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Chapter 1SUPERSYMMETRY: WHY ANDHOW
1.1 History and MotivationWe �rst give a brief fa
tual a

ount of the history [1.1℄ of supersymmetry, leaving a morepedagogi
al development to later se
tions and 
hapters. This has evidently been a historyof experimenters 
hasing a theoreti
ally driven idea. The notion of a symmetry transforma-tion between fermioni
 and bosoni
 modes emerged [1.2℄ in 
onne
tion with string theory.However, this was 
onstru
ted on a two dimensional world sheet rather than in the realworld of 3 + 1 dimensions. N=1 supersymmetry in the latter (in terms of super
harges thattake fermions into bosons and vi
e versa) was �rst proposed and formulated as a gradedLie algebra by Golfand and Likhtman [1.3℄ in 1971. Akulov and Volkov [1.4℄ later gave anonlinear realization of it together with the idea of spontaneous breakdown. Finally, in 1974,Wess and Zumino [1.5℄ as well as Salam and Strathdee [1.5℄ 
onstru
ted �eld theories withsupersymmetry (
f. Ch.5) and the subje
t immediately attra
ted attention on a large s
ale.Supersymmetry was shown by Haag, L=opuza�nsky and Sohnius (
f. Ch.3) to be the onlypossible extension of the known spa
etime symmetries of parti
le intera
tions. Several im-portant results were derived on the more 
onvergent ultraviolet behavior of supersymmetri
�eld theories, exploiting the 
an
ellation between fermioni
 and bosoni
 loops. In parti
ular,a theorem on the nonrenormalization of superpotential terms (
f. Ch.6) was proved [1.6℄.S
alar �eld theories are generi
ally not natural in the sense of Weinberg, Susskind and 'tHooft [1.7℄. But it be
ame 
lear after a while that supersymmetri
 �eld theories, despite
ontaining s
alar �elds, are natural [1.8℄.The four momentum operator P � is essential to an algebrai
 formulation of supersymme-try. As elaborated in Ch.3, if a super
harge, 
arrying spin 1=2, takes a boson to a fermion orvi
e versa, the anti
ommutator between two super
harges with arbitrary spinorial 
ompo-nents must be proportional to P �. If the va
uum is annihilated by a super
harge, a vanishingenergy for it is then ensured. In exa
t supersymmetry, P � and P 2 � P �P� 
ommute withthe super
harge and one is led to mass degenerate supermultiplets of states di�ering in spinby 1=2. Sin
e no su
h mass degenera
y has been seen1 among parti
les o

urring in Nature,1There were early attempts to put a photon and a neutrino together in a supermultiplet. It soon be
ame3



4 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWsupersymmetry must be a badly broken symmetry. The intra-supermultiplet mass splitting,
hara
teristi
ally denoted as Ms, then be
omes a s
ale of some signi�
an
e. A question ofimmediate interest arises in 
onsequen
e: what is the order of magnitude of Ms? A relatedissue 
on
erns the existen
e of sparti
les, i.e. superpartners of the known parti
les. Thelatter 
annot make up 
omplete supermultiplets by themselves. Therefore ea
h parti
le ina broken supersymmetri
 world must have a new superpartner whi
h we 
all a sparti
le.A sparti
le is typi
ally heavier than the 
orresponding parti
le by a mass di�eren
e O(Ms)and is lying yet undis
overed. Furthermore, the appli
ation of naturalness arguments [1.8℄to the weak s
ale (� 100 GeV), generated in the SM by an unnatural s
alar �eld se
tor, hassuggested [1.9℄ that2 Ms <�O(TeV) and that sparti
les should be dis
overed in forth
ominghigh energy a

elerator experiments probing these energies. The highly su

essful Stan-dard Model (SM) of parti
le intera
tions has been minimally extended [1.10℄ to in
lude allthese sparti
les and is now 
alled the Minimal Supersymmetri
 Standard Model (MSSM).Our aim in this book is to develop this theme 
on
retely to the extent that its links withexperiments, now being 
ondu
ted or planned, be
ome 
lear.There have already been major experimental e�orts to sear
h for sparti
les, undertakenall through the 1980's and 1990's. The produ
tion and de
ays of sparti
les are uniquely
hara
terized by large (more than tens of GeV) missing transverse energy at least in R-parity
onserving supersymmetri
 s
enarios where the undete
ted lightest supersymmetri
 parti
le(LSP) 
arries it away. Early hints at the beginning of the eighties in the UA1 experiment,performed at the S�PPS ma
hine at CERN, did not materialize into believable signals butwere later identi�ed with more mundane pro
esses of the Standard Model. Afterwards, theLEP e+e� storage ring at CERN and the Tevatron �pp 
ollider at Fermilab have been heavilydeployed in sear
hes for sparti
les, but without any su

ess so far. The same 
an be said forsear
hes in ep 
ollision experiments performed at HERA. The four LEP experimental groups,ALEPH, DELPHI, L3 and OPAL, as well as the two major experimental 
ollaborations at theTEVATRON, CDF and D0=, have published the strongest experimental lower bounds on themasses of numerous sparti
les; they have also established ex
lusion zones in parameter spa
esof various supersymmetri
 extensions of the Standard Model (Ch.15). The TEVATRONexperiments are being extended to RUN II with higher integrated luminosity. Two major
ollaborations in the Large Hadron Collider (LHC), being built at CERN, ATLAS and CMS,are preparing dedi
ated experiments whi
h will probe sparti
les in the TeV mass range. Theexploration of sparti
les has been stated as a major goal in proposals for e+e� linear 
olliderswith CM energies in the range 500 GeV{1.5 TeV, now being pursued vigorously. There arealso nona

elerator experiments trying to dete
t the very weakly intera
ting LSP pervadingthe universe as 
old dark matter (Ch.16). Thus we are in for another de
ade of intenseexperimental a
tivity full of ex
iting possibilities.One 
riti
ism, frequently levelled against the supersymmetry idea sket
hed above, is the
lear that the super
harge, being the generator of a spa
etime symmetry, must 
ommute with all generatorsof internal symmetries, e.g. ele
troweak symmetry. Thus all members of a supermultiplet must have identi
alinternal symmetry properties. Su
h is not the 
ase between the photon and any of the three known neutrinos.2Su
h a statement is far from obvious. Ms 
ould very well be of the order of other possible s
ales inPhysi
s. These in
lude the redu
ed Plan
k s
ale MPl � (8�GN )�1=2 ' 2:4� 1018 GeV and the spe
ulatedgrand uni�
ation s
aleMU � 2�1016 GeV. As we shall see later, the above 
on
lusion, rea
hed on the basisof naturalness arguments, is quite a deep statement.



1.1. HISTORY AND MOTIVATION 5\inelegan
e" in postulating one new state for every known parti
le. But extended symmetry
onsiderations did lead physi
ists in the past to postulate new parti
les whi
h were subse-quently dis
overed. An example, whi
h we elaborate here, is the extension of nonrelativisti
quantum ele
trodynami
s of the ele
tron to 
over Lorentz invarian
e. Su
h an extension re-quires the existen
e of the positron, as 
an be understood from the standpoint of divergen
es.We know that the 
lassi
al self energy of an ele
tron of radius re, namelyE
l:self = 35(e2=4�re)in rationalized units, is linearly divergent as re ! 0. One 
an guess [1.11℄ that this 
al
ulationbe
omes unreliable for radii less than the \
lassi
al ele
tron radius" R0 � 35(e2=4�me) '1:7 fm for whi
h E
lself equals the rest energy of the ele
tron. In the diagrammati
 languageof old fashioned perturbation theory [1.12℄, this 
ontribution is given by Fig.1.1a | the solid,wiggly and dashed lines standing for the ele
tron, the photon and a time sli
e respe
tively.
1.1 (a) 1.2 (b)Fig.1.1. Ele
tron self energy diagrams in old fashioned perturbation theory.Of 
ourse, in a relativisti
 quantum des
ription of the ele
tron, it has been possibleto probe re far below R0 (indeed below 10�3 fm). This is be
ause the linear divergen
e,mentioned earlier, gets 
ured here by the presen
e of the positron. Owing to the latter, thereis also3 Fig.1-1b now. In this 
ontribution the ele
tron annihilates the positron, 
reated ina pair from a va
uum 
u
tuation, while the remaining ele
tron goes out. As a result, thereis an intrinsi
 un
ertainty in the ele
tron's position of the order of its Compton wavelengthre � 1=me. The linear divergen
e 
an
els in the sum of these two 
ontributions and the selfenergy be
omes [1.13℄ Equant:self = 3e2me16�2 ln(mere) :The expression for Eself is still logarithmi
ally divergent as re ! 0, but this mild divergen
e4
an be easily ta
kled within the renormalization program. One postulates a bare mass ofthe ele
tron whi
h is also logarithmi
ally divergent, owing to a 
ounterterm inserted in theLagrangian, so that the renormalized mass m = mbare + Eself is �nite.3This reasoning has been highlighted by H. Murayama, hep-ph/9410285, ibid/0002242.4The mildness of this divergen
e 
an be seen as follows. Even if re is repla
ed by the smallest lengthknown in Physi
s, namely the Plan
k length �Pl =M�1Pl , the above expression be
omes only 10% of the restenergy of the ele
tron.



6 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWThe 
an
ellation of the linear divergen
e is really a 
onsequen
e of 
hiral symmetry. Thelatter refers to an invarian
e under the transformation of the ele
tron �eld  e ! ei'
5 e(with ' being a real parameter), whi
h be
omes a symmetry of relativisti
 ele
trodynami
sin the limit when me ! 0. Taking this limit in whi
h Eself ! 0 enhan
es the symmetry ofthe theory whi
h then in
ludes 
hiral invarian
e. This makes the smallness of the mass ofthe ele
tron natural in the sense of Weinberg, Susskind and 't Hooft [1.7℄ sin
e the ele
tronis prote
ted by this symmetry from a
quiring a huge mass due to self energy 
orre
tions.A

ording to those authors, a small parameter in a theory is natural if, and only if, settingit to zero enhan
es the symmetry of the system. Being a symmetry breaking parameter, itssmallness then gets prote
ted against large radiative 
orre
tions by the 
on
erned symmetry.Indeed, this 
riterion 
an be extended to the theory itself. In the modern Wilsonian view,every Lagrangian density L should be de�ned with a 
uto� � and should be written asL(�), keeping renormalization in mind. � represents the highest energy s
ale upto whi
hL(�) is the appropriate Lagrangian density and 
an be per
eived as the energy s
ale wherenew physi
s 
omes into play. Now, a Lagrangian density L(�) is \natural" upto and belowthe energy s
ale � if any set of small parameters fÆng, appearing in L(�), is asso
iated withsome approximate symmetry of L(�) whi
h is exa
tly re
overed in the Æn ! 0 limit. In this
ase quantum 
orre
tions { 
hara
terized by the s
ale � { will also vanish as fÆng ! 0 andwill remain small for nonvanishing but small fÆng.In order to make the above dis
ussion more quantitative, let us write the tree levelLagrangian density of the low energy theory as Ltree = Xn ÆnOn. Here the fOng are aset of general operators, indexed by nonnegative integers n with Æn as the 
orresponding
oeÆ
ients, while the summation 
overs all su
h n that o

ur. The in
lusion of quantume�e
ts, 
hara
terized by the s
ale �, then leads to the following general form for the lowenergy e�e
tive Lagrangian density5:Le� =Xn;i 
n;i(Æn)i�[(i�1)(dn�4)℄On : (1.1)In (1.1) the summation over nonnegative integers i 
an, in prin
iple, go from zero to in�nity;however, in pra
ti
e, only a few terms matter. Moreover, dn is the mass dimension of theoperator On and 
n;i are dimensionless 
oeÆ
ients whi
h 
an depend only logarithmi
allyon �. Sin
e we take the low energy tree level Lagrangian density to be renormalizable,Æn = 0 whenever On has dn > 4. For su
h operators, the sum over i in (1.1) 
ollapses to thesingle term with i = 0 and (1.1) des
ribes the usual expansion of the low energy e�e
tiveLagrangian density with higher dimensional operators suppressed by appropriate powers of��1. These latter terms are irrelevant to any dis
ussion of naturalness, sin
e they disappearwhen �!1.Turning to operators with dn � 4, we 
an distinguish two 
ases. (1) A small 
oeÆ
ientÆn is \naturally small" only if 
n;o = 0, sin
e then the 
orresponding 
oeÆ
ient will remainsmall in the full e�e
tive low energy Lagrangian density as well. As already noted above,in all known examples, a symmetry is needed to ensure that 
n;o vanishes to all orders in5There 
ould be additional terms in (1.1) involving powers of produ
ts of di�erent Æn's, but they do not
hange the dis
ussion in substan
e.



1.1. HISTORY AND MOTIVATION 7perturbation theory. Illustrative examples are gauge symmetries \prote
ting" gauge 
ou-plings and 
hiral symmetries \prote
ting" fermion masses or Yukawa 
ouplings. (2) On theother hand, if 
n;o 6= 0, there is no reason to assume Æn to be small or zero in the tree levellow energy Lagrangian density; su
h a 
hoi
e would be \unnatural". This may not lead toserious problems for operators with dn = 4. In this 
ase our argument only shows that thenatural s
ale forXi 
n;i(Æn)i should be at least Æn+O(�=�), � being (4�)�1 times the squareof some (typi
ally gauge) 
oupling strength. Thus even if, at the tree level, Æn is 
hosen inmagnitude to be mu
h less than O(�=�), the 
oeÆ
ient of On in Le� will naturally be
omeof that order. An example is the quarti
 Higgs self 
oupling in the SM whi
h is \naturally"at least O(10�2) in Le� . (In this parti
ular 
ase, however, the experimental lower bound onthe mass of the physi
al Higgs boson leads to a mu
h stronger lower limit). The problem of\naturalness" be
omes really severe only for operators with dimension dn < 4. As shown in(1.1), the 
orresponding 
oeÆ
ients in the low energy e�e
tive Lagrangian density divergelike �4�dn if 
n;0 6= 0. The lowest dimensional relevant operator in the SM is the Higgs massterm, whi
h has dimension two. Sin
e the relevant 
oeÆ
ient is not prote
ted by a symme-try, we expe
t it to re
eive quadrati
ally divergent quantum 
orre
tions. In the next se
tionwe shall show expli
itly that su
h divergen
es do indeed o

ur in the SM. An exorbitantdegree of �ne tuning between the bare mass and the radiative 
orre
tion be
omes ne
essaryto keep the renormalized Higgs mass near the weak s
ale. We shall then show in x1.3 howsupersymmetry removes this quadrati
 divergen
e (i.e. makes the 
orresponding 
n;o vanish)and solves the problem by prote
ting the renormalized Higgs mass.Let us return to the question of the mass of the ele
tron. On dimensional grounds, onemight naively expe
t me to grow like � after loop 
orre
tions. As already noted, it doesnot do so. The fa
t that it grows instead as ln(�=me) is be
ause of 
hiral symmetry whi
hmakes me a \naturally small" parameter of the theory. Noti
e that 
hiral symmetry 
an beformulated only within a relativisti
 framework where a positron is obligatory. The existen
eof a new parti
le here is therefore linked to the greater 
onvergen
e of the theory at shortdistan
es (or high energies) and is ultimately related to a symmetry. A similar motivation 
anbe given for supersymmetry. Supersymmetry, or more spe
i�
ally the existen
e of sparti
lesuperpartners with masses near the weak s
ale, 
ures the problem of quadrati
 divergen
esthrough 
an
ellations between fermioni
 and bosoni
 loops. This 
an be understood on thebasis of symmetries as follows. Supersymmetry links boson masses to fermion masses, whi
hare \prote
ted" by 
hiral symmetry6. The weak s
ale MW 
an then be naturally 
hosento be many orders of magnitude below the Plan
k s
ale MP l or the hypotheti
al s
ale MUof grand uni�
ation and kept prote
ted. Operatively, the nonrenormalization theorem ofsupersymmetry (
f. Ch.6) provides this prote
tion. Thus supersymmetry holds the key tothe stability and naturalness of the weak s
ale vis-�a-vis MU or MP l. This really is the raisond'être for the extension of the phenomenologi
ally su

essful Standard Model of parti
leintera
tions to the Minimal Supersymmetri
 Standard Model to whi
h a large part of thisbook will be devoted. In the next se
tions we shall illustrate this main argument throughexpli
it 
al
ulations at the one loop level.6We note in passing that supersymmetry also allows one to \naturally" 
hoose arbitrarily small, evenvanishing, s
alar self 
ouplings, by relating them either to gauge or to Yukawa 
ouplings.



8 CHAPTER 1. SUPERSYMMETRY: WHY AND HOW1.2 Quadrati
 Divergen
e and UnnaturalnessWe illustrate the problem of the quadrati
 divergen
e in the Higgs se
tor of the SM throughan expli
it 
al
ulation. The example studied is that of the two point fun
tion (inversepropagator) of the Higgs s
alar at vanishing external momentum, 
omputed at the one looplevel. This quantity is roughly �i times the squared s
alar mass appearing in the Lagrangian.This parti
ular obje
t has been 
hosen sin
e its 
al
ulation is simple and yet suÆ
es tohighlight the problem. Let � be the SM neutral Higgs �eld with v = q(1=p2GF ) ' 246GeV de�ned to be p2h�i so that the shifted physi
al �eld h is given by<e � = 1p2(h+ v) : (1.2)Take f to be a generi
 matter fermion �eld (of one spe
ies) with a Yukawa 
oupling to � viathe term (we follow the 
onventions of Bjorken and Drell [1.14℄)L �ff� = ��f �fLfR�+ h:
:= � �fp2h �ff � �fvp2 �ff; (1.3)where fL;R are left, right 
hiral 
omponents of f . Thus, on a

ount of spontaneous symmetrybreaking, the fermion develops a tree level mass mf = �fv=p2.Let us now pro
eed to 
ompute the one loop f - �f 
ontribution to the s
alar two pointfun
tion, as illustrated in Fig.1.2. We have
ii

2
fλ

2
fλ hh

f

Fig.1.2. Fermioni
 loop 
ontribution to the s
alar two point fun
tion.�fhh(0) = (�1) Z d4k(2�)4Tr��i �fp2� ik=�mf ��i �fp2� ik=�mf= �2�2f Z d4k(2�)4 k2 +m2f(k2 �m2f )2= �2�2f Z d4k(2�)4 " 1k2 �m2f + 2m2f(k2 �m2f )2# : (1.4)The �rst term in the �nal RHS of (1.4) is quadrati
ally divergent and is moreover independentof the s
alar mass mS. First of all, this divergen
e is very severe. Suppose the integral is



1.2. QUADRATIC DIVERGENCE AND UNNATURALNESS 9
ut o� by a � parameter whi
h is then set equal to the Plan
k mass MP l ' 2:4 � 1018GeV, the highest s
ale known in physi
s. Then the one loop 
orre
tion to m2S would be 30orders of magnitude larger than m2S itself sin
e mS is restri
ted [1.15℄, by the requirement ofperturbative unitarity in the amplitudeW+W� !W+W�, to be� O (1 TeV). Furthermore,the 
orre
tion (1.4) being independent of mS is an indi
ation of the fa
t that mS is anunnatural parameter in the SM. Setting mS = 0 does not in
rease the symmetry of thattheory. That means that there exists no symmetry in the SM whi
h prote
ts the Higgsmass. For simpli
ity, we have dealt with only the fermion antifermion loop 
ontributionto the Higgs self energy and ignored the gauge boson loop and (self-
oupled) Higgs loop
ontributions. Ea
h of the latter 
ontains a quadrati
 divergen
e and has the same problemas above7.Of 
ourse, one 
ould simply renormalize su
h quadrati
 divergen
es away in the same waythat logarithmi
 divergen
es are disposed of. But the lega
y of the severity of the quadrati
divergen
e would still remain. Thus the residual �nite 
orre
tion in (1.4) would be or orderm2f�2f=(8�). Su
h a 
orre
tion would be managably small for a standard model fermion likethe top quark. However, the SM is expe
ted to give way to a more fundamental theory, e.g.a Grand Uni�ed one [1.16℄ unifying all for
es in it, at a high energy s
ale MU � 1016 GeV.In this 
ase the leading 
ontribution will 
ome from a fermion-antifermion pair whi
h 
an
ouple to h and have the highest mass, with mf expe
ted to be O(MU), 
ausing the loop
orre
tion to the s
alar mass squared, i.e. Æm2S, to be O(M2U). One would have to do anunnatural amount of �ne tuning (1 in 1026) between the bare s
alar mass squared m2S;0 andthe renormalization Æm2S in order to keep the renormalized mass squaredm2S = m2S;0 + Æm2S (1.5)to less than a (TeV)2. The argument 
an be ampli�ed through the 
onsideration of quarti
s
alar 
ouplings.To make the above dis
ussion more 
on
rete, let us take the Grand Unifying group to be[1.16℄ SU(5) with � (H; �H) representing Higgs �elds in the 24 (5,�5) representation. Whilethe mass of � is expe
ted to be O(MU), that of the weak doublet parts of H and �H should beof O(MW ). At the tree level, the unifying s
ale MU is generated via MU = gUh�i, where gUis the uni�ed gauge 
oupling strength. The one loop e�e
tive a
tion 
ontains an intera
tionterm � �H�2H, from the graph of Fig.1.3, where the wiggly lines represent gauge bosons ofthe SU(5) theory. If we take momentum s
ales at the two external H and � lines to be oforder MW and MU respe
tively, we shall have�(M2W ) � �(M2U) + g4U16�2 ln M2UM2W : (1.6)The indu
ed mass of all 
omponents of H is �h�i2. Even if � is taken to be very small at the7In prin
iple, one 
an 
an
el the total one loop quadrati
 divergen
es by expli
itly 
an
elling bosoni
 andfermioni
 
ontributions through some postulated relation between the boson and fermion masses. However,be
ause su
h a 
an
ellation is `a

idential', rather than being enfor
ed by a symmetry, it will not work inhigher loop order.



