pertinent references may be
found in the second paper cited in Ref. [10.1]. Three main tools have been employed in the
literature: (1) direct diagrammatic calculations, (2) renormalization group methods and (3)
effective potential techniques. Let us focus our attention on the correction to my, as a sample
case. The procedure in (1) is to adopt a straight computational approach by calculating the
one loop self energy diagrams for h as given in Fig. 10.8.

In contrast, the methodology in (2) is that of Renormalization Group Evolution (RGE).
For instance, when the sparticle mass spectrum (characterized by the scale M) is much
heavier than the weak scale, i.e. My > M, the quartic self coupling of h at the scale M is
taken from (10.12) and (10.28b) to be

5 cos” 20 [g3 (M) + g3
It is then evolved to its value at the electroweak scale by means of the Standard Model
RGE and used in the computation of the mass of h utilizing Standard Model expressions.
However, we choose to present below an exposition of approach (3) — namely that of the
effective potential — in calculating the correction to the tree level value of mj;,. Though
this method is numerically not as accurate as the diagrammatic one, it is pedagogically
more interesting and gives a better theoretical insight into these loop induced radiative
corrections. In addition, the inclusion of leading two loop corrections and the computation
of corrections to static Higgs self couplings are more straightforward in this approach.

We start by considering the static approximation in which the effective action is approx-
imated by the one loop effective potential. The actual calculation of the one loop effective
potential can be found in standard text books [10.7-10.9]. The final expression reads

VE(Q) = VHQ) + AV (Q) (10.50a)
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1
642 Q2 2
In (10.50), V2(Q) is the tree level Higgs potential with its couplings renormalized at some

scale ), M(h) is the field dependent mass matrix and the supertrace, cf. 5.10, covers all
supermultiplet fields whose masses depend on the VEVs of the Higgs fields.

AVP(Q) (10.50b)

STr M*(h) [m ME(h) 3] :

Corrections in the absence of t1-tp mizing

We have earlier noted that the most important loop corrections to the Higgs potential Vi
come from the top-stop sector of the theory. To keep the discussion simple, we will consider
only these. First, we neglect any mixing between the SU(2); doublet (#;,) and singlet (#p)
squarks and assume equal soft supersymmetry breaking squared masses m? for those two
fields. The relevant field dependent masses then are

m2(h) = f2IYJ? (10.51a)
m2 () = m2 (h) = i+ f2 ISP . (10.51b)

t1 to

where f, is the top Yukawa coupling strength, being equal to m;(2v/2Gr)"/?/sin 3. We have
neglected D-term contributions to the stop masses since they are proportional to electroweak
gauge couplings. They are thus suppressed by at least one power of MZm,? compared to
the pure Yukawa contribution.

Each fermion or boson contributes to the supertrace of (10.50b) with a multiplicative
weight factor equal to the number of independent degrees of freedom associated with it. Let
us recall that each Dirac fermion contains four degrees of freedom, while each complex scalar

has two. In addition, we have to include a color factor of three. Altogether, we thus have
from (10.50b) that

3 22+ f2|R%2 3 202 3
AV Q) = 36 [W + 2RI <ln% - 5) (PP <ln ftl);' _ 5)] |
(10.52)

where the overall factor of 3 in the numerator comes from color. As already advertised, the
two terms in the RHS of (10.52) cancel exactly in the limit of unbroken supersymmetry.

In order to understand the physical significance of these corrections, we first have to redo
the minimization of the Higgs potential. In §10.2 we had minimized the tree level expression

which we now call V}(IO). Here we will do the same for V}(IU) + AVI—(Ilt)—E' As evident from

(10.52), in the limit of vanishing #;-fr mixing, corrections from the top-stop sector only
involve the second Higgs doublet hy. Therefore (10.17a) remains unchanged. On the other
hand, (10.17b) now becomes

M2 3f2
m3, = mi,cot 3+ TZ cos 23 — 167;2

[f(m3) = f(m?)], (10.53)

where we have introduced the function
2

F(m?) = 2m? <1n % - 1> (10.54)
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and m?, mf are squared masses of the top and the stops respectively. We need not, for the
moment, be bothered by the presence of the In Q? term since it can ultimately be absorbed
in the renormalization of m3, .