10 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWtree level, �(M2W ) be
omes O(g4U) after the one loop 
orre
tion. Without an extreme �ne
H

Σ Σ

HFig.1.3. One loop graph for the �H�2H vertex in an SU(5) Grand Uni�ed theory.tuning of �(M2W ), the indu
ed mass of the weak s
ale Higgs doublet will then be at anuna

eptably large level. Moreover, the �ne tuning would be very di�erent in di�erentorders of perturbation theory. This, basi
ally, is the gauge hierar
hy problem arising out ofthe radiative instability of s
alar masses: the latter like to be 
lose to the highest mass s
alein the theory.1.3 Naturalness, Nonrenormalization, SupersymmetryLoops indu
ed by other s
alar �elds, 
ontributing to the Higgs two point fun
tion, 
an alsobe 
onsidered. Let us 
onstru
t a toy model [1.17℄ by introdu
ing to the system of x1.2 twoadditional 
omplex s
alar (\sfermion") �elds ~fL; ~fR with the following 
oupling to the Higgs�eld: L ~f ~f� = ~�f j�j2(j ~fLj2 + j ~fRj2) + (�fAf� ~fL ~f ?R + h:
:)= 12~�fh2(j ~fLj2 + j ~fRj2) + v~�fh(j ~fLj2 + j ~fRj2)+ hp2(�fAf ~fL ~f ?R + h:
:) + � � � : (1.7)In the se
ond step of (1.7), we have rewritten, by means of (1.2), the intera
tion in terms ofthe h-�eld and have displayed only the h-dependent terms. The 
oeÆ
ient of the last RHSterm is, in fa
t, arbitrary; the fa
tor �f , multiplying the new unknown 
oupling strengthAf , has been put in only by 
onvention. (1.7) makes the following additional 
ontributionto the two point fun
tion via the loops of Fig.1.4:� ~fhh(0) = �~�f Z d4k(2�)4  1k2 �m2~fL + 1k2 �m2~fR!+(~�fv)2 Z d4k(2�)4 " 1(k2 �m2~fL)2 + 1(k2 �m2~fR)2#+j�fAf j2 Z d4k(2�)4 1k2 �m2~fL 1k2 �m2~fR : (1.8)
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fL,R fL,R fL,R

fL,R
f

R,L

h h h h h hFig.1.4. Sfermion loop 
ontributions to Higgs self energyOnly the �rst line in (1.8), whi
h 
omes from the leftmost diagram of Fig.1.4, 
ontains aquadrati
 divergen
e. This, however, 
an be 
an
elled with that in the fermioni
 
ontribution(1.4), i.e. �fhh(0) + � ~fhh(0) be
omes free of any quadrati
 divergen
e, provided the following
oupling 
onstant equality is obeyed: ~�f = ��2f : (1.9)Note that the inequality ~�f < 0 is required in (1.7) to keep the Hamiltonian bounded frombelow. Another important point to note is that the above 
an
ellation of the quadrati
divergen
e is independent of the masses m ~fL , m ~fR or the 
oupling strength Af .Now that the quadrati
 divergen
e has disappeared from �fhh(0)+� ~fhh(0), the remaininglogarithmi
 ones 
an be 
an
elled by 
ontributions from logarithmi
ally in�nite 
ountert-erms introdu
ed in the Lagrangian density as part of the renormalization pro
edure. Inthe MS renormalization s
heme8 [1.18℄, one 
an repla
e the logarithmi
 divergen
e in ourloop integrals by the logarithm of the square of the renormalization s
ale �. Utilizingthe B0-fun
tion of Passarino and Veltman, we 
an then make [1.19℄ the following types ofrepla
ements:Z d4ki�2 � 1k2 �m21 � 1k2 �m22� � (m21 �m22)B0(0; m21; m22)m21�1� ln m21�2 ��m22 �1� ln m22�2 � ; (1.10a)Z d4ki�2 1(k2 �m2)2 ! � ln m2�2 : (1.10b)8A 
aveat is in order here. The MS s
heme was originally proposed with dimensional regularization whi
hhas a problem in supersymmetry sin
e the numbers of bosons and fermions do not mat
h as one goes o� fourdimensions. For supersymmetri
 loop 
omputations, one needs to adopt the modi�ed dimensional redu
tionor DR s
heme where the momentum integrals are evaluated in 
ontinued dimensions and the subtra
tion isperformed as in MS, but the Dira
 algebra in the numerator is done stri
tly in four dimensions. A moreextensive dis
ussion of the DR s
heme will 
ome in Ch.6.



12 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWThe 
onsequent expression for the sum of (1.4) and (1.8) 
an be simpli�ed by 
hoosingm ~fL = m ~fR = m ~f : (1.11)The 
hoi
es (1.9) and (1.11) as well as the substitutions (1.10) lead to the result:�fhh(0) + � ~fhh(0) = i �2f16�2"� 2m2f �1� ln m2f�2 � + 4m2f ln m2f�2+2m2~f  1� ln m2~f�2 !� 4m2f ln m2~f�2 � jAf j2 ln m2~f�2 #:(1.12)Thus, if along with (1.11), we also require the relationsmf = m ~f ; (1.13a)A ~f = 0 ; (1.13b)we will have �fhh(0) + � ~fhh(0) = 0 : (1.14)Eq. (1.14) 
an be restated as follows. If the fermion Yukawa 
oupling strength squaredequals the quarti
 
oupling between the Higgs and the s
alars ~fL;R, if the masses of thefermion f and of the s
alars ~fL;R are identi
al and if the Af parameter is zero, the entireone loop renormalization of the Higgs self energy �hh(0) vanishes.We are now ready to give a supersymmetri
 interpretation of the above. In an exa
tlysupersymmetri
 theory, the two s
alars ~fL;R are the left and right superpartners (sfermions) ofthe fermion f . Moreover, the 
oupling strength equality (1.9), the mass equalities (1.11) and(1.13a) and the required null value of the (supersymmetry breaking) parameter Af (1.13b)are all ensured by supersymmetry. Indeed, with these 
onditions, the vanishing of therenormalization of the Higgs self energy holds in all perturbation orders as a 
onsequen
e ofthe nonrenormalization theorem (
f. x6.7) valid in supersymmetri
 theories. This is theessen
e of naturalness due to supersymmetry. The naturalness aspe
t is also made 
lear bythe introdu
tion of a 
ertain kind of small supersymmetry breaking, namely that the breakingis 
on�ned to the masses mf and m ~f being di�erent and to Af being nonzero but does not
hange the 
oupling equality (1.9). These are spe
i�
 instan
es of parameters typi
al of softlybroken supersymmetry, i.e. as 
oeÆ
ients of supersymmetry breaking operators of massdimension less than four in the Hamiltonian. Suppose we 
hara
terize this supersymmetrybreaking in terms of two small parameters Af and Æ, withÆ2 = m2~f �m2f : (1.15)(Here we have 
hosen to maintain9 (1.11) while relaxing (1.13) via a small mass splitting.)Thus Æ 
hara
terizes the mass splitting within the f - ~f supermultiplet. With the assumption9In a more general dis
ussion, one 
ould introdu
e another supersymmetry breaking mass parameter,splitting mfL and mfR , whi
h would then enter the RHS of (1.16). But the basi
 
on
lusion would still bethe same.



1.3. NATURALNESS, NONRENORMALIZATION, SUPERSYMMETRY 13that jÆj; jAf j � mf , we 
an approximate ln(m2~f=�2) ' ln(m2f=�2)+Æ2=m2f and rewrite (1.12)as �fhh(0) + � ~fhh(0) ' �i �2f16�2 �4Æ2 + (2Æ2 + jAf j2) ln m2f�2 �+O(Æ4; jAf j2Æ2) : (1.16)Hen
e the one loop renormalization of the Higgs self energy is linearly proportional10 to thesmall supersymmetry breaking parameters Æ2 and jAf j2, restri
ting the 
orre
tion to one ofmodest magnitude, though mf may be quite large.Thus the introdu
tion of the superpartners ~fL;R with the intera
tions of (1.7) has servedtwo purposes: (1) the quadrati
 divergen
e in the s
alar self energy is 
an
elled; (2) thes
alar mass is shielded from large loop 
orre
tions involving heavy parti
les so long as themass splitting between the heavy fermion and boson superpartners is itself of the orderof the s
alar mass. This then is a toy model example of how naturalness is restored bysupersymmetry in the s
alar se
tor of the SM. We have 
on�ned ourselves here to dis
ussingfermion and sfermion loop 
ontributions to the Higgs self energy. But the same 
on
lusionsfollow mutatis mutandis if loop 
ontributions from gauge bosons and their superpartners are
ombined or Higgs bosons and their superpartners are added together.
Σ

H

Σ

HFig.1.5. Additional one loop graph for the �H�2H vertex in the supersymmetri
 SU(5) theory.Returning to the dis
ussion, given at the end of x1.2, of the supersymmetri
 SU(5) GrandUni�ed Theory, there will now be a new one loop diagram 
ontributing to the �H�2H vertexin addition to Fig.1.3. This is shown in Fig.1.5 where the solid lines represent appropriatefermioni
 superpartners of SU(5) gauge bosons and �-�elds. The two graphs 
an
el in theleading terms and the quarti
 
oupling strengths � at those two di�erent s
ales are nowrelated by �(M2W ) � �(M2U) lnM2WM2U :10The persisten
e of the renormalization s
ale � in (1.16) need not worry us sin
e the LHS is not aphysi
ally measurable quantity.



14 CHAPTER 1. SUPERSYMMETRY: WHY AND HOWHen
e the previous hierar
hi
al instability does not materialize and the problem of the ra-diative instability of the gauge hierar
hy is solved11 [1.20℄ as a 
onsequen
e of the nonrenor-malization theorem of supersymmetry (
f. Ch.6). The earlier additive term in the RHS of(1.6), proportional to g4U , has got 
an
elled. The multipli
ative logarithmi
 fa
tor 
omes inthe following way. The s
alar quarti
 
oupling is a 
oupling in the superpotential (
f. Ch.5).Sin
e the latter is not renormalized (
f. Ch.6), the renormalization of su
h a 
oupling has tobe balan
ed by the wavefun
tion renormalizations of the multiplying super�elds. Owing todimensional reasons, the latter 
an at most have a logarithmi
 dependen
e on the two masss
ales. The same must then be true of �. These issues will be
ome mu
h 
learer after thedis
ussion in x6.6.In our introdu
tion and overview, as given in this 
hapter, we have tried to provide amotivation for softly broken supersymmetry other than just its mathemati
al beauty. Itis needed as a stabilizer of the weak s
ale MW . The latter is radiatively unstable in theStandard Model; the instability of the Higgs mass mh a

rues via the Higgs VEV to MW .Stabilization within the Standard Model 
an be a
hieved only by �ne tuning. As a result,despite its logi
al 
onsisten
y and impressive experimental support, the Standard Model isan unnatural theory. Supersymmetry with soft breaking makes the theory radiatively stableand natural, provided the sparti
les are not mu
h heavier than a few TeV.

11This is a far 
ry, however, from explaining the origin of the hierar
hy, namely the ratio of the magnitudesof the weak and the uni�
ation s
ales within a supersymmetri
 grand uni�ed framework.
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Chapter 8BASIC STRUCTURE OF THEMSSM
8.1 Brief Review of the Standard ModelWe dis
uss in this 
hapter the minimal extension of the Standard Model (SM) [8.1℄ that isneeded to in
orporate softly broken N=1 global supersymmetry in the latter. This is 
alledthe Minimal Supersymmetri
 Standard Model (MSSM) [8.2℄. The pre�x \minimal" is usedto distinguish from nonminimal extensions whi
h we shall 
ome to in Ch.14. In order tosupersymmetrize the SM, we need (
f. Chs. 1,3) to introdu
e for every parti
le a superpart-ner. The latter di�ers from the former in spin by half and in mass generally by some positiveamount O(Ms), but with all other internal quantum numbers kept identi
al. In the SM allmatter �elds (pertaining to quarks and leptons) are spin half fermioni
 �elds while gaugebosons have spin one. The superpartners of the former 
annot have spin one. Sin
e theyare supposed to be matter �elds, they are not gauge bosons while the only known 
onsistentrelativisti
 �eld theories of spin one parti
les are those of gauge bosons. Thus superpartnersof matter fermions are taken to be spin zero s
alars and are des
ribed, along with the latter,by 
hiral super�elds. These s
alars are 
alled sfermions and they 
an be 
lass�ed into s
alarleptons or sleptons and s
alar quarks or squarks. Similarly, sin
e even at the 
lassi
al level,the only 
onsistent intera
ting �eld theory of spin 3=2 parti
les has to in
lude [8.3℄ gravity,the superpartner �elds of the SM gauge bosons are 
hosen to have spin 1=2; they are 
alledgauginos. Gauge bosons and gauginos are des
ribed by ve
tor super�elds. Gauginos 
anbe further 
lassi�ed into the strongly intera
ting gluinos as well as the ele
troweak zino(
orresponding to the Z boson) and winos (
orresponding to the W bosons). Spin zeroHiggs bosons are des
ribed, along with their spin half superpartners (
alled higgsinos), by
hiral super�elds. We shall later see that ele
troweak symmetry breaking mixes the EWgauginos with the higgsinos making physi
al 
harginos and neutralinos.To begin with, let us set up the notation by brie
y summarizing some basi
 ingredientsof the SM itself. The gauge symmetry group is SU(3)C � SU(2)L � U(1)Y , with subs
riptsC;L; Y referring respe
tively to 
olor, left 
hirality and weak hyper
harge. All matter (quarkand lepton) �elds are fermion �elds with left 
hiral ones transforming as doublets and right
hiral ones as singlets of SU(2)L. The hyper
harge Yf of ea
h fermion �eld is related to its161
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harge Qf and the third 
omponent of its left 
hiral weak isospin T f3L byQf = T f3L + Yf2 : (8.1)The ele
troweak gauge transformation properties of the left 
hiral, right 
hiral fermion �eldsfL = 12(1� 
5)f , fR = 12(1 + 
5)f are:fL(x)! e�igY �Y (x)Y=2 e�ig2~�2(x)�~�=2fL(x) ; (8.2a)fR(x)! e�igY �Y (x)Y=2fR(x) ; (8.2b)where gY , �Y (x) and g2, ~�2(x) are the U(1)Y and SU(2)L gauge 
ouplings, fun
tions respe
-tively. Moreover, Y is the hyper
harge operator and the Pauli matri
es ~� a
t in the weakisospin doublet representation spa
e.Fields for the three generations (generation index i = 1; 2; 3) of leptons and quarks, alongwith the dimension of the 
orresponding SU(2)L representation and the Y quantum numberare listed below.`iL = � �iei �L ; i:e: `1L = � �ee��L ; `2L = � �����L ; `3L = � ���� �L : (2;�1) ;e1R = e�R; e2R = ��R; e3R = ��R : (1;�2);qiL = � uidi �L ; i:e: q1L = � ud�L ; q2L = � 
s�L ; q3L = � tb�L : �2; 13� ; (8.3)u1R = uR; u2R = 
R; u3R = tR : �1; 43� ;d1R = dR; d2R = sR; d3R = bR : �1;�23� :The 
olor gauge transformations of quark (q) and lepton (`) �elds are:qL;R(x)! e�igs�as(x)�a=2qL;R(x); `L;R(x)! `L;R(x) ; (8.4)with gs, �as being the SU(3)C gauge 
oupling, fun
tions and �a being the Gell-Mann SU(3)lambda matri
es a
ting in the triplet (3) representation spa
e. The quark �elds of (8.4)transform as 
olor triplets (3) of SU(3)C whereas the lepton �elds of (8.3) are 
olor singlets.The SU(2)L singlet right 
hiral fermion �elds 
an be 
onverted into left 
hiral ones by 
harge
onjugation. For instan
e, u CR = (uC)L is su
h a �eld with TLf = 0, Y = �43 and transformingas a 
olor antitriplet (�3). Again, e�R = (e+L)C and so on.The gauge �elds ga� (a = 1; � � � ; 8), ~W� andB� transform a

ording to the adjoint represen-tations of SU(3)C , SU(2)L and U(1)Y respe
tively. The eight gluons ga are always masslesswhile the three SU(2)L gauge bosons W1;2;3 and the one U(1)Y gauge boson B are masslessonly in the limit of exa
t ele
troweak symmetry. At the weak s
ale, the SU(2)L � U(1)Yele
troweak (EW) symmetry gets spontaneously broken to U(1)em. The unbroken symmetry



8.1. BRIEF REVIEW OF THE STANDARD MODEL 163group at energies lower than the weak s
ale is thus SU(3)C � U(1)em. This spontaneoussymmetry breakdown is driven by an SU(2)L doublet of s
alar Higgs �elds � = ��+�0 � withY = 1 and is signaled by a real nonzero va
uum expe
tation value (VEV) for this �eld,arising from the minimization of the Higgs potential term V (�) and given byh�i = 1p2 � 0v� : (8.5)While the photon 
 remains massless, the weak bosons W� and Z a
quire masses thoughthe VEV v in (8.5). The latter is related to the masses MW;Z and the 
ouplings g2;Y as wellas to the Fermi 
onstant GF byMW = 12g2v; MZ = 12qg2Y + g22 v; v = � 1p2GF �1=2 ' 246 GeV: (8.6)The �elds W�� , Z� and A�, whi
h are mass eigenstates, are given respe
tively in terms ofthe �elds ~W� and B�, introdu
ed earlier, asW �;� = 1p2(W �1 � iW �2 ) ; (8.7a)Z� = g2pg2Y + g22W �3 � gYpg2Y + g22B�= � sin �WB� + 
os �WW �3 ; (8.7b)A� = 
os �WB� + sin �WW �3 ; (8.7
)with e = g2 sin �W = gY 
os �W : (8.8)The nonzero VEV, introdu
ed in (8.5), is also responsible in the SM for generatingfermion masses through Yukawa intera
tion terms 
hara
terized by 
oupling strengths f andgeneration indi
es1 i; j. For the latter, we 
an write:L1Y = �f e?ij `iL�ejR � f d?ij qiL�djR + h:
: (8.9)in 
ase of \down type" right 
hiral fermions (ejR; djR) andL2Y = �fu?ij qiL�CujR + h:
: (8.10)for \up type" right 
hiral fermions ujR. The 
omplex 
onjugate f ? has been 
hosen herefor 
onvenien
e in later supersymmetri
 generalization (
f. 8.33) and i; j are summed onrepetition. Furthermore, �C = i�2�? = � �0?����1We shall not use here the type subspa
e formalism, introdu
ed in Ch.5, with both supers
ripts andsubs
ripts. Thus all generation indi
es will hen
eforth be subs
ripts.
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harge 
onjugated" Higgs doublet �eld. Note that leptoni
 
ouplings are absent from(8.10) sin
e there is no �R. The substitution of (8.5) into (8.9) and (8.10) leads to thefermion mass terms. Suppose, for a set of Dira
 fermions  i, we de�ne the mass matrix mijby writing the fermion mass term in the Lagrangian density asLFMT = � � iLmij Rj + h:
:� :Then one 
an write the 
harged lepton, down type quark, up type quark mass matri
es [8.1℄in generation spa
e as(me)ij = 1p2f e?ij v = meiÆij; (md)ij = 1p2f d?ij v; (mu)ij = 1p2fu?ij v ; (8.11)the �rst being brought into a real diagonal form without loss of generality on a

ount ofthe assumed masslessness2 of the neutrinos. However, the up type and down type quarkmass matri
es do not have this advantage and 
an be put into real diagonal forms only bybiunitary transformations. Thus if the mass eigenstate left, right u- and d-quark �elds areunitarily transformed to the 
orresponding 
avor eigenstate ones by UuL , UuR and UdL ,UdR , the quark mass matri
es transform as(UuyLmuUuR )ij = [m(D)u ℄ij � muiÆij ; (8.12a)(UdyLmdUdR )ij = [m(D)d ℄ij � mdiÆij : (8.12b)In (8.12) m(D)u and m(D)d are the physi
al real diagonal mass matri
es for up and down typequarks respe
tively.Baryon number B and lepton type numbers Le;�;� (and hen
e lepton number L � Le +L� + L� ) are 
onserved in the SM. These `a

idental' global symmetries are a 
onsequen
eof the parti
le 
ontent and the gauge group. As will be dis
ussed in more detail later,the situation is quite di�erent for the MSSM. The latter 
an a

ommodate several typesof renormalizable intera
tions whi
h violate some or all of these symmetries. For the timebeing, let us nonetheless restri
t ourselves to a version of the MSSM where these symmetriesare 
onserved by the assumption of R-parity invarian
e (
f. x4.5).8.2 Super�elds of the MSSMWe now pro
eed to introdu
e a 
hiral super�eld for every 
hiral fermion of the SM. Apartfrom these 
hiral fermions and auxiliary �elds, su
h super�elds will 
ontain new s
alar �elds.For the �rst generation, these s
alar �elds 
an be enumerated as~̀1L = � ~�~e��L ; ~e1R = ~eR; ~q1L = � ~u~d�L ; ~u1R = ~uR; ~d1R = ~dR : (8.13)2An important example of a term that violates the lepton number symmetry is a Majorana neutrinomass. Sin
e neutrino masses 
an be introdu
ed without signi�
antly altering the spe
i�
 supersymmetri
aspe
ts of parti
le phenomenology, we postpone a detailed dis
ussion of this point to Ch.14.



8.2. SUPERFIELDS OF THE MSSM 165Here ~̀1L are 
alled left sleptons (more spe
i�
ally, left sele
tron and sneutrino) while ~eR is
alled the right sele
tron. Let us denote by L1 (Q1) and �E1 ( �U1, �D1) the left 
hiral lepton(quark) doublet and antilepton (antiquark) singlet 
hiral super�elds respe
tively. Thus, forthe �rst generation of leptons and sleptons, we 
an take the super�eldsL1 = �L�eLe � ; �E1 : (8.14)Contained in these are the �elds `1L, ~̀1L, e C1R = eCR and ~e ?1R = ~e ?R 
orresponding3 respe
tivelyto  `1L, �`1+,  CeR and �e� in the notation of Ch.5. There is no singlet neutrino super�eldsin
e the SM does not 
ontain any left 
hiral antineutrino. Similarly, the �rst quark (andsquark) generation is represented by the super�eldsQ1 = �QuQd � ; �U1; �D1 : (8.15)These 
ontain the �elds q1L, ~q1L, u C1R = u CR , d C1R = d CR , ~u ?1R = ~u ?R and ~d ?1R = ~d ?R
orresponding to  q1L, �q1+,  CuR ,  CdR , �u� and �d� respe
tively.The above pro
edure 
an be repeated for the se
ond and third generations. Thus wedenote matter super�elds 
orresponding to these generations by Li, �Ei, Qi, �Ui and �Di withi = 2; 3. So we have L2 = �L��L� � ; �E2; Q2 = �Q
Qs� ; �U2; �D2 ; (8.16)respe
tively 
ontaining the �elds `2L, ~̀2L, e C2R = � CR , ~e ?2R = ~� ?R , q2L, ~q2L, u C2R = 
 CR ,~u ?2R = ~
 ?R , d C2R = s CR , ~d ?2R = ~s ?R . Furthermore, there areL3 = �L��L� � ; �E3; Q3 = �QtQb� ; �U3; �D3 ; (8.17)respe
tively 
ontaining the �elds `3L, ~̀3L, e C3R = � CR , ~e ?3R = ~� ?R , q3L, ~q3L, u C3R = t CR ,~u ?3R = ~t ?R , d C3R = b CR , ~d ?3R = ~b ?R .Supersymmetry, by itself, does not provide any 
lear answer to the generation or familyproblem and, in the MSSM, one simply repli
ates the super�elds thri
e for the three genera-tions. Within ea
h family, however, the 
ounting of fermioni
 and bosoni
 degrees of freedommust mat
h for every supermultiplet, as des
ribed by a 
hiral super�eld. Corresponding toa massive Dira
 fermion �eld, fu say, with four on-shell degrees of freedom (two spin statesfor the parti
le and two for the antiparti
le, as embodied in the 
omplex 
hiral �elds fuLand fuR), there are two 
orresponding 
omplex s
alar �elds ~fuL and ~fuR. Ea
h of the lat-ter, together with its 
omplex 
onjugate, stands for parti
le and antiparti
le �elds; thus the
omponents mat
h. Note further that ~fuL and ~fuR have di�erent SU(2)L � U(1)Y quantumnumbers just as fuL and fuR do. Another point needs to be emphasized here. Sin
e thesuperpotential W 
an 
ontain only left 
hiral super�elds, one is obliged to use the left 
hiral3Cf. x5.6, ex
ept that we have dropped the +;� subs
ripts and used overbars for singlets.
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harge 
onjugates of the SU(2)L singlet right 
hiral fermion �elds, i.e. f CuR = (fCu )L et
., andthe 
omplex 
onjugates of their superpartner right sfermion �elds, i.e. ~f ?uR et
. These are
ontained in left 
hiral super�elds with quantum numbers of the 
onjugate representations.Finally, all matter super�elds are taken to have odd matter parity (
f. x4.5).In the gauge se
tor we introdu
e one ve
tor super�eld 
orresponding to ea
h gauge �eldin the gauge group SU(3)C � SU(2)L � U(1)Y . Thus we have the U(1)Y , SU(2)L, SU(3)Cgauge �elds B�, ~W�, ga� and the 
orresponding spin half (four 
omponent) Majorana gaugino�elds ~�0, ~~�, ~ga 
ontained in the super�eldsfV Y ; ~V W ; V ag g (8.18)respe
tively. Every gaugino �eld, like its gauge boson partner, transforms as the adjointrepresentation of the 
orresponding gauge group. Moreover, ea
h su
h �eld has left 
hiraland right 
hiral 
omponents whi
h are 
harge 
onjugates of ea
h other:(~�0L)C = ~�0R : (8.19)Next, we turn to the supersymmetrization of the Higgs se
tor of the SM. The latter hasonly one SU(2)L doublet �eld � with a hyper
harge Y� = 1. As dis
ussed earlier, the sameHiggs VEV v 
an be used to give masses to the T3L = 1=2 and T3L = �1=2 fermions via theYukawa intera
tion terms of (8.9) and (8.10). In parti
ular, (8.10) has been made possibleonly by use of the 
onjugate Higgs �eld �C whi
h has Y�C = �1. Su
h a term, however,will not be allowed in a supersymmetri
 theory. There the Yukawa intera
tions are derivedfrom the superpotentialW whi
h has to be an analyti
 fun
tion of left 
hiral super�elds (seex5.1). Hen
e intera
tion terms, derived from the same superpotential, 
annot 
ontain both� and �C . Therefore, in order to make the T3L = �1=2 fermions massive, a se
ond Higgsdoublet is needed. We must then have { in a supersymmetri
 theory { two Higgs doubletswith hyper
harges Y = �1 and 1 whi
h we shall denote by h1 (down type) and h2 (up type)respe
tively. If the supers
ript D is an SU(2) doublet index taking values 1; 2, we 
an writefor D = 1, h11 = h01 and h12 = h+2 while, for D = 2, we 
an write h21 = h�1 , h22 = h02:h1 � � h11h21� = � h01h�1 � ; h2 � � h12h22� = � h+2h02 � : (8.20)Their Yukawa intera
tions 
an be written down simply by repla
ing � and �C by �i�2h?1 andi�2h?2 respe
tively in (8.9) and (8.10). The Higgs VEVs, after the spontaneous breakdown ofele
troweak symmetry, are now given by real, positive quantities (
f. x10.2) v1;2 whi
h arisefrom the minimization of the Higgs potential term V (h1; h2) and are shown below:hh1i = 1p2 � v10 � ; hh2i = 1p2 � 0v2� : (8.21)It is well known [8.4℄ that this two Higgs doublet extension of the SM, with the up and downtype fermions 
oupling to separate Higgs doublets, is perfe
tly 
ompatible with all FCNC
onstraints4 sin
e it obeys the Glashow-Weinberg/Pas
hos 
ondition [8.1℄. The only 
hange4This is true even in
luding one loop 
orre
tions.



8.2. SUPERFIELDS OF THE MSSM 167is that (8.6) and (8.11) are now respe
tively modi�ed toMW = 12g2qv21 + v22; MZ = 12qg2Y + g22qv21 + v22; qv21 + v22 = � 1p2GF �1=2 ' 246 GeV(8.22)and (me)ij = meiÆij = 1p2f e?ij v1; (md)ij = 1p2f d?ij v1; (mu)ij = 1p2fu?ij v2 ; (8.23a)f e?ij = g2p2MW 
os � (me)ij; f d?ij = g2p2MW 
os � (md)ij; fu?ij = g2p2MW sin � (mu)ij : (8.23b)The relations in (8.23b) have been obtained by inverting those in (8.23a). The ratiov2v1 = tan� (8.24)be
omes a free parameter of the theory in so far as fermion masses are 
on
erned.The left 
hiral fermioni
 partners of the Higgs bosons of (8.20) are given by~h1L � � ~h11~h21� = � ~h01~h�1 �L ; ~h2L � � ~h12~h22� = � ~h+2~h02 �L : (8.25)In (8.25) we have de�ned higgsino �elds ~h01L; ~h�1L; ~h+2L and ~h02L, whi
h are two 
omponentspinorial �elds in the (12 ; 0) representation (
f. x3.2) and identi�ed with ~h11; ~h21; ~h12 and ~h22respe
tively. Generalizing, we 
an denote the left 
hiral super�elds 
ontaining h1; ~h1L andh2; ~h2L by H1; H2 respe
tively. So we haveH1 = �H11H21 � ; H2 = �H12H22 � (8.26)as the down type, up type Higgs super�elds with Y = �1; 1 respe
tively. They are assignedeven matter parity sin
e they are per
eived to be quantalike (
f. Table 4.1). Note that, forquarks and leptons, the need to have a massive Dira
 fermion makes it ne
essary for us tointrodu
e SU(2)L doublet and singlet 
hiral super�elds. This is unne
essary in the 
ase of theHiggs super�elds sin
e ~h01L and (~h02L)C 
an 
ombine to form a four 
omponent spinorial �eldand ditto ~h�1L and (h+2L)C . There is therefore only one four 
omponent neutral higgsino �eldand similarly only one four 
omponent 
harged higgsino �eld5. The two Higgs super�eldsof (8.26) are thus suÆ
ient. These, together with those in (8.14) { (8.18), 
omprise all thesuper�elds of MSSM. They are all listed in Tables 8.1a and 8.1b.5This is true with unbroken ele
troweak symmetry. The broken symmetri
 
ase is more 
ompli
ated andwill be dis
ussed later.



168 CHAPTER 8. BASIC STRUCTURE OF THE MSSMLEFT CHIRAL MATTER SUPERFIELDSLepton doublets (
olor multiplet, T3L; Y ) Quark doublets (
olor multiplet, T3L; Y )L1 = �L�eLe � �1; 12 ;�1��1;�12 ;�1� Q1 = �QuQd � �3; 12 ; 13��3;�12 ; 13�L2 = �L��L� � �1; 12 ;�1��1;�12 ;�1� Q2 = �Q
Qs� �3; 12 ; 13��3;�12 ; 13�L3 = �L��L� � �1; 12 ;�1��1;�12 ;�1� Q3 = �QtQb� �3; 12 ; 13��3;�12 ; 13�Antilepton singlets (
olor multiplet, T3L; Y ) Antiquark singlets (
olor multiplet, T3L; Y )�Ee (1; 0; 2) �U1; �D1 ��3; 0;�43� ;��3; 0; 23��E� (1; 0; 2) �U2; �D2 ��3; 0;�43� ;��3; 0; 23��E� (1; 0; 2) �U3; �D3 ��3; 0;�43� ;��3; 0; 23�Table 8.1a. Matter super�eld 
ontent of the MSSM.GAUGE SUPERFIELDS LEFT CHIRAL HIGGS SUPERFIELDSNotation Name Doublets Name YV Y Hyper
harge H1 = � H01H�1 � Down type {1~VW Weak isospinV ag Color H2 = �H+2H02 � Up type 1Table 8.1b. Gauge and Higgs Super�eld 
ontent of the MSSM.A question 
an be raised at this point as to whether one 
ould have been more e
onomi
alwith the 
ontents of super�elds in the MSSM. The requirement that all the 
omponent �eldsin ea
h super�eld must 
arry the same internal quantum numbers would qui
kly 
onvin
eanyone that the above is ne
essarily the minimum set. The 
omponents of H1 and Li, forinstan
e, have the same ele
tromagneti
 
harges, but they di�er in lepton number (in
ludinglepton type) and matter parity. We have already given the raison d'être for the existen
e oftwo Higgs super�eld doublets with Y = �1 and Y = 1, namely the generation of masses forboth T3L = �1=2 and T3L = 1=2 fermions respe
tively. In fa
t, even in the supersymmetri
extension of a matterless SM (with only gauge and Higgs �elds), the two Higgs doublet
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essary for self-
onsisten
y. The 
ondition of anomaly 
an
el-lation [8.5℄ in the higgsino se
tor, a requirement of renormalizability, demands in parti
ularthat �~hY 3~h = 0 where Y~h is the hyper
harge of ea
h higgsino �eld ~h. Thus one doublet ~h2with Y~h2 = 1 has to be 
ompensated by another ~h1 doublet with Y~h1 = �1. (Gauginos,whi
h are another set of new fermions in the supersymmetri
 theory, are in the safe adjointrepresentations and do not 
ause anomaly problems.) We see �nally that all the super�elds,introdu
ed above and tabulated in Tables 8.1a,b are indeed ne
essary for the minimal ex-tension of the SM keeping inta
t its lo
al symmetries, su
h as ele
tromagneti
 
harge and
olor, as well as its global symmetries through the 
onservation of baryon (B) and lepton(L) number (in
luding lepton type). As stated earlier, the exa
t 
onservation of R-parity isan assumed additional requirement. Within the MSSM the assumption of B and L (in
lud-ing lepton type Li) 
onservation6 is equivalent to that of R-parity 
onservation7. But, forsuperpotential terms and supersymmetry breaking operators in the Lagrangian density, thisis a highly 
onstraining requirement.Of 
ourse, states 
orresponding to all 
omponent �elds of the super�elds, des
ribed above,are only `intera
tion' eigenstates. In the real world, the absen
e of mass degenerate parti
le-sparti
le pairs requires supersymmetry to be broken. We shall dis
uss in the next 
hapterwhy su
h a breaking 
annot be spontaneous within the framework of the MSSM itself. SuÆ
eit to say here that it has to be expli
it and soft (
f. x7.7). This breaking of supersymmetry inthe MSSM 
an be parametrized in terms of a few expli
it soft terms added to the Lagrangiandensity. We 
hoose the most general terms of this kind. But they are �rst introdu
ed inan ad ho
 manner, though some rationale for them will be given in Chs.12 and 13 on thebasis of high s
ale physi
s. The 
ontents of these terms will be dis
ussed in detail in Ch.9.Let us remark, for the moment, that they 
an indu
e mixing between di�erent sparti
leswith the same 
harge and 
olor. Indeed, even without supersymmetry breaking, ele
troweaksymmetry breaking alone 
auses mixings between gauginos and higgsinos (
f. 5.30). Thus,for instan
e, 
harged gauginos mix with 
harged higgsinos through a 2 � 2 mixing matrix.The two physi
al mass eigenstates from that are 
alled 
harginos ~��1;2, the subs
ript 1 (2)
onventionally referring to the lighter (heavier) sparti
le. A more elaborate dis
ussion willappear in x9.2.We 
an immediately see yet another need for two Higgs doublets in this theory. The twodoublet super�elds H1; H2 are left 
hiral ones and they 
ontain the left 
hiral higgsinos of(8.25); the 
onjugate super�elds Hy1; Hy2 
ontain the 
orresponding right 
hiral ones. Theleft 
hiral 
harginos 
omprise four orthogonal states: the positively 
harged ~�+1L; ~�+2L and thenegatively 
harged ~��1L; ~��2L. Let us de�ne 
harged gaugino (wino) �elds~�� = 1p2 �~�1 � i~�2� = ~��L + ~��R ; (8.27)where the supers
ripts 1; 2 are Cartesian SU(2)L indi
es. The massive ~�+1L and ~�+2L areorthogonal linear 
ombinations of ~�+L and ~h+2L while ~��1L and ~��2L are formed by similarly6Stri
tly speaking, even B and L (also Li) are violated at the loop level through anomalies both in the SMand the MSSM, only 13B �Li is exa
tly 
onserved. But these violations are very tiny in a zero temperature�eld theory.7This equivalen
e is not ne
essarily valid in extensions of the MSSM. Of 
ourse, supersymmetri
 GrandUni�ed Theories usually violate B and L but may respe
t R-parity.
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ombining ~��L and ~h�1L. (N.B. there is no ~h�2L or ~h+1L!) Correspondingly, the right 
hiral
harginos ~��1R, ~��2R and ~�+1R, ~�+2R are orthogonal linear 
ombinations of the 
harge 
onju-gates of the above pairs of gauginos and higgsinos, viz. ~��R, ~h�2R and ~�+R, ~h+1R respe
tively.Evidently, we require both ~h+2L and ~h�1L, as appear in the two Higgs doublets, otherwise some
hargino �eld, la
king a partner to make a Dira
 mass term in the Lagrangian density, wouldremain massless. Thus we see how the two higgsino doublet �elds in the MSSM are used, in
ombination with the 
harged winos, to generate two massive Dira
 
harginos.Similarly, there is mixing among the neutral gauginos, whi
h 
an be des
ribed by four
omponent Majorana �elds. There are two, namely ~�0 and ~�3, whi
h mix with the neutralhiggsinos ~h02 and ~h01 through a 4 � 4 mixing matrix. In this 
ase the four physi
al masseigenstate Majorana fermions are 
alled neutralinos ~�0i (i = 1; � � � ; 4), the subs
ripts beingmonotoni
ally ordered in the dire
tion of in
reasing mass, by 
onvention. On
e again, a de-tailed des
ription of the mixing among 
harge neutral gauginos and higgsinos, forming masseigenstate neutralinos, will be given in x9.2. In fa
t, similar mixings 
an o

ur among dif-ferent squark generations or among di�erent slepton generations (if lepton type number getsviolated) as well. Also, one 
an (and does) have left right sfermion mixing. Not mu
h more
an be said a priori about mixing between di�erent intera
tion eigenstates in the sparti
lese
tor. These depend on the detailed stru
ture of the supersymmetry breaking terms andtheir relationship with EW symmetry breaking. Su
h details about sparti
le mass eigen-states will be taken up in the next 
hapter after we have dis
ussed the soft supersymmetrybreaking terms at length.An enumeration has been given below (Table 8.2) of sparti
le �elds in the minimal globallysupersymmetri
 extension of the SM whi
h follows from the 
onstru
tion des
ribed earlier.Sfermions Gauginos and higgsinosName Symbol Name Symbol(left, right) sele
tron ~eL;R gluinos ~ga(left, right) smuon ~�L;R(left, right) stau ~�L;R lighter 
harginos ~��1e-sneutrino ~�e�-sneutrino ~�� heavier 
harginos ~��2� -sneutrino ~��(left, right) u-squark ~uL;R lightest neutralino ~�01(left, right) d-squark ~dL;R(left, right) 
-squark ~
L;R next-to-lightest neutralino ~�02(left, right) s-squark ~sL;R(left, right) stop ~tL;R next-to-heaviest neutralino ~�03(left, right) sbottom ~bL;R heaviest neutralino ~�04Table 8.2. List of sparti
le �elds in the MSSM. Antisfermion �elds have not been listed.Sfermions of the third generation are likely to have strong L-R mixing; the mass eigenstatesfermion �elds are denoted as ~�1;2, ~t1;2 and ~b1;2. Antisfermioni
 �elds are denoted by 
onjuga-tions of sfermioni
 �elds, e.g. ~e?L;R from ~eL;R and ~qyL;R from ~qL;R. However, this is a notation



8.3. SUPERSYMMETRIC PART OF THE MSSM 171that we shall use for �elds only, while an antisfermioni
 parti
le { the superpartner of an an-tifermion { will be labeled ~f , i.e. ~eL for the right spositron and ~uL for the right u-antisquark.Additional parti
les and sparti
les may be needed by theoreti
al s
hemes whi
h go beyondthis minimal extension. For instan
e, the gravitino ~G, whi
h is needed in a spontaneouslybroken N=1 supergravity (SUGRA) theory, has not been in
luded here.8.3 Supersymmetri
 Part of the MSSMIn this se
tion we will introdu
e and dis
uss those intera
tion and mass terms in the La-grangian density LMSSM whi
h 
ome from the exa
t supersymmetrization of the SM. Softintera
tion terms with mass dimensions less than four as well as mass terms, whi
h des
ribethe heavier masses of sparti
les as di�erent from those of their parti
le partners, arise fromsupersymmetry breaking and will be addressed in a later se
tion. The general form of theLagrangian density is LMSSM = LSUSY + LSOFT (8.28)and in this se
tion we will give expli
it expressions for LSUSY only. In order to write downthe supersymmetri
 intera
tions among the dynami
al �elds enumerated in x8.1, we willessentially use the forms of the Lagrangian densities of SQED, SQCD and S�GT of Chapter5, but 
overing three families of quarks and leptons. The only really new addition is the
ontribution from the Higgs se
tor. The gauge 
ouplings are the same as in the SM. Thereis no need to give the expli
it gauge transformations of the matter super�elds enumeratedin x8.1. These 
an be obtained by a straightforward extension of (5.15) and (5.38). But we
an de
ompose the supersymmetri
 part of the MSSM Lagrangian density as follows:LSUSY = Lg + LM + LH ; (8.29)where Lg;LM and LH are the pure gauge, matter and Higgs-Yukawa parts respe
tively.The pure gauge part of LSUSY 
an be written, in terms of �eld strength spinorialsuper�elds W ag , ~WW and WY , 
onstru
ted respe
tively via (4.39) and (5.45) from V ag , ~VWand V Y , a

ording to (5.17) and (5.54):Lg = 14 Z d2� �W aAg W agA + ~WAW � ~WWA +WAY WY A�+ h:
: ; (8.30)where the 
olor index a has been summed on repetition. Similarly, the matter 
ontribution
an be given by the generalization of (5.62) asLM = Z d4�"Lyi e(g2~V W �~� + gY V Y Y )Li + �Eyi egY V Y Y �Ei + �U yi e(gsV ag ��a + gY V Y Y ) �Ui+ �Dyi e(gsV ag ��a + gY V Y Y ) �Di +Qyi e(gsV ag �a + g2~V W �~� + gY V Y Y )Qi#: (8.31)In (8.31) the Pauli matri
es ~� a
t in the weak isospin doublet representation spa
e whilethe Gell-Mann matri
es �a (and their 
omplex 
onjugates ��a) a
t in the 
olor triplet 3 (and
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es. The subs
ript i is a family index, summed over 1; 2; 3on repetition. Finally, the Higgs 
ontribution 
an be written asLH = 2Xp=1 Z d4� �Hyp e(g2~VW �~� + gY V Y Y )Hp +WMSSMÆ(2)(��) +WyMSSMÆ(2)(�)� ; (8.32)where the superpotential WMSSM is given byWMSSM = �H1 �H2 � f eijH1 �Li �Ej � f dijH1 �Qi �Dj � fuijQi �H2 �Uj : (8.33)(We use the notation A�B � �DEADBE for two SU(2)-doublet super�elds or �elds A;B withD;E being indi
es in the doublet representation spa
e with the same supers
ript/subs
ript
onventions as for two 
omponent spinors in Ch.3). The signs in (8.33) have been 
hosenso that the fij's here are the same as of those in (8.9) and (8.10), as 
an be 
he
ked byuse of (5.3) and (3.28a,b). The se
ond, third and fourth terms in the RHS of (8.33) arejust the supersymmetri
 generalizations of the Yukawa 
ouplings in (8.9) and (8.10). Onlythe �rst RHS term of (8.33) is new. This term, 
ontaining the parameter �, whi
h hasthe dimension of mass, 
an be thought of as a supersymmetri
 generalization of a higgsinomass term. We shall later see that a 
onsistent in
orporation of spontaneous ele
troweaksymmetry breakdown requires � to be of the order of the weak s
ale. The 
hoi
e of terms inWMSSM has been 
onstrained by the requirement of R-parity (Rp) 
onservation (
f. x4.5)whi
h is one of the assumptions of the MSSM. Let us remark here that, sin
e baryon numberB and lepton number L are 
onserved in the SM Lagrangian, the 
onservation of Rp may beposited as a natural assumption in a minimal supersymmetri
 extension of the SM whi
h maybe expe
ted to preserve the 
onservation laws of the latter. Additional terms, that are gaugeinvariant with respe
t to SM gauge transformations, 
ould be admitted to the RHS of (8.33)if R-parity were violated expli
itly. We postpone a dis
ussion of this possibility to Ch.14.For the moment, we take the 
onservation of R-parity to be a 
entral assumptionof the MSSM. The terms in LMSSM, that are generated from WMSSM, are obtained froma generalization of (5.5) with the Higgs VEVs from (8.21) taken into a

ount to properlyin
orporate spontaneous ele
troweak symmetry breaking.Let us 
on
entrate �rst on the auxiliary F and D �elds following from (8.31)-(8.33). Byuse of (5.56
), we 
an identify seventeen (in
luding i = 1; 2; 3) F �elds from (8.33). Forthe SU(2) doublet representation spa
e, we 
an employ the two spinor subs
ript/supers
riptnotation of Ch.3, i.e. H1D = �DEHE1 and F ?DH1 = ��W=�H1D j et
. This enables us to writeF ?DH1 = ��hD2 + f eij~e?jR ~̀DiL + f dij ~dyjR~qDiL ; (8.34a)F ?DH2 = �hD1 � fuij~uyjR~qDiL ; (8.34b)F ?DLi = �f eijhD1 ~e?jR ; (8.34
)F ?�Ei = f ejih1� ~̀jL ; (8.34d)F ?DQi� = �f dijhD1 ~dyjR� + fuijhD2 ~uyjR� ; (8.34e)F ?�Di� = f djih1�~qjL� ; (8.34f)



8.3. SUPERSYMMETRIC PART OF THE MSSM 173F ?�Ui� = fuji~qjL��h2 : (8.34g)In (8.34e-g) the subs
ript � is the 
oating 
olor index, whereas in (8.34a,b) appropriate
olor 
ontra
tions are implied. Now the three D �elds, 
orresponding to the three fa
torsU(1)Y ; SU(2)L and SU(3)C of the gauge group and ignoring a possible �eld independentterm in DY , 
f. (5.22b), are given respe
tively from (5.56
) byDY = �12gY �hy2h2 � hy1h1 + 13 ~qyiL~qiL � 43 ~uiR~uyiR + 23 ~diR ~dyiR�~̀yiL ~̀iL + 2~eiR~e?iR�; (8.35a)~D = �12g2 �hy1~�h1 + hy2~�h2 + ~qyiL~� ~qiL + ~̀yiL~� ~̀iL� ; (8.35b)Da = �12gs �~qyiL�a~qiL + ~uTiR��a~u?iR + ~dTiR��a ~d?iR�= �12gs �~qyiL�a~qiL + ~uyiR�a~uiR + ~dyiR�a ~diR� : (8.35
)Here a is a 
olor index and we have utilized the hermiti
ity of �a in the last step. It may benoted that, in both (8.35a) and (8.35
), ~u ?iR , ~d ?iR and ~e ?iR are the equivalents of � in (5.56
).Finally, the supersymmetri
 s
alar potential is given (
f. 5.56b) byVSUSY = F ?kFk + 12 h ~D2 + (DY )2 +DaDai : (8.36)k referring to the type of super�eld (in
luding any internal symmetry index) and repeatedk and a being summed.The intera
tion part 
an be written down in terms of 
omponent �elds in four 
omponentnotation in mu
h the same way as shown in Ch.5. The major di�eren
e now is that we wantto in
orporate the spontaneous ele
troweak symmetry breakdown SU(2)L�U(1)Y ! U(1)emand obtain the 
onsequent mass terms and mass eigenstates, i.e. equivalents of (8.5) to (8.10).Let us 
onsider non-Higgs verti
es for the moment. We postpone all dis
ussions of inter-a
tions involving Higgs bosons to Ch.10; in parti
ular, these in
lude Yukawa, Higgs-gaugeand Higgs-Higgs intera
tions and some of their supersymmetri
 generalizations. Further-more, those verti
es with physi
al sparti
les, whi
h involve supersymmetry breaking, will betreated in Ch.9. In the next se
tion of this 
hapter we 
onsider (A) fermion-fermion-gaugeboson, (B) triple gauge boson, and (C) quadruple gauge boson verti
es in the StandardModel. We also dis
uss from the MSSM those (D) sfermion-sfermion-gauge boson, (E)gauge boson-gaugino-gaugino, (F) fermion-sfermion-gaugino, (G) gauge boson-gauge boson-sfermion-sfermion and (H) sfermion quarti
 verti
es whi
h have to do with only the purelysupersymmetri
 part of LMSSM and without left right mixing. Some subsets of these as wellas other non-Higgs verti
es 
ru
ially involve supersymmetry breaking and both generationas well as left right mixing in a physi
al situation. Those will be 
overed in Ch.9, whi
h will
ontain the 
orresponding �nal physi
al verti
es with the said mixings.
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es of the MSSMFirst, we re
ount the non-Higgs SM verti
es in (A), (B) and (C). Subse
tions (D), (E), (F)and (G) 
ontain the new supersymmetri
 extensions.(A) Fermion-fermion-gauge boson verti
esWe 
an dis
uss the strong and ele
troweak verti
es separately.(i) Quark-quark-gluon verti
esThese are the same as in QCD, vide x5.5. The only additional remark is that all six
avors of quarks (p = u; d; 
; s; t; b) have to be in
luded with all intera
tions beingdiagonal in 
avour spa
e. Thus, with p hen
eforth summed on repetition, we haveLq�qg = �gsga��qpT a
�qp :This form is valid in any basis for the quarks that 
an be rea
hed from the 
urrentbasis by a unitary rotation in generation spa
e. Thus 
avor mixings of quark masseigenstates are in
onsequential here.(ii) Fermion-fermion-ele
troweak ve
tor boson verti
esThese follow exa
tly those given in x5.6. The only di�eren
es arise on a

ount of 
�Zmixing, 
f. (8.7) and (8.8). Furthermore, one has to repli
ate for three generations.We 
an now employ the notation of (5.65), understanding fui;di to be either a quark ora lepton of generation i with fuiL = PLfui , fuiR = PRfui , fdiL = PLfdi , fdiR = PRfdiand PL;R = 12 (1� 
5). Then, with f , f 0 and v respe
tively 
hosen as two fermions andone EW ve
tor boson generi
ally, we 
an writeLf �f 0v = � g2p2 �W+� �fui
�PLfdi +W�� �fdi
�PLfui��eA� �Qfu �fui
�fui +Qfd �fdi
�fdi�� g22 
os �W Z� �" �fui
� �(1� 2Qfu sin2 �W )PL � 2Qfu sin2 �WPR	 fui� �fdi
� �(1 + 2Qfd sin2 �W )PL + 2Qfd sin2 �WPR	 fdi#: (8.37)In (8.37) Qfu and Qfd are the ele
tromagneti
 
harges of the up type and down typefermions fui and fdi respe
tively in units of the 
harge of the positron. Thus Qui = 23 ,Qdi = �13 , Qei = �1, Q�i = 0. Referring ba
k to (8.3) and 
omparing with (5.65), wenote that for quarks, we 
an writeqiL = � fuiLfdiL � ; uiR = fuiR; diR = fdiR : (8.38)