As in (10.19), we calculate the mass squared matrices now for the CP odd and CP even
Higgs bosons by taking second derivatives of V( + AV ; with respect to the imaginary
and real parts of the neutral Higgs fields respectively. Once agam only the VEV v, (and not
v1) contributes to (10.53) as a consequence of our assumption of no #;-f mixing. Therefore,
only the 2, 2 entries in the concerned matrices can possibly receive corrections from the
top-stop sector. Moreover, since the VEVs v; and v, are real, the derivatives have to be
taken at Im h) = Sm h) = 0. Tt is then easy to see that the final result for the mass
squared matrix of the CP odd states is the same as at the tree level, i.e. (10.23). The
explicit correction to the 2,2 entry from the second derivative of (10.53) exactly cancels the
correction to m3,, given in (10.53). However, such is not the case for the 2,2 element of the
mass squared matrix of the CP even Higgs scalars, (cf. 10.26). There we find the following
finite and positive correction:

3f m? m? €n
Ay =——tIh— = 10.55
2 472 m?  sin?fB’ ( )
where
3G mg
o, = 3G — (10.56)
V2r? mt

We have put the superscript LL on As, to denote the fact that (10.56) is a leading logarithm
(in the ratio m;/m;) expression.
The one loop correction to (10.26), in this scenario, reads

0 0
o= e | (10.57)
sin? 3

so that (10.27), (10.29¢) and (10.30b) extend respectively to

1 € .
mfZZH =3 m? + My + —Sin}; B + {(mZA + M%)*sin? 23
2.1)2
+ {(M2 m?) cos 23 + } } , (10.58a)
sin?
. -1

tan 2o = (m? + M%) tan 23 { m% — M3 + 27h , (10.58b)

sin® f cos 2[3
m2 +m2 =m? + M2+ —— | (10.58c¢)

sin? 3
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Fig.10.9. Other Higgs masses vs m4 for tan 3 = 1.5 and 30 with m; ~ 1 TeV; adapted from Ref.
[10.10].

In Fig. 10.9 the Higgs masses my,, my and my+, as given in (10.58a), are plotted [10.10]
against m 4, the mass of the CP odd Higgs boson, for two rather extreme values of tan j.
For tan f > 1, the mass eigenvalue of h increases monotonically with m,, saturating to its
maximum upper bound

my < (MZcos? 2B + e,)Y? (10.59)

for modest values of m 4, i.e. m4 > 300 GeV. For large tan 5 and m; taken to be O(TeV),
the RHS of (10.59) is ~ 110 GeV. We shall see later that the possibility of £,z mixing can
increase this upper bound?. At this level, the charged Higgs mass is still given by (10.30a)
and is hence independent of tan /3, as shown in [10.10] Fig. 10.9. The tree level properties
of the Higgs mass spectrum in the decoupling limit (m4 — oo) are still maintained. Now
the A, H, H* Higgs particles remain nearly degenerate while the lightest h saturates its
maximum mass value. The tree level mass orderings, mpy > mi > my4 remain valid for
small tan 5. Otherwise, the larger tan 3 curves in Fig. 10.9 are fairly similar to the curves
in Fig. 10.2, with M replaced by { M2 + €2 }1/2.