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 175Similarly, for leptons, the notation is`iL = � fuiLfdiL � ; eiR = fdiR : (8.39)However, the above quarks are gauge intera
tion or \
urrent" basis eigenstates. Whenwe go to physi
al mass eigenstates, we will need to in
orporate the Cabibbo-Kobayashi-Maskawa (CKM) matrix for 
harged 
urrent 
ouplings in the quark se
tor. This part
an be written as Lq�q0W� = � g2p2 �W+� �ui
�PLV qLij dj + h:
:� ; (8.40)where the ui, dj et
. are now understood to be mass eigenstate quark �elds. In (8.40),V qLij are the elements of the CKM matrix [8.1℄ VqL = UuyLUdL in the notation of (8.12).Ele
tromagneti
 and neutral 
urrent verti
es, of 
ourse, do not involve these on a

ountof the GIM me
hanism [8.1℄. Finally, the verti
es and Feynman rules for iLff 0v 
an bewritten as in Fig. 8.1 below.W =W�; f = dj ; f 0 = ui � ig2p2 
�PLV qLijW =W+; f = uj; f 0 = di � ig2p2 
�PLV qyLijW =W+; f = �j; f 0 = ei � ig2p2 
�PLÆijW =W�; f = ej ; f 0 = �i � ig2p2 
�PLÆij
f

W

1

f

µ

�ieQf
�γ µ

f

f � ig2
os �W T f3L�(1�4T f3LQf sin2 �W )
�PL�4T f3LQf sin2 �W
�PR�� � ig2
os �W (gfL
�PL � gfR
�PR)
f

f

Z
µFig. 8.1. Fermion-fermion-ele
troweak ve
tor boson verti
es with T f3L, Qf as in (8.1).Note that in the lowermost vertex gfL stands for T f3L(1� 4T f3LQf sin2 �W ) and gfR for4(T f3L)2Qf sin2 �W .



176 CHAPTER 8. BASIC STRUCTURE OF THE MSSM(B) Triple gauge boson verti
esAgain, the strong and ele
troweak 
ases 
an be distinguished.(i) Triple gluon vertexThis is exa
tly the same as in QCD, vide (5.60) and Fig. 5.2.(ii) Triple ele
troweak ve
tor boson verti
esThese are generalized from the W+W�W 3 vertex of S�GT in x5.6, as shown in Fig.8.2. p+ q + r = 0X = 
 ie [(r � p)���� + (p� q)���� + (q � r)����℄X = Z ig2 
os �W [(r � p)���� + (p� q)���� + (q � r)����℄
W+

_
W

p

q
ν

µ

X
ρr Fig. 8.2. Triple ele
troweak ve
tor boson verti
es(C) Quadruple gauge boson verti
esOn
e more, we 
an 
onsider the strong and ele
troweak verti
es in di�erent 
ategories.(i) Quadruple gluon vertexThis is identi
al to that in QCD, vide x5.5 and Fig. 5.2.(ii) Quadruple ele
troweak ve
tor boson verti
esThe W+W�W+W� vertex is identi
al to that given in Fig. 5.3. The W+W�W 3W 3vertex, shown there, generalizes to three 
ases here, as given in Fig. 8.3.X = 
; Y = 
 �ie2 [2������ � ������ � ������℄X = 
; Y = Z �2ieg2 
os �W [2������ � ������ � ������℄X = Z; Y = Z �ig22 
os2 �W [2������ � ������ � ������℄+W

W
_

µ

ν σ

ρX

Y

Fig. 8.3. Quadruple ele
troweak ve
tor boson verti
es(D) Sfermion-sfermion-gauge boson verti
esWe shall work in the ~fL- ~fR basis, deferring a dis
ussion of left right sfermion mixing toCh.9. Again, we 
an 
onsider two 
ases, pertaining to strong and ele
troweak intera
tions.(i) Squark-squark-gluon verti
esThese are the same as the SQCD (vide x5.5) ex
ept for the generalization to six diagonal
avors (index p summed on repetition). Then, in the notation of x5.5, we 
an writeL �~q~qg = �2igSAa�~q?pT a[��℄~qp ;where the operator [��℄ is as de�ned in (4.28). Ea
h vertex is pre
isely the same asthat in Fig. 5.2 with ~q generalized to ~qp. As with quarks, neither 
avor nor left rightmixing in squark mass eigenstates will matter here.
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troweak ve
tor boson verti
esOn
e more, we generalize from the 
orresponding intera
tions of S�GT in x5.6 andwrite (with v = W;Z; 
 and Qfu;d as ele
tri
 
harge of fu;d in units of the positron
harge) the terms 
ontaining an ele
troweak ve
tor boson as follows:L�~f ~f 0v = �ip2g2 nW+� ~f?uiL [��℄ ~fdiL +W�� ~f?diL [��℄ ~fuiLo�2ieA� nqfu � ~f?uiL [��℄ ~fuiL + ~f?uiR [��℄ ~fuiR�+ qfd � ~f?diL [��℄ ~fdiL + ~f?diR [��℄ ~fdiR�o� ig2
os �W Z�n ~f?uiL �1� 2Qfu sin2 �W � [��℄ ~fuiL � 2Qfu sin2 �W ~f?uiR [��℄ ~fuiR� ~f?diL �1 + 2Qfd sin2 �W � [��℄ ~fdiL � 2Qfd sin2 �W ~f?diR [��℄ ~fdiRo; (8.41)with the repeated generation index i summed. As done for quarks and leptons, theexpressions ~qiL = � ~fuiL~fdiL � ; ~uiR = ~fuiR ; ~diR = ~fdiR (8.42)
an be written for squark �elds and~̀iL = � ~fuiL~fdiL � ; ~eiR = ~fdiR (8.43)for slepton ones. For 
harged 
urrent 
ouplings of mass eigenstate squarks, we 
an, inanalogy with (8.40), use left 
hiral 
avor rotation matrix elements V ~qLij in generationspa
e. Here we have used a symbol di�erent8 from that of the CKM matrix VqL totake a

ount of the general situation with supersymmetry breaking whi
h may makeV~qL 6= VqL. Again, in the 
oupling of the 
harged W to two sleptons of di�erent 
avortoo, to a

ount for di�erent generation dependent masses for 
harged sleptons andsneutrinos, we put in the left 
hiral 
avor rotation matrix element V ~̀Lij in generationspa
e, though su
h a matrix element is absent in the leptoni
 se
tor. Thus we haveL�~q~q0W = �ip2g2 nW+� ~u?iLV ~qLij [��℄ ~djL + h:
:o ; (8.44a)L�~̀~̀0W = �ip2g2 nW+� ~�?iLV ~̀Lij [��℄~ejL + h:
:o ; (8.44b)L�~f ~f
 = �2ieA�Q ~f � ~f ?iL[��℄ ~fiL + ~f ?iR[��℄ ~fiR� ; (8.44
)L�~f ~fZ = � ig2
os �W Z� n2T ~f3L �1� 4T ~f3LQ ~f sin2 �W� ~f ?iL[��℄ ~fiL � 2 sin2 �WQ ~f ~f ?iR[��℄ ~fiRo :(8.44d)8Of 
ourse, in the limit of exa
t supersymmetry, V~qL equals VqL of (8.40) and V ~̀L be
omes the unitmatrix.



178 CHAPTER 8. BASIC STRUCTURE OF THE MSSMHere ~fi(L;R) 
overs ~ui(L;R), ~di(L;R), ~ei(L;R) and ~�iL. Eq. (8.44) des
ribes the sfermion-sfermion-EW ve
tor boson 
ouplings with the left 
hiral or right 
hiral squark andslepton �elds understood as mass eigenstates in the limit of no left right sfermioni
mixing. The latter, to be treated in Ch.9, will generate additional 
ompli
ations inthese equations ex
ept for the photon vertex. We defer an enumeration of the �nalphysi
al verti
es and Feynman rules in this 
ase till that dis
ussion.(E) Gauge boson-gaugino-gaugino verti
esHere also strong and ele
troweak verti
es are distin
tly separate.(1) Gluon-gluino-gluino verti
esThese are identi
al to those in SQCD, as dis
ussed in x5.5 (vide Fig. 5.2).(2) EW gauge boson-neutralino/
hargino-neutralino/
hargino verti
esEven in the supersymmetri
 limit, these will not be similar to those of S�GT, Fig. 5.3.This is be
ause mass eigenstate 
harginos and neutralinos will involve 
ombinationsof gauginos and higgsinos on a

ount of the breakdown of EW symmetry. Moreover,in reality, supersymmetry breaking has a signi�
ant in
uen
e. We shall dis
uss thoseaspe
ts in detail in Ch.9, and give the �nal physi
al verti
es there.(F) Fermion-sfermion-gaugino verti
es(1) Quark-squark-gluino vertexIn the supersymmetri
 approximation of negle
ting the di�eren
es between squark
avor rotations and quark 
avor rotations from eigenstates of mass to those of gaugeintera
tions, these verti
es will be the same as in SQCD (x5.5, Fig. 5.2). In reality,however, these di�eren
es need to be re
ognized. In a broken supersymmetri
 worldthe two 
avor rotation matri
es will be di�erent. We have already introdu
ed thematri
es UuL;R and UdL;R in (8.12) for quarks. Let us de�ne analogous 
avor rotationmatri
es U~uL;R and U ~dL;R for u- and d-squarks respe
tively. These take mass diagonalsquarks to 
avor eigenstate ones. If we de�ne u; d as three 
omponent 
olumn ve
torsin 
olor spa
e, then the relevant terms in (5.60) 
an be generalized toL�q~q~g = �p2gs ��uiPRT a~ga �UuyLU~uL�ij ~ujL � ~uyiR �U~uyRUuR�ij �~gaT aPRuj��p2gs � �diPRT a~ga �UdyLU ~dL�ij ~djL � ~dyiR �U ~dyRUdR�ij �~gaT aPRdj�+h:
:; (8.45)i; j being generation indi
es. The intera
tion L�q~q~g is obviously the hermitian 
onjugateof (8.45). These forms are valid in the absen
e of left-right mixing for squarks. The
orresponding physi
al verti
es will be given Ch.9 after a

ounting for the latter.



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 179(2) Fermion-sfermion-neutralino/
hargino verti
esOn
e again, we postpone a treatment of these to Ch.9 be
ause of their essential de-penden
e on supersymmetry breaking via both 
avor rotations and gaugino higgsinomixings.(G) Gauge boson-gauge boson-sfermion-sfermion verti
esThese will be given in three 
ategories sin
e there are mixed strong and ele
troweakverti
es apart from purely strong and purely ele
troweak ones.(i) Gluon-gluon-squark-squark vertexSin
e the two squarks at this four point vertex have the same 
avor, the 
orresponding
avor rotations 
an
el out. Thus this vertex is exa
tly the same as in SQCD (x5.5,Fig. 5.2) with a trivial 
avor generalization ~q ! ~qi.(ii) Ele
troweak ve
tor boson-ele
troweak ve
tor boson-sfermion-sfermion ver-ti
esThese are present in S�GT and 
an, therefore, be read o� from (5.64) with ~f general-ized to 
over three generations of sleptons and squarks. The neutral gauge bosons W 3and B get transformed to Z and A via (8.7b,
). As before, we work in the ~fL- ~fR basis,negle
ting left right sfermion mixing for the moment. The 
orresponding intera
tionterms in the Lagrangian density 
an be written asL ~f�~f 0vv0 =g222 W+� W �� � ~f ?uiL ~fuiL + ~f ?diL ~fdiL�+ g2p2 �eA� � g2 sin2 �W
os �W Z��YfL� ~f ?uiL ~fdiLW �+ + ~f ?diL ~fuiLW ���+ e2A�A� nQ2fu � ~f ?uiL ~fuiL + ~f ?uiR ~fuiR� +Q2fd � ~f ?diL ~fdiL + ~f ?diR ~fdiR�o+ g224 
os2 �W Z�Z�n ~f ?uiL �1� 2Qfu sin2 �W �2 ~fuiL + 4Q2fu sin4 �W ~f ?uiR ~fuiR+ ~f ?diL �1 + 2Qfd sin2 �W �2 ~fdiL + 4Q2fd sin4 �W ~f ?diR ~fdiRo+ g2e
os �W A�Z�hQfu n ~f ?uiL �1� 2Qfu sin2 �W � ~fuiL � 2Qfu sin2 �W ~f ?uiR ~fuiRo�Qfd n ~f ?diL �1 + 2Qfd sin2 �W � ~fdiL + 2Qfd sin2 �W ~f ?diR ~fdiRo i:(8.46)A summation over the generation index i is understood. The relations between ~fuiL;R ,~fdiL;R and the 
orresponding squark/slepton 
avor eigenstate �elds are given in (8.42-3). Elements of the CKM type matrix V~qL arising out of 
avor rotations between



180 CHAPTER 8. BASIC STRUCTURE OF THE MSSMsfermioni
 mass and 
avor eigenstate �elds (
f. 8.44), enter the �~f ~f 0
W and �~f ~f 0ZWintera
tions but not the9 �~f ~f

, �~f ~fZZ and �~f ~f
Z ones. All these 
an be rewritten interms of mass eigenstate sfermion �elds. They then readL�~q~q0
W = g2e3p2A��~uyiLV ~qLij ~djLW �+ + ~dyiLV ~qyLij ~ujLW ��� ; (8.47a)L�~q~q0ZW = � g22 sin2 �W3p2 
os �W Z��~uyiLV ~qLij ~djLW �+ + ~dyiLV ~qyLij ~ujLW ��� ; (8.47b)L�~̀~̀0
W = �g2ep2A��~�?iLV ~̀Lij ~ejLW �+ + ~e?iLV ~̀yLij ~�jLW ��� ; (8.47
)L�~̀~̀0ZW = g22 sin2 �Wp2 
os �W Z��~�?iLV ~̀Lij ~ejLW �+ + ~e?iLV ~̀yLij ~�jLW ��� ; (8.47d)L�~f ~f

 = e2A�Q2~f � ~f yiL ~fiR + ~f yiL ~fiR�A�; (8.47e)L�~f ~fZZ = g224 
os2 �W Z�n�1� 4T ~f3LQ ~f sin2 �W�2 ~f yiL ~fiL+4Q2~f sin4 �W ~f yiR ~fiRoZ�; (8.47f)L�~f ~f
Z = 2g2e
os �W A�Q ~fnT ~f3L �1� 4T ~f3LQ ~f sin2 �W� ~f yiL ~fiL�Q ~f sin2 �W ~f yiR ~fiRoZ� ; (8.47g)L�~f ~fWW = g222 W+� W �� ~f yiL ~fiL : (8.47h)In (8.47e{h) ~fi(L;R) 
overs10 ~ui(L;R), ~di(L;R), ~ei(L;R) and ~�iL whi
h, as in (8.44), are nowunderstood as mass diagonal �elds in the limit of no left right mixing. Sin
e we haveyet to in
lude the left right mixing of sfermions and this will be done in Ch.9, wepostpone a listing of the verti
es and Feynman rules till then.(iii) Ele
troweak ve
tor boson-gluon-squark-squark verti
esThese mixed terms 
an be written, with the CKM-type matrix elements V ~qLij put inand with Qq = 2=3 or �1=3 for q = u or d respe
tively, asL~q�~q0gv = p2g2gsAa�(W �+~uyiLT aV ~qLij ~djL +W �� ~dyiLT aV ~qyLij ~djL)+2gseQqA�Aa�~qyiT a~qi+2gsg2(
os �W )�1Z�Aa�~q?i (T ~q3L �Qq sin2 �W )T a~qi : (8.48)9Sfermion 
avor mixings do not matter here be
ause of the GIM-me
hanism [8.1℄.10Read ~f? for ~fy in 
ase of sleptons.



8.4. SOME NON-HIGGS VERTICES OF THE MSSM 181In (8.48) g2, gs are the SU(2)L, SU(3)C 
oupling strengths, as before, while v 
an beW or Z or 
, and i in ~qi is summed over all 
avors as well as left and right 
hiral�elds. Here all squark �elds are supposed to be mass eigenstates in the limit of no L-Rmixing. The 
orresponding verti
es and Feynman rules will be listed in Ch.9 alongwith the proper L-R mixing fa
tors put in.(H) S
alar quarti
 verti
es without HiggsThese 
an be pi
ked out from the supersymmetri
 potential (8.36) and the detailedexpressions for the F - and D-terms given in (8.34) and (8.35) respe
tively. One 
an thenwrite the 
orresponding intera
tion term in the Lagrangian density in the limit of zero leftright mixing as follows.L ~f1 ~f2�~f3�~f4 =� g222M2W sin2 ��j~uyLU~uyLUuLm(D)u UuyRU~uR~uRj2+j ~dyLU ~dyLUuLm(D)u UuyRU~uR ~uRj2�� g222M2W 
os2 ��j~eyLU~eyLm(D)e U~eR~eR + ~dyLU ~dyLUdLm(D)d UdyRU ~dR ~dRj2+j~�yU~�ym(D)e U~eR~eR + ~uyLU~uyLUdLm(D)d UdyRU ~dR ~dRj2�� g2s4 hXi;j �j~uyiL~ujLj2 + j ~dyiL ~djLj2 + j~uyiR~ujRj2 + j ~dyiR ~djRj2 + 2j~uyiL ~djLj2 � 2j~uyiL~ujRj2�2j~uyiL ~djRj2 � 2j ~dyiL~ujRj2 � 2j ~dyiL ~djRj2 + 2j~uyiR ~djRj2��13nXi �j~uiLj2 + j ~diLj2 � j~uiRj2 � j ~diRj2�o2i� g228 hnXi �j~uiLj2 � j ~diLj2 + j~�ij2 � j~eiLj2�o2 + 4j~uyLV~qL ~dL + ~�yV ~̀L~eLj2i� g22 tan2 �W8 nXi �13 j~uiLj2 + 13 j ~diLj2 � 43 j~uiRj2 +23 j ~diRj2 � j~�ij2 � j~eiLj2 + 2j~eiRj2�o2: (8.49)In (8.49) i; j are generation indi
es. Moreover, m(D)e is the physi
al real diagonal 
hargedlepton mass matrix of (8.11) in the generation spa
e; the unitary 
avor rotation matrixU~eR transforms the mass eigenstate 
harged right slepton �elds to the 
orresponding 
avoreigenstate ones, while U~eL and U~� do the same for 
harged and neutral left slepton �elds



182 REFERENCES~eL and ~� respe
tively. Similarly, m(D)u and m(D)d are the real diagonal quark mass matri
esof (8.12). Thus we needed to take into a

ount not only the unitary left, right squark 
avorrotation matri
es U~uL , U~uR, U ~dL , U ~dR , de�ned in analogy with U~̀L;R and U~� , but also the
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alled `super-CKM' matri
es. We shall enumerate the physi
al quarti
 sfermionverti
es in Ch.9 with left right mixing taken into a

ount.This brings us to the end of our dis
ussion of supersymmetri
 verti
es in the MSSM ex
eptfor the ones whi
h are signi�
antly a�e
ted by supersymmetry breaking parameters as wellas L-R mixing and possible gaugino-higgsino mixing. Those will be dis
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Chapter 9SOFT SUPERSYMMETRYBREAKING IN THE MSSM
9.1 The Content of LSOFTWe now turn to that part of LMSSM through whi
h supersymmetry breaking is expli
itlyintrodu
ed. But �rst we need to demonstrate [9.1℄ the impossibility of e�e
ting a spontaneousbreakdown of global supersymmetry purely within the framework of the MSSM. We followthe redu
tio ad absurdum pro
edure in assuming su
h a spontaneous breaking and applyingthe supertra
e mass sum rule (7.50). Let us separately 
onsider the mass squared matri
esM2e for the 
harge �1, M2u for the 
harge +23 , M2d for the 
harge �13 and M2� for the neutralmatter fermion sfermion supermultiplets of any generation. Assuming 
harge and 
olor
onservation, the RHS of (7.50) now 
an re
eive possible 
ontributions from the generatorsT3 and Y=2 only. We 
an sum over all possible left and right 
hiral supermultiplets in thesupertra
e, ex
ept that the latter have to be 
onjugated sin
e (7.50) has been written fora left 
hiral supermultiplet. We 
an then use the results (T3)eL = �12 , (Y=2)eL = �12 ,(T3)eCL = 0, (Y=2)eCL = 1, (T3)uL = 12 , (Y=2)uL = 16 , (T3)uCL = 0, (Y=2)uCL = �23 , (T3)dL =�12 , (Y=2)dL = 16 , (T3)dCL = 0, (Y=2)dCL = 13 , (T3)�L = 12 , (Y=2)�L = �12 . Thus we have1STrM2e = g2hD3i � gY hDY i; (9.1a)STrM2u = �g2hD3i+ gY hDY i; (9.1b)STrM2d = g2hD3i � gY hDY i; (9.1
)STrM2� = �g2hD3i+ gY hDY i: (9.1d)Two positive 
ombinations of the above four supertra
es are seen to have vanishing RHS,namely1These M 's are the mass matri
es of (5.10) and (7.50) taken for ea
h generation and summed over leftand right 
hiral supermultiplets. Thus STrM2e � STrM2eL + STrM2eR = m2~eL +m2~eR � 2m2e et
. Though wehave not in
luded generation mixing in this argument, (9.2) 
an be generalized to 
over generation spa
e.183



184 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMSTrM2e + STrM2� = STrM2u + STrM2d = 0 : (9.2)Eq. (9.2) 
an be satis�ed only if in ea
h family some slepton/squark is lighter than the
orresponding fermion. This is manifestly 
ontrary to observation, ex
ept possibly for thethird squark family. Hen
e the starting assumption is wrong and, if one sti
ks to MSSM�elds alone, supersymmetry has to be expli
itly broken.In prin
iple, one 
ould introdu
e an extra U(1)Y 0 fa
tor in the gauge group in a way su
hthat all left 
hiral fermioni
 �elds 
arried the quantum number Y 0 = 1. The DY 0-term (
f.7.50), 
orresponding to this U(1)Y 0 , 
ould be given a nonzero VEV, spontaneously breakingsupersymmetry. (9.2) would now have a nonzero RHS and the 
ompulsion of having somesfermions lighter than the 
orresponding fermions 
ould be evaded. But then there will bean additional weak neutral gauge boson Z 0, mixing with the Z, whereas su
h mixing is nowseverely 
onstrained by experiment. Moreover, an extra U(1)Y 0 gauge fa
tor would introdu
e[9.2℄ un
an
elled ABJ anomalies [9.3℄ and make the theory nonrenormalizable. A great manyextra super�elds would be needed to 
an
el all anomalies and it would be diÆ
ult in generalto keep all sfermions heavier than extant lower mass bounds. Furthermore, gauginos wouldnot a
quire masses at the tree level.We 
an then 
on
lude that, though the spontaneous breakdown of supersymmetry is atheoreti
ally desirable feature, su
h a me
hanism will have to involve �elds beyond thoseof the MSSM. Phenomenologi
al 
onstraints point to su
h �elds being signi�
antly heavierthan the ele
troweak s
ale and hen
e 
arrying masses mu
h larger than those of the MSSMsparti
les. Mu
h theoreti
al spe
ulation has taken pla
e so far regarding the spe
i�
s of su
ha me
hanism and the 
urrent wisdom on it will be elaborated in Chs.12 and 13. Two broad
hara
teristi
s 
an, however, be mentioned at this jun
ture. Spontaneous SupersymmetryBreakdown (SSB) needs to be e�e
ted in a se
tor of �elds whi
h are singlets with respe
tto the SM gauge group and known as the hidden or se
luded se
tor. SSB 
an take pla
ethere at a distin
t s
ale denoted by �s, say. Supersymmetry breaking is then transmitted tothe gauge nonsinglet observable or visible se
tor by a messenger se
tor (asso
iated witha typi
al mass s
ale MM that 
ould, but need not, be as high as the Plan
k mass MP l); thismay or may not require the introdu
tion of additional gauge nonsinglet messenger super�elds.Fig. 9.1 is a 
artoon depi
ting this.
Hidden
sector

Observable
sector

Messenger transmission

Fig. 9.1. Cartoon showing the transmission of supersymmetry breaking from the hidden to theobservable se
tor.It is nonetheless true that this messenger s
ale must be at least two (and perhaps manymore) orders of magnitude above the mass of the MSSM �elds. Hen
e, when the former are



9.1. THE CONTENT OF LSOFT 185integrated out at lower (ele
troweak) energies, the residual theory is des
ribed (
f. 7.40) bythe supersymmetri
 Lagrangian density of the MSSM, namely LSUSY plus some soft expli
itsupersymmetry breaking terms, 
olle
ted in LSOFT and 
hara
terized by the supermultipletsplitting mass parameter Ms (
f. Ch.1). In Chs. 12 and 13 we shall dis
uss in detail twoalternative broad s
enarios in whi
h the messenger se
tor 
onsists of(1) higher dimensional operators [9.4℄ suppressed by inverse powers of the Plan
k mass,or,(2) �elds with gauge intera
tions [9.5℄ at lower energy s
ales.For (1), the me
hanism of Fig. 9.1 
an generally pro
eed at the tree level leading to Ms ��2s=MP l. For (2), the origin of Ms may be seen in terms of a one loop supergraph su
h asthat of Fig. 9.2, in whi
h the letters V;M and H refer to super�elds in the visible, messengerand hidden se
tors respe
tively, yielding Ms � (gauge 
oupling)2 �2s=MM . The o

urren
eof the square of �s in the numerator in either 
ase is easy to understand if supersymmetrybreaking in the hidden se
tor arises through the VEV of an auxilary F - or D-�eld (
f.x7.4{x7.6). Finally, then, a total Lagrangian density of the form of (7.40) 
an provide aphenomenologi
ally realisti
 des
ription at least for a range of energies above the EW s
ale.That will be our starting point here.
Λ2

s

H

V VMFig. 9.2. Possible one loop supergraph implementing the s
heme of Fig. 9.1.We wrote the most general form of LSOFT in (7.42) for a supersymmetri
 gauge theory.An appraisal of the di�erent terms in it shows that, for the MSSM, LSOFT 
an have no Ci-type terms. This is due to the fa
t that the model does not 
ontain any s
alar �eld that isinvariant under SU(3)C �SU(2)L�U(1)Y gauge transformations. All other types of terms,shown in (7.42), are possible. Thus we 
an write�LSOFT = ~q?iL(M2~q)ij ~qjL + ~u?iR(M2~u)ij~ujR + ~d?iR(M2~d)ij ~djR + ~̀?iL(M2~̀)ij`jL+~e?iR(M2~e)ij~ejR + hh1 � ~̀iL(f eAe)ij~e?jR + h1 �~qiL(f dAd)ij ~d?jR+~qiL �h2(fuAu)ij~u?jR + h:
:i+m21jh1j2 +m22jh2j2 + (B�h1�h2 + h:
:)+12(M1�~�0PL~�0 +M?1 �~�0PR~�0) + 12(M2�~~�PL~~�+M?2 �~~�PR~~�)+12(M3�~gaPL~ga +M?3 �~gaPR~ga)� VSOFT + gaugino mass terms: (9.3)



186 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMIn (9.3) M1;2;3 are the (generally 
omplex) gaugino (Majorana) mass parameters in the La-grangian density pertaining to ~�0, ~~� and ~ga whi
h are (
f. Ch.8) the U(1)Y , SU(2)L andSU(3)C gaugino �elds respe
tively while m1;2 are the real Higgs s
alar mass parameters.Furthermore, i; j are generation indi
es with summation implied by repetition. Thus thesquared left squark massM2~q and the squared right squark masses M2~u,M2~d as well as thosefor left sleptons M2̀ and those for 
harged right sleptons M2~e are all 3 � 3 hermitian ma-tri
es in generation spa
e. The produ
ts f eAe; f dAd and fuAu, whi
h form 
oeÆ
ients ofthe trilinear s
alar terms in (9.3), are general 3 � 3 
omplex matri
es in the same spa
e.These are the soft supersymmetry breaking A terms of (7.43), ea
h written as a produ
tof a superpotential 
oupling f of (7.41) times an A parameter with the dimension of mass,
f. (7.44). Similarly, we have s
aled the 
oeÆ
ient of the SU(2)L � U(1)Y -invariant Higgsbilinear term by the supersymmetry invariant Higgsino mass �. This ensures that the softsupersymmetry breaking parameter B (
f. 7.44) also has the dimension of mass. Note fur-ther the absen
e of any linear term in the Higgs �elds, whi
h would have been a C-typeterm, 
f. (7.43). If we allow all the new parameters, introdu
ed in (9.3), to be 
omplex,we would be dealing with some one hundred and twenty four [9.5℄ unknown real 
onstantsof whi
h nineteen were already in the SM and one hundred and �ve are new. Fortunately,many pro
esses are sensitive only to a small subset of these parameters, at least at the treelevel2. In fa
t, in pra
ti
al 
al
ulations in the MSSM (e.g. those for supersymmetry sear
hesat 
olliders) several simplifying assumptions are usually made in order to drasti
ally redu
ethe number of these additional parameters to only a handful. The �nal set of parametersis determined by the spe
i�
 assumptions made. Di�erent assumptions (usually motivatedby di�erent s
enarios of supersymmetry breaking) result in di�erent versions of the Con-strained Minimal Supersymmetri
 Standard Model (CMSSM). Let us remark that, thoughwell motivated, these assumptions do need to be tested in experiments and su
h tests forman important part of supersymmetry phenomenology at 
olliders. Of 
ourse, on
e again Rp
onservation has been assumed in (9.3). The introdu
tion of Rp violation in the soft super-symmetry breaking part of L, without Rp non
onserving supersymmetri
 terms present inthe superpotential W of (8.33), generally makes the s
alar potential unbounded from below.We shall 
onsider the latter kind of terms in Ch.14, when dealing with extensions of theMSSM.Yet another issue 
onfronting us is that of phases. As mentioned earlier, many of thenew parameters in the part LSOFT of (9.3) 
an, in general, be 
omplex in a CP noninvarianttheory. Two of these 
an be 
hosen to be real by appropriate phase rotations of the �eldsappearing in LSOFT without 
ompromising the form of LSUSY in (7.41). However, manydi�erent nontrivial (i.e. in prin
iple measurable) phases remain in the MSSM in addition tothe single CP violating phase of the CKM matrix of the SM. On the other hand, some of thesephases are subje
t to strong phenomenologi
al 
onstraints [9.6, 9.7℄ whi
h 
ome from thela
k of observation of any additional, beyond-Standard-Model CP violation in low energyexperiments so far. For example, if the phases in the gaugino/higgsino se
tor are large,e�e
tive 
an
ellation me
hanisms need to be devised [9.6℄ to meet those 
onstraints. The2For instan
e, negative sear
h results from LEP, 
f. Ch.15, already imply that both jM2j and j�j mustex
eed MW . Herein lies the origin of the � problem about whi
h we shall have more to say in x13.4 andx14.2.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 187simplest way to satisfy the experimental bounds on new sour
es of CP violation is to assume[9.8℄ that the phases of all soft supersymmetry breaking parameters are small. In fa
t, mostanalyses of CP 
onserving pro
esses in softly broken supersymmetri
 s
enarios have beenperformed under this assumption. Our phenomenologi
al dis
ussions will be mostly basedon su
h a framework, but the mass matri
es and 
ouplings, given in this 
hapter, allow forthe possibility of CP-violating phases.On
e supersymmetry and (at a lower energy s
ale) EW symmetry get broken, di�erentsparti
les of the same ele
tri
 
harge 
an mix. The sparti
les, listed in Table 8.2, then nolonger remain eigenstates of mass. Left squarks (sleptons) mix with right squarks (sleptons);there 
an be generation mixing as well. The EW gauginos and higgsinos mix too, as men-tioned in Ch.8. The mixing patterns and mass values of sparti
le mass eigenstates depend
ru
ially on the manner of supersymmetry breaking. These masses and mixing angles, inturn, determine the experimental signals of supersymmetry. This is true both for sparti
leprodu
tion as well as de
ay analyses and for low energy signatures 
aused by the ex
hangeof virtual sparti
les in loops. We therefore need to study all nontrivial restri
tions on spar-ti
le mass matri
es implied by low energy physi
s 
onstraints, mainly from the absen
e [9.8℄of FCNC pro
esses in nature. These 
onstraints also play a 
ru
ial role in relating softlybroken supersymmetry to some higher s
ale physi
s whi
h 
auses the transmission of super-symmetry breaking to the MSSM �elds in the observable se
tor. The mass values of mattersfermions as well as of nonmatter fermions (i.e. gauginos and higgsinos) are 
ontrolled by theexpli
itly supersymmetry breaking soft operators, introdu
ed at this higher s
ale. One thenneeds to 
onsider the subsequent modi�
ation of these via renormalization group evolutiondown to ele
troweak energies. This s
ale dependen
e of the mass spe
trum of sparti
les willbe dis
ussed in Ch.11 whereas here we 
on
entrate on the extra masses and mixing angles ofthe MSSM at laboratory energies. Let us note meanwhile that there is no really satisfa
torytheory of soft supersymmetry breaking terms at this point; only spe
ulative models exist.Thus low energy 
onstraints are the only phenomenologi
al pointers to them that we haveat present and these merit 
areful attention.The next se
tion 
ontains a dis
ussion of the masses of higgsinos and ele
troweak gauginosas well as of the two 
ases of mixing among them: one for 
harged ones and another forneutral ones. In subsequent se
tions we shall 
onsider the general mass matri
es for sleptonsand squarks in
orporating various supersymmetri
 and nonsupersymmetri
 mass terms. Weshall also address the di�erent 
ases of mixing among them and what e�e
ts these have ontheir intera
tion verti
es.9.2 Ele
troweak Gauginos and HiggsinosWe 
on
entrate here on the spin half supersymmetri
 partners of the ele
troweak gauge andHiggs bosons: the ele
troweak gauginos and higgsinos. While gaugino mass terms are partof the soft supersymmetry breaking LSOFT of (9.3), the spontaneous symmetry breakingSU(2)L � U(1)Y ! U(1)em for
es the gaugino �elds ~�� of (8.27) to mix with the higgsino�elds ~h�i of (8.25), leading to physi
al mass eigenstate 
harginos ~��1;2. This fa
t, alreadymentioned in x8.2, will re
eive our attention �rst. Similar mixings exist in the se
tor ofneutral EW gauginos and higgsinos and will be dis
ussed later. The soft supersymmetry



188 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMbreaking gaugino mass parameters Ma(a = 1; 2) and the supersymmetry preserving higgsinomass parameter � of (8.33), plus the ratio tan � of Higgs VEVs, 
f. (8.24), are the onlyparameters of the model that are relevant to our present dis
ussion. In 
ase Ma (a = 1; 2)and � are 
omplex, then M2 
an be 
hosen to be real and positive without loss of generality.In this situation two additional parameters enter the game, viz. �� and �M { the relativephases between M2 and � and between M2 and M1 respe
tively. However, in some (thoughnot all) of our dis
ussions below we shall assume these phases to be zero.The 
hargino mass matrixStarting from (5.55), we 
an isolate in the Lagrangian density the matter-gaugino-Higgs
oupling terms that generate 
hargino masses. They 
an be written generi
ally in two
omponent notation as �p2g2(T a)ij�a�j�?i + h:
:Here �a stands for a gaugino �eld, while � and � stand for the fermioni
 and bosoni
 
om-ponents of a Higgs 
hiral super�eld respe
tively; T a is a gauge group generator a
ting in therepresentation spa
e of � and � typi�ed by indi
es i; j. Here �i are two 
omponent spinorial�elds in the (12 ; 0) representation (
f. Ch.3) while their barred versions are the 
orrespond-ing 
onjugate �elds in the (0; 12) representation. On
e the �elds h01;2 of (8.20) a
quire VEVsv1;2 on the spontaneous breakdown of the EW symmetry, the above expression generates asum of mixed gaugino and higgsino mass terms. We further need to add to the above thesupersymmetry breaking gaugino mass terms from (9.3) and the supersymmetri
 bilinearhiggsino mixing terms 
ontained in the �H1�H2 part of the superpotential (8.33). Thus themass terms of the nonmatter 
harged fermions 
an �nally be written asL
MASS = � g2p2(v1�+~h21 + v2��~h12 + h:
:)� (M2�+�� + �~h21~h12 + h:
:) : (9.4)In (9.4) ~h21 and ~h12 are two 
omponent spinorial higgsino �elds in the (12 ; 0) representation
arrying Y = �1, Q = �1 and Y = 1, Q = 1 respe
tively, 
f. (8.25). Moreover, the two
omponent 
harged gaugino �elds �� are de�ned as (p2)�1(�1 � i�2). The mass term of(9.4) 
an now be rewritten in terms of a 2�2 matrix X as follows. De�ne two 
olumn ve
tors �, ea
h 
onsisting of one gaugino �eld 
omponent and one higgsino �eld 
omponent, as + � ��+~h12 � ; ( +)T � (�+ ~h12) ; (9.5a) � � ���~h21 � ; ( �)T � (�� ~h21) : (9.5b)Let us denote the 
omponents of  � by  �m with m = 1; 2, i.e.  +1 = �+ et
. Now we 
anmake use of (8.22) and (8.24) to rewrite (9.4) as�L
MASS = ( �)TX + + h:
: ; (9.6)with X = � M2 p2MW sin �p2MW 
os � � � : (9.7)



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 189One 
an �nd unitary matri
es U and V su
h thatU?XV�1 =MD
 ; (9.8)whereMD
 is a diagonal matrix with real nonnegative entries ~M1 and ~M2. The two 
omponent
hargino mass eigenstate �elds 
an then be identi�ed as�+k = Vkm +m ; (9.9a)��k = Ukm �m ; (9.9b)with k = 1; 2. These two 
omponent �� �elds enable one to re
ast (9.6) as�L
MASS = ��k (M
D)km�+m + h:
: (9.10)We are now in a position to de�ne four 
omponent Dira
 
hargino �elds~�+1 � � ~�+1��1 T � ; (9.11a)~�+2 � � ~�+2��2 T � : (9.11b)By using (3.28a), the mass term (9.10) 
an be rewritten in terms of these Dira
 
hargino�elds as �L
MASS = fM1 ~�+1 ~�+1 + fM2 ~�+2 ~�+2 : (9.12)By 
onvention, ~�+1 is 
hosen to be lighter than ~�+2 , i.e. fM1 < fM2. fM1;2 are a
tually thepositive square roots of the eigenvalues of the matrix XyX. From (9.8) we see that(MD
 )2 = VXyXV�1 = U?XXy(U?)�1; (9.13)i.e. U ;V are the unitary matri
es whi
h diagonalize the hermitian matri
es XXy and XyXrespe
tively. For su
h 2� 2 matri
es, the eigenvalues and mixing matri
es are easy to writedown analyti
ally. The squared masses are given byfM22;1 = 12"jM22 j+ j�2j+ 2M2W � n(jM22 j � j�2j)2+ 4M4W 
os2 2� + 4M2W (jM22 j+ j�2j+ 2<e(M2�) sin 2�)o1=2#: (9.14)If the phases of M2 and � are ignored, all the entries of X be
ome real. We work in the
onvention where M2 is positive, but � 
an have either sign (N.B. tan � is always positive,
f. x10.2). Then the mixing matri
es 
an be written asU = Ou ; (9.15a)V = ( Ov for det X > 0 ;�3Ov for det X < 0 ; (9.15b)Ov;u = � 
os�v;u sin�v;u� sin �v;u 
os�v;u� ; (9.15
)



190 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere tan 2�u = 2p2MW (� sin� +M2 
os �)M22 � �2 � 2M2W 
os 2� ; (9.16a)tan 2�v = 2p2MW (� 
os� +M2 sin �)M22 � �2 + 2M2W 
os 2� : (9.16b)The 
orresponding expressions for 
omplex X 
an be found in Ref. [9.9℄. Eqs. (9.16) areinvariant under the 
hange �! �+ �=2. However, these solutions are not equivalent. Onehas to 
he
k whether (9.8) holds in order to de
ide whi
h of the four solutions of (9.16) isthe 
orre
t one.It is 
onvenient at this stage to relate the starting two 
omponent 
harged gaugino3 andhiggsino �elds to the four 
omponent weak intera
tion eigenstate ones of (8.25) and (8.27):~�+ = � �+��T � ; (9.17a)~h+ = � ~h12~h21T � : (9.17b)The relations between these and the four 
omponent mass eigenstate 
hargino �elds ~�� are:PL~�+ = V?k1PL ~�+k ; (9.18a)PR~�+ = Uk1PR ~�+k ; (9.18b)PL~h+ = V?k2PL ~�+k ; (9.18
)PR~h+ = Uk2PR ~�+k : (9.18d)Using these equations, we 
an also derive similar relations for the 
harge 
onjugate andadjoint spinors, PR(~�+)C = Vk1PR(~�+k )C ; (9.19a)PL(~h+)C = U�k2PL(~�+k )C ; (9.19b)~�+PL = U?k1 ~�+k PL ; (9.19
)~h+PR = Vk2 ~�+k PR : (9.19d)Eqs. (9.18,19) and similar relations will prove useful later in deriving the intera
tion verti
esinvolving various parti
les/sparti
les and 
harginos.3We should emphasize that our 
onvention on gaugino �eld 
omponents is di�erent from that of Haberand Kane [9.10℄. However, our Feynman rules are the same as theirs ex
ept that � is the 
omplement oftheir �v. Our V and U matri
es are the same as the V and U respe
tively of Gunion and Haber [9.10℄.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 191The neutralino mass matrixLet us now take up the issue of mass eigenstates for neutral non matter fermions. Again,the 
orresponding mass terms re
eive 
ontributions from VSOFT, from the superpotential aswell as from the matter-gauge-Higgs 
ouplings with the neutral Higgs �elds repla
ed by theirVEVs. Retaining only terms relevant to the neutral se
tor, the mass term in two 
omponentnotation readsLnMASS = �g22 �3 �v1~h11 � v2~h22� + gY2 �0 �v1~h11 � v2~h22� + �~h11~h22�12M2�3�3 � 12M1�0�0 + h:
: (9.20)In (9.20) we have extended the notation of (9.4) for two 
omponent EW 
harged gauginoand higgsino �elds to the 
orresponding neutral ones. In general, the three mass parametersM1;M2 and �, whi
h determine the neutral nonmatter fermioni
 mass matrix and the mixing
ontained therein, are 
ompletely arbitrary. However, in simple grand uni�ed theories M1and M2 are related to ea
h other. Su
h theories predi
t that M1 = M2 at the high s
alewhere the gauge 
ouplings are presumed to unify. The gaugino mass M� will be shown inCh.11 to evolve (at one loop) with the momentum s
ale in a way identi
al to that of thesquare of the 
orresponding gauge 
oupling strength g�, the subs
ript � referring to one ofthe fa
tors of the SM gauge group. The uni�
ation 
ondition then impliesM1(MZ) = 53 tan2 �WM2(MZ) ' 12M2(MZ) ; (9.21)�W being the Weinberg angle. As explained more 
learly in Ch.11, the fa
tor 5=3 appearsin (9.21) from the di�eren
e between the normalization of generators in a simple unifyinggauge group and that of the ele
troweak hyper
harge generator in the SM.De�ne a row ve
tor ( 0)T with two gaugino �eld 
omponents and two higgsino �eld
omponents: ( 0)T � (�0 �3 ~h11 ~h22) : (9.22)Eq. (9.20) 
an then be re
ast asLnMASS = �12 � 0�T Mn 0 + h:
: (9.23)In (9.23) the 4� 4 mass matrix Mn is given byMn = 0BB� M1 0 �MZ
�sW MZs�sW0 M2 MZ
�
W �MZs�
W�MZ
�sW MZ
�
W 0 ��MZs�sW �MZs�
W �� 0 1CCA ; (9.24)where sW � sin �W ; 
W � 
os �W ; s� � sin �, 
� � 
os � in the notation of Ch.8. Let usdenote the 
omponents of  0 in (9.22) as  0n, with n = 1; 2; 3; 4, i.e.  01 = �0 et
. Now we
an de�ne two 
omponent neutralino mass eigenstate �elds �0l by�0l = Zln 0n ; (9.25)



192 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere l = 1; 2; 3; 4 and Z is a 4� 4 unitary matrix, as de�ned by Gunion and Haber [9.10℄,satisfying Z�MnZ�1 =MDn ; (9.26)MDn being a diagonal matrix with only nonnegative entries. The latter 
an be 
omputedfrom (MDn )2 = ZMnyMnZ�1 : (9.27)Sometimes, for simpli
ity of 
al
ulation, the possible phases in the entries ofMn are ignored.Now the rows of Z 
an be either purely real or purely imaginary. A 
ommon pra
ti
e in theliterature is to 
hoose a real, orthogonal Z. In this 
ase, however, the eigenvalues of MDn 
ansometimes be negative. Then those neutralino mass eigenstates, whi
h 
orrespond to su
hnegative mass eigenvalues, need to be rede�ned with 
hiral rotations so as to make the latterpositive. It is diÆ
ult to keep tra
k of this during 
al
ulations, sin
e one has to introdu
ean expli
it i
5 fa
tor whenever a neutralino 
orresponding to a negative eigenvalue of Mnappears at a vertex. So we shall not make su
h an assumption. There is one point to benoted, though. In many appli
ations, it is suÆ
ient to keep the sign of the neutralino mass inthe neutralino propagator and in neutralino spin sums without any modi�
ation of Feynmanrules.As with 
harginos, the masses and mixing angles of the neutralinos are 
ompletely de-termined in terms of a few parameters; here these are M1;2, � and tan�. We 
an 
hoose tointrodu
e four 
omponent Majorana spinorial �elds ~�0l :~�0l = � �0l�0Tl � : (9.28)Now the mass term of (9.23) takes a simple four 
omponent Majorana form, namelyLnMASS = �12Xl fMnl ~�0l ~�0l ; (9.29)where fMnl � M~�0l are the nonnegative diagonal elements of MDn . The eigenvalues fM ǹ andthe matrix Z 
an most easily be obtained numeri
ally. If all entries of Mn are real, ananalyti
al 
al
ulation of the former is possible [9.11℄. However, the expressions are quite
umbrous and will not be given here. The neutralino eigenstates are labeled4 in the massorderM~�01 < M~�02 < M~�03 < M~�04 by 
onvention. In most phenomenologi
al dis
ussions of theMSSM (unless there is a lighter gravitino or a violation of R-parity), the lightest neutralino~�01 is assumed to be the Lightest Supersymmetri
 Parti
le (LSP).It is instru
tive to relate the mass eigenstate neutralino �elds ~�0l to four 
omponentgaugino and higgsino �elds whi
h are weak intera
tion eigenstates. Let us 
onsider thelatter �rst. They are the Majorana spinors~�3 = � �3;��T3 � ; (9.30a)4Caution: the subs
ripts 1,2,3 in ~�01;2;3 do not have any spe
i�
 asso
iation with the subs
ripts of thegaugino mass parameters M1;2;3.