Eq. (10.56) represents the celebrated correction which has a quartic power dependence
on the mass of the top quark. Note that it has only a logarithmic dependence on the stop
mass squared mf which is characteristic of the square of the soft supersymmetry breaking
scale M. This would seem to contradict our starting proposition that corrections to the
masses of Higgs bosons should be proportional to supersymmetry breaking masses. This
apparent contradiction is resolved by the fact that the shift in the tree level parameter m3,
is indeed proportional to mf —m?, ¢.f.(10.53). One would need to fine tune the parameters
appearing in this equation if the tree level part were much smaller than the correction term.
Furthermore, notice that the renormalization scale @) has disappeared from (10.56). This
is to be expected since this equation describes the correction to a relation among physical

“Indeed, the final experimental lower bound on the mass of an SM-like Higgs boson of about 115 GeV
from the completed runs at LEP indicates the need for some amount of ¢;-tg mixing unless ¢;, r-masses are
much in excess of 1 TeV. This point will be discussed in more detail in §15.5.
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quantities (masses of CP even Higgs bosons one hand and Mz, m4 on the other). Indeed,
it can be shown already at the level of the effective potential (10.50) that the explicit In
dependence of the one loop correction cancels against a similar dependence of the running
quantities appearing in the tree level potential. In the simplified scenario, considered by us
so far, it follows from (10.52) that the entire In Q* dependence collapses to

oAV 3 1_
L fgy = —@wﬂ <f3|h3|2 + §m2> : (10.60)

Thus the first term in the RHS of (10.60) exactly cancels the @*-dependence of m3, (Q)|hS)>.
The second term in the RHS of (10.60), a field independent constant, is of no immediate
interest to particle physics, though it may contribute to the cosmological constant.

Corrections with tr-tp mizing

Let us now introduce a nonzero f7-fz mixing, described (c.f. 9.62c) by the off-diagonal
matrix element® —m, (A" + pi cot ) of the stop squared mass matrix. We will also allow the
soft, supersymmetry breaking #; and fz mass terms to differ. The eigenvalues of the field
dependent f squared mass matrix are then given by

1
m? (h) = FARSE + 5 |md, +m &\ f(m2 —m2 )+ Af2IARS + uh® P | (10.61)

Note that these eigenvalues depend on both neutral Higgs fields h(f,Q. The corresponding one
loop correction to the Higgs effective potential now becomes

3 m? (h) 3 m? (h) 3
s = gl 0 fu 20 2

2h02 3
_2f;1|hg|4{1nftly2| —5}].

Both the minimization conditions OV /OhY = 0, 0V /OhY = 0 are now affected by radiative
corrections. Therefore, (10.17) change to

3f7 + At
32{';2%;1;1 —nj; = [f(mi) = £(mi,)], (10.62a)

1
m3, = mi,tan 3 — §M§ cos 23 —

1
ms, = mfzcotﬁ+§M§60825

_3f
3272

{f(m;i) b fm2) — 2 + A pc

5We take A? and u to be real here.



246 CHAPTER 10. HIGGS BOSONS IN THE MSSM

Once again, the squared mass matrices for the neutral Higgs bosons can be computed
from the second derivatives of the Higgs potential. The calculation for the CP odd case is
greatly simplified by the observation that the first derivatives of any of the field dependent
top (stop) masses with respect to the imaginary parts of A and hY vanish in the (real)
minimum of the Higgs potential. A straightforward calculation yields the result

mém ho = (m%Q + A) <tail5 CO}66> ) (1063>
with 32 "
A=l BT (fm2) — f(m2)]. (10.64)

3272 mtgl —m?

As anticipated, this correction vanishes in the limit of no #;-f mixing (u = A* = 0). The
one loop corrected mass of the physical CP odd Higgs boson A thus becomes
2 2(miy +A)

my = 5 (10.65)
The explicit In Q? dependence can again be shown to cancel in this equation, if m?, and
tan § are understood to be running parameters. However, this cancellation works exactly
only in one loop order; beyond that, terms of order [f?m?In(m?/Q*)]* remain in (10.65). In
the interest of perturbative stability, one should therefore choose a renormalization scale )
close to the stop mass, e.g. Q = ,/mj my,. This is totally analogous to the choice made in
perturbative QCD calculations (involving massless partons) of the renormalization scale to
be close to the external momentum.