9.2. ELECTROWEAK GAUGINOS AND HIGGSINOS 193~�0 = � �0��T0 � ; (9.30b)~h01 =  ~h11~h11T ! ; (9.30
)~h02 =  ~h22~h22T ! : (9.30d)Then the desired relations 
an be given as follows:PL~�0 = PLZ�l1 ~�0l ; (9.31a)PR~�0 = PRZl1 ~�0l ; (9.31b)PL~�3 = PLZ�l2 ~�0l ; (9.31
)PR~�3 = PRZl2 ~�0l ; (9.31d)PL~h0s = PLZ�l;s+2 ~�0l ; (9.31e)PR~h0s = PRZl;s+2~�0l : (9.31f)Note that the index l in (9.31) spans the values 1; 2; 3; 4, while the index s 
overs 1; 2 only.Similar relations 
an be written for ~�0PL et
. using (9.31).We 
an study and 
omment on the nature of the 
hargino and neutralino se
tors in somelimiting 
ases. If j�j � jM1;2j � MZ , the two lightest neutralinos ~�01;2 are gaugino domi-nated. If (9.21) is assumed, it follows that ~�01 is mostly the U(1)Y gaugino (\bino") �eld~�0 and ~�02 is largely the neutral SU(2)L gaugino (\wino") ~�3. The two higher mass neutrali-nos ~�03;4 are then predominantly higgsinos. Similarly, the lighter 
hargino ~��1 is more or lessthe 
harged \wino" and the heavier 
hargino is largely the 
harged higgsino. Furthermore,the magnitude of the � parameter and the masses of the 
hargino and neutralino masses areroughly related by M~��1 'M~�02 ' 2M~�01 and j�j 'M~�03 'M~�04 ' M~��2 �M~��1 . In the oppo-site limit j�j � jM1;2j, the lighter neutralinos and the lighter 
hargino are mostly higgsinoswith masses 
lose to j�j, whereas the heavier 
hargino is predominantly the 
harged \wino".Finally, when j�j ' jM2j or jM1j, strong kinds of mixing o

ur between gauginos and hig-gsinos in the formation of physi
al nonmatter fermions; in general, the masses are no longerrelated in any simple way. If j�;M2j � MZ and (9.21) is assumed, then the approximaterelation M~�02 ' M~��1 holds [9.12℄ irrespe
tive of the ordering and the relative magnitudes ofj�j and jM1;2j. All these statements are insensitive to variations in tan� within the usually
overed range (
f. Chs. 10 and 11).



194 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSM9.3 Chargino and Neutralino Intera
tions with GaugeBosonsChargino-Neutralino-W� intera
tionsThese re
eive 
ontributions from two sour
es: (1) the analog of the fourth term in theRHS of (5.55) 
orresponding to the SU(2)L gauge group and (2) the analog of the �rst term,for the two Higgs super�elds, for the SU(2)L � U(1) gauge group. It is 
lear that only thegauge �eld part of the 
ovariant derivative will 
ontribute to the intera
tion. With I; J asgauge group representation indi
es and subs
ript s (= 1; 2) distinguishing the two higgsinotwo 
omponent spinors, the latter reads,�~hsI ��� �gY2 YhsÆIJB� + g22 (�a)IJW a�� ~hsJ :The resulting 
harged weak boson terms in the Lagrangian density, expressed in the four
omponent notation and in the weak basis after using (3.28
,d), read:L~��k ~�0lW� = g2W�� �~�3
�~�+ � 1p2 �~h02
�PL~h+ � ~h01
�PR~h+��+ h:
: (9.32)One 
an rewrite the intera
tion (9.32) in terms of 
hargino and neutralino �elds by using the
hargino and neutralino mixing matri
es using (9.17,18) and (9.30,31). The �nal expressionis L~��k ~�0lW� = g2W�� ~�0l 
� �CLlkPL + CRlkPR� ~�+k + h:
: ; (9.33)where the 
ouplings CLlk and CRlk are given byCLlk = � 1p2Zl4V�k2 + Zl2V�k1 ; (9.34a)CRlk = 1p2Z�l3Uk2 + Z�l2Uk1 : (9.34b)In (9.33) and (9.34) the subs
ript k takes values 1; 2 while l goes from 1 to 4. The generi
vertex 
orresponding to (9.33) is shown in Fig. 9.3. Note that an arrow has been put onthe Majorana fermion line also in a

ordan
e with the 
onvention in Appendix D of the �rstpaper of Ref. [9.10℄. Fig. 9.3 is in
luded in Appendix ANeutralino-Neutralino-Z and Chargino-Chargino-(Z; 
) intera
tionsIn the four 
omponent basis of (9.17) and (9.30), after using the Majorana identities(3.29
,d) and the de�nitions (8.7), we 
an write in analogy with the previous 
ase
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)~�~� = g2
W Z���
2W ~�+
�~�+ � 12 
os 2�W ~h+
�~h+�+ g24
W Z� �~h01
�
5~h01 � ~h02
�
5~h02��eA� �~�+
�~�+ + ~h+
�~h+� : (9.35)The se
ond line of (9.35), when rewritten in terms of the mass eigenstates ~�0̀, yields theZ ~�0l ~�0n intera
tion. The use of (9.31) leads toLZ ~�0l ~�0n = g22
W Z� ~�0l 
� �NLlnPL +NRlnPR� ~�0n : (9.36)Here the 
ouplings NL;Rln are given byNLln = �12Zl3Z�n3 + 12Zl4Z�n4 ; (9.37a)NRln = � �NLln�� : (9.37b)Referring ba
k to (9.27), note that, under the assumption of a realMn, the Z ~�0l ~�0l0 intera
tionwill always involve a pure ve
tor (axial ve
tor) 
oupling, for a negative (positive) value of
os[2Arg(ZlnZl0n)℄. In this situation the 
osine is just a signature fa
tor.Turning to 
harginos, the last term in the RHS of (9.35) gives the 
 ~�+k ~��k intera
tion asL
 ~��k ~�+k = �eA�h~�+m
� (Vm1V�k1 + Vm2V�k2)PL+~�+m
� (U�m1Uk1 + U�l2Uk2)PRi~�+k= �eA� ~�+k 
� ~�+k ; (9.38)where we have used U yU = VyV = 11. Finally, the Z ~��m ~�+k intera
tion follows from the �rstRHS term of (9.35). Rewritten in terms of the mixing angles, it readsLZ ~��m ~�+k = g2
W Z� ~�+m
� �OLmkPL +ORmkPR� ~�+k ; (9.39)with the 
ouplings OL;Rmk given byOLmk = �Vm1V�k1 � 12Vm2V�k2 + Æmks2W ; (9.40a)ORmk = �U�m1Uk1 � 12U�m2Uk2 + Æmks2W : (9.40b)The unitarity properties of the V;U matri
es have again been used in deriving (9.39). Theverti
es 
orresponding to (9.36), (9.38) and (9.39) are given in Fig. 9.4. Those 
orrespondingto (9.36) have an additonal fa
tor of 2 in the Feynman rules [9.10℄ whi
h appears due to ~�0lbeing Majorana fermions. On
e again, we have put arrows [9.10℄ on lines 
orresponding tothe latter. Fig. 9.4 is in
luded in Appendix A



196 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSM9.4 Masses and Mixing Patterns of SfermionsSlepton mass termsThere are three sour
es of slepton mass terms in the Lagrangian density: 1) expli
itmass terms as well as trilinear A-terms from the soft part of the s
alar potential VSOFT , 
f.(9.3), 2) the 
ontribution to the s
alar potential by the F -terms of (8.34), whi
h arise outof the superpotential W of (8.33) and 3) the 
ontribution to the s
alar potential from theD-terms given by (8.35). The F - and D-
ontributions, as well as those from the trilinearterms in VSOFT , materialize after the neutral Higgs �elds a
quire nonvanishing VEVs on thespontaneous breakdown of the SU(2)L�U(1)Y symmetry. On the other hand, ea
h sfermionmass term in VSOFT is invariant under SU(2)L�U(1)Y transformations. If all sfermions areheavier than the ele
troweak gauge bosons, as indi
ated by present null sear
h experiments,their large masses 
ould be due to these terms. The pie
es in the sfermion mass terms due totrilinear s
alar 
ouplings, as well as the terms whi
h orginate from the higgsino mass termin the superpotential W, mix the left and right sleptons ~eiR and ~ejL. Depending upon thenature of VSOFT , there 
an also be generation mixing for 
harged sleptons. However, we willshow later that, under some simple assumptions about VSOFT , one 
an often negle
t some ofthe generation mixing in the slepton se
tor, on
e one has imposed the restri
tions impliedby strong experimental limits that exist on the non
onservation of lepton 
avor.The relevant terms in V (and hen
e in �L), whi
h 
ontribute to slepton masses, 
an bewritten, using (9.3),(8.33)-(8.35) and (8.36), asV ~̀= V ~̀SOFT + V ~̀F + V ~̀D : (9.41)The di�erent terms in the RHS of (9.41) 
an be shown, with repeated indi
es summed, asfollows: V ~̀SOFT = ~̀�iL(M2~̀)ij ~̀jL + ~e?iR(M2~e)ij~ejR + hh1�~̀iL(f eAe)ij~e?jR + h:
:i ; (9.42a)V ~̀F = ���?h�2 � ~�?i f e?ij ~ejR��2 + ���?h0?2 � ~e?iLf e?ij ~ejR��2+Xi ���f ejih1�~̀jL���2 + f eijf e�ij0~e?jR~ej0R �jh01j2 + h+1 h�1 � ; (9.42b)V ~̀D = 14g2Y (jh1j2 � jh2j2)Xi �j~̀iLj2 � 2j~eiRj2�+14g22 �hy1~�h1 + hy2~�h2� ~̀yiL~� ~̀iL : (9.42
)When the neutral Higgs �elds a
quire va
uum expe
tation values, as per (8.21), (9.42)lead to the following mass terms in the Lagrangian density.�L~̀m = ~��i �M2~̀+M2Z 
os 2� (1=2)11�ij ~�j+~e�iL hM2~̀�M2Z 
os 2� (1=2� sin2 �W )11 +m2ei11iij ~ejL+~e�iR �M2~e �M2Z 
os 2� sin2 �W11 +m2ei11�ij ~ejR� �~e�iL(meiAe�ij +meiÆij� tan�)~ejR + h:
:� : (9.43)



9.4. MASSES AND MIXING PATTERNS OF SFERMIONS 197In writing the above mass term, we have absorbed the ele
troweak 
ouplings and VEVsv1;2 in MZ ; � and �W ; mei stands for the mass of the 
harged lepton ei (
f. 8.23) and11ij = Æij. Moreover, we have used (8.23a) for f eij. The 
hoi
e of the signs in front of thef eAe et
. terms in (9.3) was made in a

ordan
e with the 
onvention established in x7.7 anddetermines the sign of the Ae-term in (9.43). The opposite signs of the terms proportional toM2Z 
os 2� sin2 �W in the se
ond and third lines of (9.43) are noteworthy. The 
oeÆ
ient ofthis term is essentially de
ided by the ele
tri
 
harge of the slepton �eld. The 
hiral super�eld�Ei 
ontains ~e�iR and hen
e 
arries the ele
tri
 
harge of the positron, unlike Li 
ontaining ~eiLwith the opposite 
harge. Furthermore, the term 
ontainingM2Z 
os 2� is proportional to TL3fand hen
e 
hanges sign between the left sele
tron and the sneutrino. Clearly, the states ~eiL~e�iR and ~�i, whi
h appear in (9.43), are the intera
tion eigenstates; the 
orresponding masseigenstates will be linear 
ombinations of these. In prin
iple, both lepton 
avor mixing5 aswell as L-R mixing are now possible.Squark mass termsThe supersymmetri
 and nonsupersymmetri
 mass terms for squark �elds 
an be writtenin a manner analogous to that for slepton ones with the 
orresponden
e ~̀L ! ~qL, ~�i ! ~uiL,~eiL;R ! ~diL;R. Just the additional singlet �elds ~uiR, that are present, need to be in
luded.Moreover, the nontrivial CKM mixing, present in the quark se
tor, needs to be taken intoa

ount. Expressions similar to those appearing in (9.42) 
an be written for the squark s
alarpotential. In the following we �rst write the relevant part of the squark s
alar potential whi
hwill 
ontribute to squark masses asV ~q = V ~qSOFT + V ~qF + V ~qD ; (9.44)without any spe
i�
 assumptions about the supersymmetry breaking parametri
 matri
esAd; Au. We then haveV ~qSOFT = ~qyiL(M2~q)ij ~qjL + ~dyiR(M2~d)ij ~djR + ~uyiR(M2~u)ij~ujR+ hh1 �~qiL(f dAd)ij ~d?jR + ~qiL �h2(fuAu)ij~u?jR + h:
:i ; (9.45a)V ~qF = ����?h�2 � ~uyiLf d?ij ~djR���2 + ����?h0?2 � ~dyiLf d?ij ~djR���2 +Xi ��f djih1 �~qjL��2+ �����?h+1 + ~dyiLfuij~ujR���2 + �����?h0?1 + ~uyiLfu?ij ~ujR���2 +Xi ��fu?ji h2 �~qjL��2+Xi ���f d?ij h0?1 ~djR � fu?ij h�2 ~ujR���2 +Xi ���f d?ij h+1 ~djR � fu?ij h0?2 ~ujR���2 ; (9.45b)V ~qD = 14g2Y �jh1j2 � jh2j2� h� 13 ~qyiL~qiL +Xi 2�Quj~uiRj2 +Qdj ~diRj2� i+ 14g22�hy1~�h1 + hy2~�h2� � ~qyiL~� ~qiL ; (9.45
)5There are 
urrently some s
enarios, going beyond the MSSM, whi
h anti
ipate a large ~��-~�� mixing inanalogy with what is observed in the ��-�� se
tor by the super-Kamiokande experiment.



198 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwhere Qu;d are the ele
tri
 
harges of the u; d-type squarks in units of the positron 
harge.From (9.49) the squark mass terms in the Lagrangian density 
an be written as�L~qm = ~u�iL �M2~q +M2Z 
os 2� (1=2�Qu sin2 �W )11 + (mumuy)�ij ~ujL+~d�iL �M2~q �M2Z 
os 2� (1=2 +Qd sin2 �W )11 + (mdmdy)�ij ~djL+~u�iR �M2~u +QuM2Z 
os 2� sin2 �W11 + (muymu)�ij ~ujR+~d�iR hM2~d +QdM2Z 
os 2� sin2 �W11 + (mydmd)iij ~djR�~u�iL �(muAu�)ij + �(mu)ij 
ot�� ~ujR + h:
:� ~d�iL �(mdAd�)ij + �(md)ij tan �� ~djR + h:
: (9.46)In (9.50)mu andmd are the up and down type quark mass matri
es respe
tively in generationspa
e (
f. 8.11). One may note that , just as with sleptons, the squarks are massive evenin the limit of unbroken SU(2)L�U(1)Y symmetry. On
e more, there is a relative negativesign between the mass terms for left squarks and right squarks for the pie
es proportionalto the 
harge Qu and Qd. The mixing between the left and right squark �elds, given inthe last two RHS terms, is 
aused by the trilinear A-terms as well as by the higgsino mass
ontribution to the F -terms. Be
ause of extant mixing in the quark se
tor, both L-R mixingand generation mixing are nontrivial and 
ompli
ated for squarks.Sfermion mixing: some generalitiesLet us de�ne a six 
omponent ve
tor~f = � ~fL~fR� ; (9.47)where ~fL; ~fR are ea
h a three 
omponent 
olumn ve
tor in generation spa
e with 
omponents~fiL; ~fiR; ~f being the superpartner of any matter fermion �eld f , quark or lepton. Thus ~f 
anbe ~�; ~e; ~u; ~d ex
ept that we put ~�R = 0. The general squared mass matrix for su
h sfermions
an then be written as a 2� 2 Hermitian matrix of 3� 3 blo
ks in the spa
e spanned by theve
tor of (9.47): M2~f =  M2~fLL M2~fLRM2y~fLR M ~fRR ! : (9.48)In (9.48) M2~fLL and M2~fRR are hermitian in generation spa
e. Now all the sfermion massterms of (9.43) and (9.46) 
an be 
olle
ted under�LSFERMION MASS =X~f ~f yM2~f~f : (9.49)Spe
i�
ally, for sneutrinos, 
harged sleptons, u-squarks and d-squarks, we 
an respe
tivelywrite from (9.43) and (9.46) the 6 � 6 squared mass matri
es in terms of 3 � 3 submatrix
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ks asM2~� = �M2~̀+M2ZT ~�3L 
os 2� 11 00 0� ; (9.50a)M2~e =�M2~̀+M2Z(T ~e3L �Qe sin2 �W ) 
os 2� 11 +memye �me(Ae� + � tan�)�(AeT + �? tan �)mye M2~e +QeM2Z 
os 2� sin2 �W11 +myeme� ;(9.50b)M2~u =�M2~q +M2Z(T ~u3L �Qu sin2 �W ) 
os 2� 11 +mumyu �mu(Au? + � 
ot �)�(AuT + �? 
ot �)myu M2~u +QuM2Z 
os 2� sin2 �W 11 +myumu� ;(9.50
)M2~d =�M2~q +M2Z(T ~d3L �Qd sin2 �W ) 
os 2� 11 +mdmyd �md(Ad� + � tan�)�(AdT + �? tan �)myd M2~d +QdM2Z 
os 2� sin2 �W11 +mydmd� :(9.50d)In (9.50) T ~f3L is the third 
omponent of the weak isospin of ~fL, Qf the ele
tromagneti

harge of f andmf the mass matrix (
f. 8.11 and 8.12) for f in generation spa
e, with (me)ijbeing of 
ourse meiÆij. However, M2~f involves not only mf but also the soft supersymmetrybreaking squared mass matri
es M2 both for the SU(2)L doublet left sfermions and forthe SU(2)L singlet right sfermions plus the matrix Af in generation spa
e and �nally thesupersymmetri
 higgsino mass parameter �. Note that Af is in general a 
omplex 3 � 3matrix and � 
an be 
omplex too. Observe furthermore that the D-term 
ontributions arediagonal in generation spa
e. The o�diagonal LR mixing terms are proportional to fermionmasses and hen
e appre
iable only for the third generation. Otherwise, generation mixingis really 
ontrolled by the soft supersymmetry breaking terms.Referring ba
k to (9.47), we 
an de�ne mass eigenstate sfermions through the six 
om-ponent 
olumn ve
tor ~fm whi
h is unitarily transformed from ~f :~fm =W ~fy~f : (9.51)The 6� 6 unitary matri
es W ~f then diagonalize the squared mass matri
es M2~f 8 ~f :M2(D)~f =W ~fyM2~fW ~f : (9.52)Let us introdu
e the indi
es s; t running from 1 to 6 while we keep the generation indi
es asi; j running from 1 to 3. We make a 
onvention to order the sfermions by mass, ~fm1 beingthe lightest and ~fm6 the heaviest among sfermions of a given 
harge. Eq. (9.51) 
an then berewritten as ~fms =W ~f?ts ~ft = W ~f?is ~fiL +W ~f?i+3 s ~fiR ; (9.53)



200 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMthe generation index i being summed on repetition. The se
ond step of (9.53) shows the de-
omposition of a mass eigenstate sfermion �eld into left and right 
hiral intera
tion eigenstatesfermions. The latter 
an be written, by inverting (9.53), as~fiL = W ~fis ~fms ; (9.54a)~fiR = W ~fi+3 s ~fms : (9.54b)Two limiting 
ases of the above most general sfermion mass mixing are also quite trans-parent.(a) No L-R mixingIn this 
ase M ~fLR vanishes and (9.48) redu
es toM2~f = �M2~fLL 00 M2~fRR � : (9.55)Now the 6� 6 unitary matrix W ~f has the 
hiral blo
k diagonal formW ~f = �U ~fL 00 U ~fR � ; (9.56)where U ~fL and U ~fR are unitary submatri
es for the distin
t left and right sfermion se
tors.In terms of expli
it generation indi
es i; j (= 1; 2; 3) we 
an writeW ~fi j+3 = W ~fi+3 j = 0 ; (9.57a)W ~fij = U ~fLij ; (9.57b)W ~fi+3 j+3 = U ~fRij : (9.57
)The 3�3 unitary matri
es U ~fL and U ~fR in generation spa
e, appearing in (9.56) and (9.57),are sfermioni
 generalizations of the 
avor rotation matri
es UfL;UfR for a 
hiral fermion fthat we introdu
ed for f = u; d in Ch.8 to put the quark mass matri
esmu;md into diagonalform via biunitary transformations. The 
hiral blo
k submatri
es of (9.50), for f = ~�; ~e; ~u; ~d,now have the following respe
tive expressions after diagonalization.M2(D)~� = U~�y(M2~̀�M2Z 
os 2� T ~�3L11)U~�; (9.58a)M2(D)~eLL = U~eyL �M2~̀+M2Z 
os 2�(T ~e3L � sin2 �W )11 +m2(D)e �U~eL ; (9.58b)M2(D)~eRR = U~eyR �M2~e +QeM2Z 
os 2� sin2 �W11 +m2(D)e �U~eR; (9.58
)M2~uLL = U~uyL �M2~u +M2Z 
os 2�(T ~u3L �Qu sin2 �W )11 +myumu�U~uL ; (9.58d)M2(D)~uRR = U~uyR �M2~u +QuM2Z 
os 2� sin2 �W11 +myumu�U~uR; (9.58e)M2(D)~dLL = U ~dyL hM2~d +M2Z 
os 2�(T ~d3L �Qd sin2 �W )11 +mydmdiU ~dL ; (9.58f)M2(D)~dRR = U ~dyR hM2~d +Q ~dM2Z 
os 2� sin2 �W11 +mydmdiU ~dR : (9.58g)