The generalization of (10.57), including ¢;-t mixing, now reads

A A
2 _ 11 12
OMipe po = <A12 A22> , (10.66)
with
3G m4 (At + 1 cot B) 2 mg —|—mg mg
Ay = | B ] (2 — b by, 3) , (10.67a)
2v/2m2sin? m; —mg my T mg i
3Gpm! (A t m: Al
Ay = Fmt2 :u( 2+ MCOQ B) In ;1 + —Ay, (10.67b)
2v/2m2sin? m; —mg mp. M
3G pm! mim;,  AY(A + pcot m; AR\ ?
A22 _ 2FTntZ In |51 . t2 + ( . MC(Z) B) In ;1 + <_> All- (1067(3)
V212 sin? B my my — mg f K

Again, each of eqs. (10.67) is independent of Q%. Note also that the corrected value (10.65)
of m?% has to be used in the tree level squared mass matrix (10.26).

We have, so far, considered corrections only from the top-stop sector. If tan 3, the ratio of
the Higgs VEVs, becomes very large, the bottom Yukawa coupling can be comparable to that
of the top and make substantial additional corrections to (10.62), (10.65) and (10.66). These
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can be obtained from our expressions by the following three substitutions:- (1) interchange
top (stop) masses and couplings with those of the bottom (sbottom); (2) interchange h? and
hY, i.e. tan 3 < cot 3; (3) interchange the shifts of m?, and m3,, i.e. the leading logarithmic
corrections from the bottom-shottom sector only affect m?,. Note that even if tan 3 is as
high as m;/my, the ‘leading’ logarithmic corrections from the b-b sector to the squared mass
matrix of the CP even Higgs bosons are suppressed by a factor (mj;/m;)? as compared with
those from the ¢-f sector and thus can be safely neglected; however, the nonlogarithmic
corrections from by-bg mixing can be significant in this case.

The question can be raised as to whether one can go beyond the one loop corrections
from heavy quarks/squarks, presented above. Leading two loop corrections at O(aay) to
(10.67) can be incorporated with just a little more effort. This is done by treating the top
mass in the overall m{ factor as a scale dependent running quantity. In other words, my
should be interpreted as the MS (or DR) mass, not the pole mass. The two quantities are
related by the boundary condition [10.11]

4
me(my) = mP (1 - %) (10.68)

plus higher order corrections. The scale dependence of m; for scales ) < mj; is the same as
in the nonsupersymmetric SM:

05(Q) ] o (10.69)

ag(my)

my(Q) = my(my) {

The first (leading log) term in (10.67c) can be understood to have originated from the running
of the SM Higgs self coupling from the scale®

Ms = ,/mglmgz (10.70)

to the scale m;. Using this observation, the leading two loop corrections to this term can
be easily incorporated by taking the factor m{ at the intermediate scale v/Mym;. All other
terms in (10.67) can be absorbed in the boundary condition on the Higgs self coupling at
the scale M,; the m;} factors in all such nonlogarithmic terms should therefore be taken at
the high scale M.

By far, the most significant effect of the radiative corrections, discussed in this section,
is that they relax the upper bound (10.30c) on the mass of the lighter CP even Higgs scalar
h. We had already derived an upper bound ~ 110 GeV in the absence of ;-f; mixing, but
here we give the more general result when such a mixing is present. For a given value of
tan 3, my, is still maximal when my4 is large (the “decoupling limit”, as discussed earlier),
but the bound is now given by

m; < M2 cos> 28+ Aqy cos® B+ A sin 26 + Agy sin® 3 (10.71)

with the A’s given by (10.67). Numerically, the correction Ay, is usually the most important
one. The absolute upper bound is still reached for tan > 1 (i.e. |cos28| — 1) just as at

6We assume here for simplicity that supersymmetry breaking is characterized by this one mass scale.
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the tree level. For equal {7 and tp soft supersymmetry breaking mass terms, a simple yet
accurate formula for this upper bound obtains in the limit [m,A"| < m? :

3G
m2 < M2+ \f;? mi(/my M) In(M? /m?)

+H(AN2 M2 m) (M) (1 — E(At) M7, (10.72)

with M, as given by (10.70). We have explained why the two mj factors in the RHS of
(10.72) have to be taken at different scales. Taking M, = 1 TeV and mP™® = 175 GeV from
direct TEVATRON experiments [10.12], one finds my(v/m;M;) ~ 157 GeV and my;(M;) ~
150 GeV. Since the last RHS term in (10.72) is maximal at A* = /6M, one then obtains
an absolute upper bound on mj, which is a critical test of MSSM, namely

my, < 132 GeV. (10.73)

Comparing with (10.59), we see that the effect of nonzero A!, i are quite significant and
shifts the upper bound on the h-mass by more” than 20 GeV. Radiative corrections can
therefore push m;, well beyond the reach of existing e*e™ colliders. We finally mention that
the treatment presented here has recently been extended by including corrections O(f2g?)
to the squared Higgs mass matrix and by allowing for large CP violating phases in the third
generation squark sector [10.15]. These phases lead CP even and CP odd Higgs states to
mix but do not alter the upper bound (10.73) on my,. Later, in Ch.14, we shall discuss the

generalization of (10.73) to cover extensions of the MSSM.
Concluding remarks

Before concluding this section, we want to make some brief general remarks on one loop
radiative corrections to the charged Higgs mass and also to Higgs couplings in the MSSM.
We have already shown that, in the absence of f7-fz mixing (i.e. neglecting the effects of p
and A') — the charged Higgs mass is given by (10.30a) and is independent of tan 5. Even
with 7;-fz mixing, the one loop corrections to m3,. remain small if the renormalization
scale () is chosen in a way such that perturbation theory is reliable. Explicit expressions
for these corrections may be found in Ref. [10.6]. It is worth remarking here, though, that
corrections from the top (stop)-bottom (sbottom) sector go to zero in the limit of a vanishing
bottom Yukawa coupling. We further remind the reader that all D-term contributions to the
squark mass matrices were neglected. The inclusion of such terms will introduce additional
corrections of order gsm?/(872) or g2 M3,/ (87?). These corrections can be computed along

"We have presented here the results within the effective potential framework, implicitly working with
MS renormalized parameters. A more recent analysis [10.13] shows that a diagrammatic calculation in the
on-shell renormalization scheme, again including leading two loop corrections, almost exactly reproduces the
result from the effective potential approach, once the difference between the two renormalization schemes
has been taken into account. One should nonetheless assign a theoretical error of two to three GeV to the
predicted value of my, due to higher order terms. An upward shift of such a magnitude has very recently
been found [10.14] from two loop O(f}!) corrections.
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the lines presented here. Though, strictly speaking, these modify [10.6] the relation (10.30a),
they are numerically unimportant. Note also that a complete calculation of pure electroweak
O(g3M3,) corrections should include contributions from loops involving first and second
generation sfermions as well as those from the gauge-Higgs-gaugino-higgsino sector. Turning
to Higgs couplings, one loop radiative corrections, at the level discussed in this section, do
not affect Higgs-gauge and Higgs-fermion couplings® directly. They only come in indirectly
through a shift in the value of «, as indicated by (10.58b). Only in the case of Higgs self
couplings are there some direct contributions [10.16]. For instance, ignoring f;-fz mixing,
the coefficients (denoted by A..) of —igaMy/(2cosfy ) in the triple scalar Hhh and HAA
vertices are changed from what appear in Fig. 10.4 to

€p, Sin «v

Airnn = 2sin 2acsin(a + 3) — cos 2accos(a + ) + BW cos® 3, (10.74a)
€p Sin o 9
Araa = —cos2f cos(a+ ) + M2 s B cos” 3 . (10.74b)

Our final comment is on the static approximation. That may not work so well for Higgs
bosons which are heavy, e.g. with masses comparable to those of the top/stop(s). Indeed,
on-shell couplings of H and A then often develop imaginary dispersive parts from loops
induced by the latter.
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