9.4. MASSES AND MIXING PATTERNS OF SFERMIONS 201Note that mass eigenstate sfermions will now be ordered by mass within s = 1; 2; 3 for leftsfermions and within s = 4; 5; 6 for right sfermions, i.e. now we havemass(fm1 ) < mass(fm2 ) < mass(fm3 ); (left sfermions) ; (9.59a)mass(fm4 ) < mass(fm5 ) < mass(fm6 ); (right sfermions) ; (9.59b)without any de�nite ordering between the two groups. Thus a program, made to diagonalizethe original 6� 6 matrix, will not automati
ally return a blo
k diagonal mixing matrix as in(9.56) sin
e the program will insist on all mass eigenstate sfermions being ordered a

ordingto their masses. The latter 
an be obtained just by inter
hanging 
ertain rows and 
olumnsof W ~f without a�e
ting physi
s.(b) No 
avor mixingIn this limit the 6� 6 mixing matrix only 
ouples the two sfermioni
 states labelled bythe indi
es i and i + 3, i.e. the left and the right states of a given 
avor. For a real massmatrix, one has W ~fii = W ~fi+3 i+3 = 
os � ~fi ; (9.60a)W ~fi i+3 = �W ~fi+3 i = � sin � ~fi : (9.60b)Thus, for instan
e, mass eigenstate 
harged sleptons will now be des
ribed by~fm = 0BBBBBB� ~e1~�1~�1~e2~�2~�2
1CCCCCCA ; (9.61)i.e. the mass ordering is enfor
ed between fmi and fmi+3 and not between di�erent 
avorstates.Before 
losing this se
tion, we want to 
omment spe
i�
ally on the squared mass matri
esof staus, sbottoms and stops. These third generation sleptons and squarks are somewhatspe
ial. It is reasonable to take them to be de
oupled from other sleptons and squarksi.e. assume no 
avor mixing for them. On the other hand, they do involve substantialL-R mixing on a

ount of the nonnegligible masses of their fermion partners. Indeed, theyphysi
ally manifest themselves as the mass eigenstates ~�1;2;~b1;2 and ~t1;2. In this pi
ture the
orresponding squared mass matri
es 
an be written approximately in 2� 2 formM2~� = �m2~̀3 � (1=2� sin2 �W )M2Z 
os 2� +m2� �m� (A�? + � tan�)�m� (A� + �? tan�) m2~� �M2Z 
os 2� sin2 �W +m2� � ; (9.62a)M2~b = �m2~q3 � (1=2� 1=3 sin2 �W )M2Z 
os 2� +m2b �mb(Ab? + � tan�)�mb(Ab + �? tan�) m2~b � 1=3M2Z 
os 2� sin2 �W +m2b � ;(9.62b)
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os 2� +m2t �mt(At? + � 
ot�)�mt(At + �? 
ot�) m2~t + 2=3M2Z 
os 2� sin2 �W +m2t � :(9.62
)The o�-diagonal L-R mixing term is parti
ularly large in the stop 
ase, being proportionalto the mass of the top quark. This 
an in prin
iple make ~t1 the lightest sfermion.9.5 The Flavor Problem in SupersymmetryMany dis
ussions in previous se
tions have hinted that there is a generi
 
avor problem[9.8℄ in supersymmetri
 theories. The origin of the problem is in the o

urren
e of sizable
avor dependen
e in sfermion mass matri
es. The latter naturally leads to large indu
edFCNC amplitudes whi
h are, however, unobserved by experiment. The la
k of observationof the de
ay � ! e
 puts some 
onstraints on the lepton-slepton se
tor. Though pro
esseslike D0 $ �D0 and B0 $ �B0 transitions as well as b ! s
 de
ay yield 
onstraints on thequark-squark se
tor, the most stringent restri
tions here 
ome from what is already knownabout K0- �K0 mixing. Let us elaborate on this last statement by following the treatment ofHagelin et al [9.8℄. At the one loop level the box diagram of Fig. 9.5 
an indu
e an operatorsu
h as �dL
�sL �sL
�dL
sL

sL d~
0
iL

dL

dL

g~ g~

d~
0
LjFig. 9.5 One loop squark indu
ed K0- �K0 mixinginto the e�e
tive Lagrangian density 
ontributing to the said mixing. From the produ
t oftwo squark propagators and four elements of the matrix U ~dL of (9.56) in this diagram, thetransition amplitude for �sLdL ! �dLsL pi
ks up a fa
tor6Xi U ~dLdi U ~dyLisk2 �m2~di + i�Xj U ~dLdj U ~dyLjsk2 �m2~dj + i� ;k being the loop momentum. We have set all external momenta to zero be
ause m2K � m2~q.Sin
e the unitarity of U ~dL makes this fa
tor vanish in 
ase m2~di is the same for ~di = ~d; ~s;~b, it
an be rewritten as 1(k2 �m2~d + i�)4 �����Xi U ~dLsi U ~dyLid �m2~di �����2 +O ��k2 �m2~d��5� ;6We work in an intera
tion basis where the down quark mass matrix is diagonal.
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harge �1=3 squarks and m2~di = m2~d + �m2~di .The aforementioned transition amplitude has the dimensionality of an inverse mass squared.So after inserting the produ
t of the two gluino propagators and four powers of the QCD
oupling strength gs and performing the loop integration, one is left with an amplitudeproportional to g4s~m6 �����Xi U ~dLdi U ~dyLis �m2~di�����2 ;where ~m = max (m~q;M~g), i.e. the larger of the squark and gluino masses. With j�m ~di j �m ~di = O(102) GeV, this yields a 
ontribution whi
h is three orders of magnitude larger thanthat from the SM. The latter obtains through the repla
ement of the gluino lines by W�lines and of the squark lines by ui-quark ones in Fig. 9.5 and reprodu
es the observed valueof the KL-KS mass di�eren
e [9.13℄ rather well.The above dis
ussion raises an important question : how 
an su
h undesirable amplitudesbe suppressed in supersymmetri
 theories? The stru
ture of the expression in the aboveparagraph implies that there are basi
ally three ways in whi
h a suppression of the desirednature 
an be a
hieved. One may also 
onsider various 
ombinations of these options. Weshall des
ribe these three possibilities one by one. Note that we keep our fo
us on the quark-squark se
tor here. Analogous arguments do apply to the lepton-slepton se
tor, though witha 
ertain simpli�
ation; 
avor mixing among leptons 
an be negle
ted { at least in the limitof vanishing neutrino masses. Thus 
onstraints, from the yet unobserved �! e
 de
ay andmuon 
onversion to ele
tron in atoms, 
an also be taken 
are of.The �rst 
hoi
e is to make the prefa
tor in the said expression small, i.e. to take [9.14℄the masses of sfermions of the �rst two generations to be very large, in the multi-TeV range.Of 
ourse, the naturalness argument, dis
ussed in Ch.1, requires one to keep third generationsfermion and Higgs boson masses at or below the TeV s
ale. However, the smallness of �rstand se
ond generation Yukawa 
ouplings allows the 
hoi
e of quite large masses for the 
or-responding sfermions without destabilizing the hierar
hy7. This is a \brute for
e" solutionof the 
avor problem, sin
e all loop 
orre
tions involving internal �rst or se
ond generationsfermions and external fermion or gauge boson legs are then suppressed, in
luding in parti
-ular those 
orre
tions that give rise to FCNC transitions. The prevention of una

eptablylarge loop 
orre
tions from the hyper
harge U(1)Y D-terms to Higgs masses requires the
onditionPi Yim2~fi <�O(1) TeV2. Another problem arises in any attempt to implement su
ha spe
trum at a high energy s
ale: two loop 
ontributions to the renormalization groupequations due to SU(3)C intera
tions tend to drive the squared stop masses to negativevalues [9.15℄, leading to 
olor and/or 
harge symmetry breaking. On the positive side, thiskind of model also easily satis�es 
onstraints on 
avor 
onserving CP violating amplitudes.In parti
ular, those from the yet unobserved ele
tri
 dipole moments of the neutron andele
tron are respe
ted even though all soft supersymmetry breaking parameters have CPviolating phases of O(1). This kind of \inverted hierar
hy" model sometimes goes under thename more minimal or E�e
tive Supersymmetry, sin
e �rst and se
ond generation sfermionsessentially de
ouple from physi
s at energies that will be a

essible in the foreseeable futureat 
ollider experiments.7If tan� is small, the ~bR; ~� and h masses 
an also be made large.
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ond strategy [9.16℄ is to assume a (presumably dynami
ally generated) alignmentbetween the fermion and sfermion mass matri
es so that both 
an be made diagonal in thesame basis. In fa
t, in that 
ase the mixing matrix, appearing in the expression for the boxgraph of Fig. 9.5, is diagonal. The expression then vanishes and the problem is solved. This isa
tually only a partial solution, sin
e, owing to nontrivial CKM mixing,M2~q 
annot 
ommutesimultaneously with the u and d quark mass matri
es (ex
ept whenM2~q is proportional to theunit matrix; this 
ase will be treated below). As already stated (see also Table 9.1 below),by far the most stringent 
onstraints 
ome from the kaon se
tor. Models of alignment hen
eusually assume thatM2~q is aligned with the d quark mass matrix. Sin
e CKM mixing anglesare in fa
t quite small, an approximate alignment with the u quark mass matrix then alsoobtains. However, generi
ally one would expe
t nonnegligible D0- �D0 mixing in this 
lass ofmodels.The third option is to assume a high degree of mass degenera
y, or universality ofmasses, among sfermions with given SU(2)L�U(1)Y quantum numbers (in
luding ele
tro-magneti
 
harge) but o

urring in di�erent generations. In this s
enario the K0- �K0 mixingexpression is suppressed be
ause the �m2~di are very small. Large 
avor mixing is possiblein this option if on-shell sparti
les 
an be produ
ed,8 but FCNC amplitudes, involving onlySM parti
les as external legs, are suppressed by a super-GIM me
hanism. In pra
ti
e, itsuÆ
es to assume a near mass degenera
y between sfermions of the �rst and se
ond gen-erations; experimental 
avor mixing 
onstraints on the third generation are weak, mostlybe
ause the SM 
ontribution to B0- �B0 mixing is quite large, and has a sizable theoreti
alun
ertainty. Indeed, with substantial L-R mixing, one may expe
t ~�1, ~b1 and ~t1 to be signif-i
antly lighter than the 
orresponding mass degenerate 
harge �1, 
harge �1=3 and 
harge2/3 sfermions of the �rst two generations, respe
tively. Note that FCNC 
onstraints do notlead to any relations between, say, M2~u; M2~d and M2~q. As will be shown in more detailin Chs.12 and 13, spe
i�
 models with high s
ale supersymmetry breaking nevertheless dousually imply a high degree of degenera
y between �rst and se
ond generation squarks withdi�erent SU(2)L � U(1)Y quantum numbers. On the other hand, in su
h models exa
t uni-versality only holds at a high s
ale. Quantum 
orre
tions will typi
ally lead to deviationsfrom universality at the weak s
ale. We shall see later that many su
h models, while still
ompatible with the present 
onstraints, therefore predi
t signi�
ant new 
ontributions to
ertain FCNC pro
esses. In the remaining se
tions of this 
hapter we shall hen
e presentFeynman rules for sfermion intera
tions allowing for a 
ompletely general mixing betweenall six sfermions of a given ele
tri
 
harge.Before 
oming to the Feynman rules, mentioned above, however, we would like to give amore quantitative dis
ussion of the bounds on 
avor violation in the sfermion se
tor. This
an most easily be done using the mass insertion method [9.18℄. In this approa
h one worksin a basis where the mass matrix of quarks of a given 
harge as well as the 
orrespondingquark-squark-neutral gaugino 
ouplings are diagonal in 
avor spa
e. As a result, di�erentbases need to be used for problems involving external d-type or external u-type quarks.Flavor violation is then des
ribed by 
avor nondiagonal entries (� ~fij)AB of the sfermionsquared mass matri
es in that basis, where i and j are generation indi
es and A;B 2 fL;Rg8The e�e
ts of su
h large mixing may be observable as slepton os
illations [9.17℄ in pp and `+`� 
olliders.
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ks in (9.48). These o�-diagonal entries are treated as two pointintera
tions in the perturbation expansion, leading to nondiagonal propagators with expli
it
avor o�diagonal mass insertions. The experimental 
onstraints 
an most 
onveniently bequantity x = 0:3 x = 1:0 measurabler���<e(Æ ~d12)2LL��� 1:9� 10�2 4:0� 10�2r���<e(Æ ~d12)2LR��� 7:9� 10�3 4:4� 10�3 �mKr���<e(Æ ~d12)LL(Æ ~d12)RR��� 2:5� 10�3 2:5� 10�3r���<e(Æ ~d13)2LL��� 4:6� 10�2 9:8� 10�2r���<e(Æ ~d13)2LR��� 5:6� 10�2 3:3� 10�2 �mBr���<e(Æ ~d13)LL(Æ ~d13)RR��� 1:6� 10�2 1:8� 10�2pj<e(Æ~u12)2LLj 4:7� 10�2 1:0� 10�1pj<e(Æ~u12)2LRj 6:3� 10�2 3:1� 10�2 �mDpj<e(Æ~u12)LL(Æ~u12)rrj 1:6� 10�2 1:7� 10�2���=m(Æ ~d12)LL��� 1:0� 10�1 4:8� 10�1 �0K=�K���=m(Æ ~d12)LR��� 1:1� 10�5 2:0� 10�5 �0K=�K���(Æ ~d23)LL��� 4:4 8:2 BR(b! s
)���(Æ ~d23)LR��� 1:3� 10�2 1:6� 10�2 BR(b! s
)���(Æ ~̀12)LL��� 4:1� 10�3 7:7� 10�3 BR(�! e
)���(Æ ~̀12)LR��� 1:4� 10�6 1:7� 10�6 BR(�! e
)���(Æ ~̀13)LL��� 15 29 BR(� ! e
)���(Æ ~̀13)LR��� 8:9� 10�2 1:1� 10�1 BR(� ! e
)���(Æ ~̀23)LL��� 2:8 5:3 BR(� ! �
)���(Æ ~̀23)LR��� 1:7� 10�2 2:0� 10�2 BR(� ! �
)Table 9.1. Experimental upper bounds [9.18℄ on 
avor violation in the soft supersymmetrybreaking terms of sfermions.expressed as bounds on the dimensionless quantities (Æ ~fij)AB . In the simplest 
ase, (Æ ~fij)AB =(� ~fij)AB=(m2 ~fij)AB, where the \average" sfermion squared mass is given by (m2 ~fij)AB =q(M2ii)AA(M2jj)BB . Moreover, this formalism also allows the in
lusion of higher order
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ontributions. Thus, for instan
e, the se
ond order 
ontribution to (Æ ~fij)RR is given by(� ~fik)RL(� ~fkj)LR=�(m2 ~fik)RL(m2 ~fkj)LR�.The experimental bounds on the various o�-diagonal entries (Æ ~fij)AB are summarizedin Table 9.1, whi
h has been extra
ted from Ref.[9.18℄. It has been assumed here thatea
h supersymmetri
 
ontribution separately satis�es the overall 
onstraint on the quantityindi
ated, i.e. \a

idental" 
an
ellations between di�erent kinds of 
ontributions have notbeen 
onsidered. For simpli
ity, moreover, (Æ ~fij)LR and (Æ ~fij)RL are taken to be equal, thoughthe assumption 
ould be avoided. The bounds on the slepton se
tor have been 
omputedfrom loop diagrams involving a photino, rather than treating the two neutral ele
troweakgauginos separately. It is in this limit that the bounds on (Æ ~̀ij)RR are identi
al to those on(Æ ~̀ij)LL that have been listed in the table. An analogous statement holds for the bounds in thesquark se
tor, whi
h 
ome from diagrams involving gluinos. All these bounds s
ale inverselywith the relevant sfermion mass. The numeri
al values, given in Table 9.1, assume a 
ommonsquark mass of 500 GeV and a 
ommon slepton mass of 100 GeV. Thus the bounds on Æ ~̀ s
alelike m~̀=(100 GeV) while those on Æ~q (q = u; d) s
ale like m~q=(5000 GeV). Note that we onlyquote bounds from 
ontributions involving 
avor 
hanging 
ouplings to neutral gauginos(gluinos or neutralinos) ~�0; values are given for two values of the ratio x � (m~�0=m ~f )2.Ea
h entry in the last 
olumn in this table indi
ates the physi
al measurable from whi
hthe 
orresponding bound has been derived. Note moreover that the bounds on (Æ ~fij)RR and(Æ ~fij)RL are equal to those on the 
orresponding (Æ ~fij)LL and (Æ ~fij)RL respe
tively. As mentionedearlier, the most severe 
onstraints exist on the mixing between �rst and se
ond generation
harge �1=3 squarks. The 
onstraint on the mixing between 
harge 2/3 squarks of the �rsttwo generations is 
onsiderably milder. Furthermore, O(1) mixing between se
ond and thirdgeneration squarks is allowed in the LL or RR se
tor. The 
onstraint on mixing betweenleft and right sfermions is often mu
h more stringent than that on LL and RR mixing. Thereason is that the relevant e�e
tive fermioni
 operators leading to radiative de
ays treatedin the last eight rows of Table 9.5, break 
hiral symmetry, i.e. 
ause 
ouplings betweenleft 
hiral and right 
hiral fermions, fa
ilitated by the transitions between the 
orrespondingsfermions.9.6 Intera
tions of Sfermions with Gauge BosonsA sfermion parti
ipates in an MSSM gauge intera
tion in two ways: (1) as a member of asfermion pair and (2) along with another fermion. We shall take up (2) in the next Se
tion.Here we 
onsider (1) and enumerate the di�erent possibilities below.
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troweak gauge boson intera
tionsIn this 
ategory 
ome 
ubi
/quarti
 verti
es involving a pair of sleptons and one/twoEW gauge boson(s). The two sleptons 
ould be various 
ombinations of 
harged and neutralones while the gauge boson(s) would be 
orrespondingly neutral and/or 
harged. Theseintera
tions were 
overed earlier in (8.44b{d) and (8.47
{h), but we now des
ribe physi
alverti
es with mass eigenstate sleptons and general mixing as des
ribed at the end of x9.4.We 
an 
olle
t all su
h verti
es in three groups.(1) The �rst group (Fig. 9.6) 
onsists of verti
es whi
h involve either only one (two) Zboson(s) intera
ting with a sneutrino pair or only one (two) photon(s). These verti
eshave the feature that the mixing matri
esW ~f 
an
el out. The 
ru
ial observation hereis that W ~fyW ~f = 11.(2) The se
ond group (Fig. 9.7), 
omprising either a W+W� pair intera
ting with twosleptons or a Z intera
ting with a 
harged slepton pair, shows a nontrivial dependen
eon the mixing matri
es W ~f only in the presen
e of left right mixing. Without su
hmixing, i.e. if the 6�6 slepton mixing matrix has the form (9.56), 
avor mixing wouldagain drop out, owing to the unitarity of the U matri
es. On the other hand, if L-Rmixing is present, a nontrivial dependen
e on the mixing angle emerges even in theabsen
e of 
avor mixing. The relevant Feynman rules for this 
ase 
an be derived easilyfrom the general rules listed in Fig. 9.7, using (9.60). Noti
e that we have repla
edW~� by U~� sin
e in the MSSM no righthanded (s)neutrinos exist at the weak s
ale.(3) All the remaining verti
es, whi
h are in general a�e
ted by generation mixing even inthe absen
e of L-R mixing, make up the third group (Fig. 9.8). In this 
ase a nontrivialdependen
e on the mixing angle will survive in both simpli�ed s
enarios dis
ussed inx9.4, i.e. (9.57) and (9.60). For the 
onvenien
e of the reader we give both the W+~l~��and W�~�~l� verti
es, whi
h are related to ea
h other by 
omplex 
onjugation.Figs. 9.6, 9.7 and 9.8 are in
luded in Appendix ASquark-squark-gauge boson intera
tionsThe simplest set of verti
es in this 
ategory are those that involve only squarks and gluonsin SQCD. The 
ubi
 ~q�~qg and the quarti
 ~q�~qgg verti
es have already been fully dis
ussed inx5.5 and x8.4. Nothing needs to be added to those dis
ussions, sin
e the mixing matri
eswill 
an
el out in these verti
es.Turning to 
ubi
 and quarti
 verti
es of physi
al mass eigenstate squarks with ele
troweakgauge bosons, we 
an again 
olle
t them in three groups as in the 
ase of sleptons. However,the �rst group { whi
h is free from any mixing { now has only pure photon verti
es, 
f.Fig. 9.9. The se
ond group (Fig. 9.10), involving a W+W� pair or one (two) neutral gaugeboson(s), at least one being the Z, shows a nontrivial mixing dependen
e only in the presen
eof L-R mixing. Only the third group, 
ontaining a single W either by itself or in asso
iationwith a neutral gauge boson intera
ting with a squark pair, has the 
ompli
ation of bothtypes of mixing, i.e. generation as well as left right. These verti
es are given in Fig. 9.11.



208 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMAs with sleptons, it is straightforward to derive the 
orresponding Feynman rules if 
avoror L-R mixing 
an be ignored, using (9.57) and (9.60), respe
tively.Figs. 9.9, 9.10 and 9.11 are in
luded in Appendix AThis brings us to the end of the dis
ussion of sfermion-gauge boson verti
es.9.7 Fermion-sfermion-gaugino/higgsino intera
tionsFermion-sfermion-
hargino intera
tionsLet us �rst dis
uss the fermion-sfermion-
hargino verti
es in the \
urrent" basis in whi
hgeneri
ally ~fuiL; ~fdiL are the left sfermions of the up, down type, ~fuiR; ~fdiR are the 
orrespond-ing right sfermions and fui; fdi the 
orresponding fermions following the notation introdu
edin x8.4. Our starting points are (1) the gaugino-sfermion-fermion intera
tions, as given byexpressions analogous to (5.55) and (2) the higgsino-sfermion-fermion 
ouplings arising fromthe superpotential (8.33). In the two 
omponent spinor notation used in previous se
tions,the relevant part of the Lagrangian density readsLf ~f 0� ~�� = �g2 ����1Qi ~d�iL + �+�2Qi~u�iL + ���1Li~e�iL + �+�2Li~��iL�+ g2(m�u)ijp2MW sin � �~h12�2Qi~u�jR + ~h12� �Uj ~diL�+ g2(m�d)ijp2MW 
os � �~h21�1Qi ~d�jR + ~h21� �Dj ~uiL�+ g2(m�e)ijp2MW 
os � �~h21�1Li~e�jR + ~h21� �Ej ~�iL� + h:
: (9.63)We have written out the squark and slepton terms separately. The �rst term in the RHSof (9.62) des
ribe the gaugino-fermion-sfermion 
ouplings, while the last three terms 
orre-spond to higgsino-fermion-sfermion intera
tions. The latter are proportional to fermion massmatri
es and vanish in the limit of massless fermions. In this expression �1(2)Qi and �1(2)Li are thetwo 
omponent spinors representing the T3L = 1=2 (�1=2) fermioni
 
omponents of a 
hiralSU(2)L doublet super�eld su
h as Qi or Li of (8.15)-(8.17). Furthermore, � �Dj and � �Ej are thefermioni
 
omponents of SU(2)L singlet super�elds. The four 
omponent Dira
 spinor �elds
orresponding to the various matter fermions are 
onstru
ted out of �Ui; �Di; �Li; � �Ui; � �Di; � �Ei(where e.g. �Ui � �1Qi and so on) as des
ribed in (3.20) of x3.2. For example, for the up typequarks ui = � �Ui��T�Ui � : (9.64)Re
all that ea
h of the singlet super�elds �Ei; �Di and �Ui 
ontains the left 
hiral 
omponentof the antifermion �eld. Let us de�ne Dira
 �elds fui;di for general up, down type matterfermions (
overing both quarks and leptons) in analogy with the ui of (9.64). In terms ofthese generi
 up, down fermions and sfermions and the four 
omponent wino and higgsinoeigenstates de�ned in (9.17), we 
an rewrite (9.63) as



9.7. FERMION-SFERMION-GAUGINO/HIGGSINO INTERACTIONS 209Lf ~f 0? ~�� = �g2 h �fuiPR~�+ ~fdiL + �fdiPR(~�+)C ~fuiLi+ g2(mfd)ijp2MW 
os � h �fuiPR~h+ ~fdjR + (~h+)CPRfdj ~f �uiLi+ g2(mfu)ijp2MW sin � h �fdiPR(~h+)C ~fujR + ~h+PRfuj ~f �diLi+ h:
: (9.65)Of 
ourse, a sum over all fermions fui; fdi 
overing quarks and leptons (and 
orrespondingsfermions) is implied. On utilizing (9.18) and (9.19), this Lagrangian 
an be re
ast in termsof the 
hargino mass eigenstates ~��k ; k = 1; 2, asLf ~f 0� ~�� = �g2 hUk1 �fuiPR ~�+k ~fdiL + Vk1 �fdiPR(~�+k )C ~fuiLi+ g2(mfd)ijp2MW 
os �Uk2 h �fuiPR ~�+k ~fdjR + ~f �uiL(~�+k )CPRfdji+ g2(mfu)ijp2MW sin �Vk2 h �fdiPR(~�+k )C ~fujR + ~f �diL ~�+k PRfuji+ h:
: (9.66)In the supersymmetri
 limit the lepton-slepton-
hargino verti
es 
an be read o� fromthis expression, using (me)ij = meiÆij, modulo ~eL-~eR mixing in the slepton se
tor. However,the existen
e of the soft supersymmetri
 breaking terms 
an 
hange that. In 
ase of thequark-squark-
hargino intera
tion, there is also the additional 
ompli
ation of generationmixing whi
h is present even in the supersymmetri
 limit. A further point to note in (9.66)is the o

urren
e of (~�+k )C . The appearan
e of 
harge 
onjugated fermion �elds is generi
in supersymmetri
 theories and gives rise to the expli
it presen
e of the 
harge 
onjugationmatrix C in Feynman rules. The basi
 reason for the ne
essity of introdu
ing these uglyC-fa
tors in Feynman rules is the following. In 
ontrast with 
harged fermions in the SM,
harginos do not 
arry a \fermion number" like lepton or baryon number. The same �eld 
anthus 
ouple to �u ~d and to d�~u. If the �rst vertex is written in terms of an in
oming (positive)
hargino �eld, the se
ond vertex has to be written in terms of the outgoing 
harge 
onjugateof that 
hargino �eld (or vi
e versa).We are now in a position to write down the intera
tion terms of (9.66) expli
itly forthe quark/squark and lepton/slepton se
tors in terms of mass diagonal matter fermion andsfermion �elds. We use quark 
avor rotation matri
es UuL;R and UdL;R, introdu
ed in Ch. 8,as well as the sfermion rotation matri
es U~�, W~e, W~u and W ~d of x9.4. We employ i; j; k =1; 2; 3 as indi
es in generation spa
e, while s = 1; : : : ; 6 labels 
harged slepton or squark masseigenstates. The physi
al quark masses are denoted by mdi and mui. Finally, quark/squark�elds are taken to be row or 
olumn ve
tors in 
olor spa
e. The quark/squark part of (9.66)then reads (for simpli
ity we omit the supers
ript m denoting mass eigenstates)Lq�~q0�� = �uiCLiskPR ~ds ~�+k + �diDLiskPR~us(~�+k )C+ ~uys(~�+k )CERiskPRdi + ~dys ~�+k FRiskPRui + h:
: ; (9.67)



210 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMwith CLisk = �g2Uk1 3Xj=1 UuL�ji W ~djs + g2Uk2p2MW 
os � 3Xj;n=1V qLin mdnUdR�jn W ~dj+3 s ; (9.68a)DLisk = �g2Vk1 3Xj=1 UdL�ji W ~ujs + g2Vk2p2MW sin � 3Xj;n=1V qL�ni munUuR�jn W ~uj+3 s ; (9.68b)ERisk = g2Uk2mdip2MW 
os � 3Xj=1 UdLji W ~u�js ; (9.68
)FRisk = g2Vk2muip2MW sin � 3Xj=1 UuLji W ~d�js : (9.68d)The 
orresponding verti
es are given in Fig. 9.12. It may be noted that left (right) fermions
onne
t to the left (right) 
omponents of the sfermions through the gaugino 
omponentsof the 
harginos, whi
h are des
ribed by U`1 and V`1. In 
ontrast, the terms 
oming fromYukawa 
ouplings, whi
h are proportional to a quark mass, 
ouple a left (right) fermion tothe right (left) 
omponent of the 
orresponding sfermion. If squarks and quarks 
ould bealigned exa
tly (see x9.5), all 
ombinations of quark and squark mixing matri
es appearing in(9.68) would redu
e either to the unit matrix (in the right handed se
tor) or to the standardKM matrix VqL (in the left handed se
tor); however, as dis
ussed earlier, alignment 
annotbe exa
t in the u and d se
tors simultaneously. Note �nally that, as per the 
onvention ofAppendix D of Haber and Kane [9.10℄, a 
harge 
onjugation matrix C� to the right operateson the transposed �u-spinor �uT or �v-spinor �vT while a C� �1 to the left requires a transposedv-spinor vT or u-spinor uT to left multiply it.Fig. 9.12 is in
luded in Appendix AWe turn next to the lepton/slepton part of (9.63). It readsL`�~̀0 ~�� = ��i
Lisk~esPR ~�+k + dLijk�eiPR(~�+k )C ~�j + eRijk(~�+k )CPRei~��j + h:
: ; (9.69)with 
Lisk = �g2Uk1W ~eis + g2meip2MW 
os �Uk2W ~ei+3 s ; (9.70a)dLijk = �g2U ~�ijVk1 ; (9.70b)eRijk = g2meip2MW 
os �Uk2U ~��ij : (9.70
)The 
orresponding verti
es are drawn in Fig. 9.13; they 
an be obtained from those of Fig.9.12 with the repla
ements u! �, d! e, VqL ! 11, UuL , UdL , UuR, UdR ! 11, W~u ! U~�,W ~d !W~e, and muk ! 0.
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luded in Appendix AFermion-sfermion-neutralino intera
tionsThe neutralino-fermion-sfermion intera
tion 
an be written down in a similar fashion.This time we need to isolate the a = 3 term from (5.55) for the SU(2)L gauge group and theU(1)Y analog of the terms in (5.36) and express them in terms of the four 
omponent matterfermions as well as the four 
omponent gauginos and higgsinos in the weak intera
tion basis,de�ned in (9.30):Lf�~f ~�0 = �p2g2 ~fiL Xf=e;�;u;d �fiPR hT f3 ~�3 + tan �W (Qf � T f3 )~�0i+p2g2 tan �W Qf ~f �iR~�0PRfi � g2p2MW 
os � (m�d)ij h ~h01PL ~dyjRdi + �djPL ~h01 ~diLi� g2p2MW sin � (m�u)ij h ~h02PL~uyjRui + �ujPL ~h02~uiLi� g2p2MW 
os � (m�e)ij h ~h01PLei~e�jR + �ejPL ~h01~eiLi+ h:
: (9.71)In (9.71) T f3L and Qf are respe
tively the third 
omponent of weak isospin and the ele
tro-magneti
 
harge of fermion type f and i; j are generation indi
es as before. In terms of theneutralino mass eigenstates ~�0l , (9.71) be
omesLf�~f ~�0 = Xf=u;d;e;� ~�0l �GfLl ~f �iLPL +GfRl ~f �iRPR� fi� g2p2MW sin � h(m�u)ijZ�l4~uyjR ~�0l PLui + (mu)ijZl4~uyiL ~�0l PRuji� g2p2MW 
os � h(m�d)ijZ�l3 ~dyjR ~�0l PLdi + (md)ijZl3 ~dyiL ~�0l PRdji� g2p2MW 
os � h(m�e)ijZ�l3~e�jR ~�0lPLei + (me)ijZl3~e?iL ~�0l PReji+ h:
: ; (9.72)where we have used (9.31). The 
oupling strengths GfLl and GfRl in (9.71) 
an be written asGfLl = �p2g2 hT f3LZ�l2 + tan �W (Qf � T f3L)Z�l1i ; (9.73a)GfRl = p2g2 tan �WQfZl1 : (9.73b)On
e more, we 
an rewrite the intera
tions of (9.72) in terms of mass diagonal quark andlepton �elds by performing 
avor rotations in generation spa
e with indi
es i; j. Similarly,the squark and slepton intera
tion eigenstates appearing in (9.72) 
an be related to the
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orresponding mass eigenstates through (9.54). The quark and squark �elds are also three
omponent row or 
olumn ve
tors in 
olor spa
e. Altogether the relevant intera
tion termsfor the quark/squark se
tor 
an be written as (we again suppress the supers
riptm indi
atingmass eigenstates):Lq�~q0 ~�0 = ~�0l h(GuLislPL +GuRislPR)~uysui + (GdLislPL +GdRislPR) ~dysdii + h:
: (9.74)In (9.74) we have de�ned the 
ouplingsGuLisl = GuLl 3Xj=1 W ~u�js UuLji � g2p2MW sin �muiZ�l4 3Xj=1 W ~u�j+3 sUuRji ; (9.75a)GuRisl = GuRl 3Xj=1 W ~u�j+3 sUuRji � g2p2MW sin �muiZl4 3Xj=1 W ~u�js UuLji ; (9.75b)GdLisl = GdLl 3Xj=1 W ~d�js UdLji � g2p2MW 
os �mdiZ�l3 3Xj=1 W ~d�j+3 sUdRji ; (9.75
)GdRisl = GdRl 3Xj=1 W ~d�j+3 sUdRji � g2p2MW 
os �mdiZl3 3Xj=1 W ~d�js UdLji ; (9.75d)where the 
oeÆ
ients GqLl and GqRl are as in eqs.(9.73a) and (9.73b), respe
tively. Feynmanrules for the verti
es of (9.75) are given in Fig. 9.14. An arrow has been put on the neutralinoline in 
onformity with the 
onvention in Appendix D of the �rst paper of Ref. [9.10℄.Fig. 9.14 is in
luded in Appendix ALet us remark on
e again that, in the limit of massless fermions, the higgsinos willde
ouple from the matter fermion/sfermion se
tor. Note also that the 
ouplings of neutralhiggsinos to quark mass eigenstates are proportional to the mass of that eigenstate. This isin 
ontrast to the 
ouplings of the 
harged higgsinos, where heavy quark masses 
ontributeto the 
oupling of light quarks. However, due to the smallness of the KM elements mixingthe third generation with the �rst two, in pra
ti
e one 
an still often negle
t the Yukawa
ontributions to 
hargino and neutralino 
ouplings to �rst and se
ond generation fermions.In the alignment option of x9.5 the produ
ts of 
avor rotation matri
es 
an be put equal tounity in either the up or down quark se
tor (but not for both simultaneously, as we notedearlier). On the other hand, if squarks of all three generations are degenerate and LR mixing
an be ignored, all produ
ts of rotation matri
es appearing in (9.75) 
ollapse to Krone
ker-Æs,where either i = s or i + 3 = s.Let us now turn our attention to the lepton/slepton se
tor. The intera
tion terms withneutralinos 
an be written asL`�~̀0 ~�0 = ~�0l hG�ijl~��jPL�i + (GeLislPL +GeRislPR)~e�seii+ h:
: (9.76)
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ed the 
ouplingsG�ijl = G�l U ~��ij ; (9.77a)GeLisl = GeLl W ~e�is � g2p2MW 
os �meiZ�l3W ~e�i+3 s ; (9.77b)GeRisl = GeRl W ~e�i+3 s � g2p2MW 
os �meiZl3W ~e�is ; (9.77
)The vertex Feynman rules appear in Fig. 9.15. In the alignment option, or if sleptons aremass degenerate, the slepton 
avor rotation matri
es U~� and W~e 
an be put equal to theidentity matrix, if ~eL-~eR mixing is negligible. LR mixing 
an, as usual, be in
luded in theseoptions by using (9.60). On
e again an arrow has been put [9.10℄ on the neutralino line.Fig. 9.15 is in
luded in Appendix AQuark-squark-gluino intera
tionsThese are now di�erent from the pure SQCD 
ase, 
f. (5.60) and Fig. 5.2. However, withthe armory of quark and squark 
avor rotation matri
es that have been developed already,we 
an write the relevant intera
tion terms in a straightforward way as follows9.Lq~q0?~g = �p2gs Xq=u;d �qi hU qL�ji W ~qjsPR � U qR�ji W ~qj+3 sPLiT a~ga~qs + h:
: (9.78)We have again suppressed the supers
ript m denoting mass eigenstates, and have written(s)quark �elds as ve
tors in 
olor spa
e. The 
orresponding Feynman rules are given in Fig.9.16; we have used them already in x9.5, in the basis where UdL = UdR = 11.Fig. 9.16 is in
luded in Appendix AEqs. (9.68), (9.75) and (9.78) are in a general basis of the quark and squark intera
tioneigenstates. Not all the rotation matri
es appearing in these equations are separately physi
alquantities. Despite the o

urren
e of the matri
es UuR and UdR in some of these equations,one 
an only measure the produ
ts of quark and squark mixing matri
es whi
h appear in these
ouplings. Note that exa
tly one fa
tor in these produ
ts is always the hermitian 
onjugateof a rotation matrix. This shows that only any misalignment between righthanded quarksand \righthanded" (SU(2) singlet) squarks is measurable. That 
an also be seen by de�ningU qR�ij qiR and U qR�ij ~qiR as new \intera
tion eigenstates". This rede�nition does not modify anyof the gauge intera
tions in the MSSM Lagrangian. The righthanded quark mixing matri
eswould then disappear from (9.68), (9.75) and (9.78); more exa
tly, they would be absorbedin the squark rotation matri
esW~q, whi
h are not invariant under this rede�nition of the ~qR\intera
tion eigenstates".10 Indeed, pra
ti
al 
al
ulations are usually performed in this basis,9The s subs
ript of g, referring to the strong 
oupling, should not be 
onfused with the squark masseigenstate label s.10Of 
ourse, produ
ts of rotation matri
es that appear in 
ouplings of mass eigenstates are invariant underrede�nitions of 
urrent eigenstates.
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ause the relevant 
ouplings are simpler than in a general basis. One 
an even go one stepfurther and 
hose the SU(2)L doublet (s)quark intera
tion eigenstates in su
h a way thateither the up or the down quark mass matrix (but not both!) be
omes diagonal. The onlyquark rotation matrix appearing in the quark squark 
hargino/neutralino/gluino 
ouplings isthen the KM matrix. Of 
ourse, su
h a pro
edure will yet again modify the squark rotationmatri
es. In these bases our intera
tions are modi�ed as follows: UuR;UdR ! 11, and eitherUdL ! 11;UuL ! (VqL)y (in the basis where md is diagonal), or UuL ! 11;UdL ! VqL (inthe basis where mu is diagonal).Flavor mixing in the fermion-sfermion-bosino 
ouplings is of mu
h greater phenomeno-logi
al importan
e than the \super-CKM mixing" introdu
ed in x8.4. The latter appearsin the 
oupling of W bosons to squarks and sleptons; the only pro
ess of 
urrent interestwhere these 
ouplings play a role is slepton produ
tion at hadron 
olliders, whi
h is howeverdiÆ
ult to dete
t anyway (see x15.3). In 
ontrast, the 
ouplings listed in this se
tion notonly determine the 
onstraints on 
avor mixing des
ribed in x9.5; they also largely determinehow sparti
les de
ay. For example, the \
avor" of a squark is usually de�ned through thequark to whi
h this squark de
ays. However, in the presen
e of signi�
ant 
avor mixing thisde�nition may not be unique: several di�erent quarks might 
ouple to the same squark masseigenstate. The relative bran
hing ratios into di�erent quark 
avors may even depend onthe -ino that is produ
ed in that de
ay. For example, di�erent 
ombinations of mixing ma-tri
es appear in squark to neutralino plus quark de
ays, des
ribed by the Lagrangian (9.74),than in squark to gluino plus quark de
ays des
ribed by (9.78). Conversely, these 
ouplingsdetermine whi
h (
ombinations of) 
avors are produ
ed in the de
ays of gluinos, 
harginosand neutralinos. For example, (9.76) and (9.77) show that the observation of de
ays of thetype ~�0l ! ~�01`+`0�, with l > 1 and ` 6= `0, would be an unambiguous sign for slepton 
avormixing.This 
ompletes our dis
ussion of verti
es with gauginos/higgsinos intera
ting with afermion-sfermion 
ombination.9.8 Quarti
 Sfermion Verti
esThe �nal nongauge and nonHiggs intera
tion that needs to be dis
ussed is the intera
tionof four sfermions. These verti
es appear e.g. in one loop 
orre
tions to sfermion pair pro-du
tion pro
esses, and in two loop 
orre
tions to rea
tions without external superparti
les.In (8.49) we gave the relevant part of the Lagrangian in the absen
e of ~fL- ~fR mixing. Inthat 
ase sfermion mixing matri
es only appeared in the F -term (Yukawa) 
ontributions,and in the part of the SU(2)L D-term that 
ouples ~uL to ~dL squarks, and ~� to ~eL sleptons.However, sin
e ~fL and ~fR have di�erent gauge quantum numbers, nonvanishing ~fL- ~fR mix-ing means that sfermion mixing in general a�e
ts almost all terms in the quarti
 intera
tionLagrangian. This is true even for the SU(3)C D-terms, sin
e the ~qL squarks reside in left
hiral super�elds that transform as triplets under SU(3)C , while the �~q�R reside in antitripletleft 
hiral super�elds: The SU(3)C D-term 
ontributions from the two therefore di�er by arelative sign, as shown in (5.60). The only ex
eption is the term involving four sneutrinos,sin
e the MSSM assumes the absen
e of SU(2)L singlet sneutrinos with weak s
ale masses.



9.8. QUARTIC SFERMION VERTICES 215The relevant part of the Lagrangian 
an now be written as�L ~f4 = X~f1; ~f2; ~f3; ~f4 Y [ ~f1; ~f2; ~f3; ~f4℄ ~f �1 ~f2 ~f �3 ~f4 ; (9.79)where the Y are 
onstant (�eld independent) 
oeÆ
ients. In (9.79) the indi
es ~fi of Y havebeen written in the form of arguments, rather than as supers
ripts or subs
ripts, in orderto avoid an ex
essive proliferation of subs
ripts. The sum in (9.79) runs over sfermion type(~u; ~d; ~e and ~�), mass eigenstate labels, and 
olor indi
es.The Y 
oeÆ
ients of (9.79) are given expli
itly byY [~ua�s ; ~uat ; ~ub�u ; ~ubv℄ = g222M2W sin2 � 3Xi;j;k;l;m;n=1W ~u�is UuLik mukUuR�jk W ~uj+3 tW ~ulvUuL�lm mumUuRnmW ~u�n+3 u+ g2s4 "ÆsvÆtu � 13ÆstÆuv � 4 3Xi;j=1W ~u�is W ~u�j+3 u�W ~uivW ~uj+3 t � 13W ~uitW ~uj+3 v�#+ g228 �1 + tan2 �W9 � 3Xi;j=1W ~u�is W ~uitW ~u�juW ~ujv+ g22 tan2 �W9 3Xi;j=1 �2W ~u�i+3 sW ~ui+3 t �W ~u�is W ~uit�W ~u�j+3 uW ~uj+3 v ; (9.80a)Y [ ~da�s ; ~dat ; ~db�u ; ~dbv℄ = g222M2W 
os2 � 3Xi;j;k;l;m;n=1W ~d�is UdLik mdkUdR�jk W ~dj+3 tW ~dlvUdL�lm mdmUdRnmW ~d�n+3 u+ g2s4 "ÆsvÆtu � 13ÆstÆuv � 4 3Xi;j=1W ~d�is W ~d�j+3 u�W ~divW ~dj+3 t � 13W ~ditW ~dj+3 v�#+ g228 �1 + tan2 �W9 � 3Xi;j=1W ~d�is W ~ditW ~d�juW ~djv+ g22 tan2 �W36 3Xi;j=1�W ~d�i+3 sW ~di+3 t �W ~d�is W ~dit�W ~d�j+3 uW ~dj+3 v ; (9.80b)Y [~ua�s ; ~uat ; ~db�u ; ~dbv℄ = �g2s6 "ÆstÆuv � 2 3Xi;j=1�W ~u�is W ~uitW ~d�j+3 uW ~dj+3 v +W ~u�i+3 sW ~ui+3 tW ~d�juW ~djv�#� g224 �1� tan2 �W9 � 3Xi;j=1W ~u�is W ~uitW ~d�juW ~djv+ g22 tan2 �W18 3Xi;j=1 hW ~u�is W ~uitW ~d�j+3 uW ~dj+3 v+2W ~u�i+3 sW ~ui+3 t �W ~d�juW ~djv + 2W ~d�j+3 uW ~dj+3 v�i ; (9.80
)



216 CHAPTER 9. SOFT SUPERSYMMETRY BREAKING IN THE MSSMY [~ua�s ; ~dat ; ~db�u ; ~ubv℄ = g222M2W sin2 � 3Xi;j;k;l;m;n=1W ~d�iu UuLik mukUuR�jk W ~uj+3 vW ~dltUuL�lm mumUuRnmW ~u�n+3 s+ g222M2W 
os2 � 3Xi;j;k;l;m;n=1W ~u�is UdLik mdkUdR�jk W ~dj+3 tW ~ulvUdL�lm mdmUdRnmW ~d�n+3 u+ g2s2 "ÆsvÆtu � 2 3Xi;j=1�W ~u�is W ~uivW ~d�j+3 uW ~dj+3 t +W ~u�i+3 sW ~ui+3 vW ~d�juW ~djt�#+ g222 3Xi;j=1W ~u�is W ~ditW ~d�juW ~ujv ; (9.80d)Y [~ua�s ; ~uat ; ~e�u; ~ev℄ = �g224 �1 + tan2 �W3 � 3Xi;j=1W ~u�is W ~uitW ~e�juW ~ejv+ g22 tan2 �W6 3Xi;j=1 �W ~u�is W ~uitW ~e�j+3 uW ~ej+3 v+2W ~u�i+3 sW ~ui+3 t �W ~e�juW ~ejv � 2W ~e�j+3 uW ~ej+3 v�� ; (9.80e)Y [ ~da�s ; ~dat ; ~e�u; ~ev℄ = g222M2W 
os2 � 3Xi;j;k;l=1�W ~d�is UdLik mdkUdR�jk W ~dj+3 tW ~e�l+3 umelW ~elv+W ~d�i+3 sUdRik mdkUdL�jk W ~djtW ~e�lumelW ~el+3 v�+ g224 �1� tan2 �W3 � 3Xi;j=1W ~d�is W ~ditW ~e�juW ~ejv+ g22 tan2 �W6 3Xi;j=1 hW ~d�is W ~ditW ~e�j+3 uW ~ej+3 v�W ~d�i+3 sW ~di+3 t �W ~e�juW ~ejv � 2W ~e�j+3 uW ~ej+3 v�i ; (9.80f)Y [~ua�s ; ~uat ; ~��i ; ~�i℄ = g224 3Xj=1 �W ~u�js W ~ujt�1� tan2 �W3 �+ 4 tan2 �W3 W ~u�j+3 sW ~uj+3 t� ; (9.80g)Y [ ~da�s ; ~dat ; ~��i ; ~�i℄ = �g224 3Xj=1 �W ~d�jsW ~djt�1 + tan2 �W3 �� 2 tan2 �W3 W ~d�j+3 sW ~dj+3 t� ; (9.80h)Y [~ua�s ; ~dat ; ~e�u; ~�i℄ = g222M2W 
os2 � 3Xj;k;l;m=1W ~u�js UdLjk mdkUdR�lk W ~dl+3 tU ~�mimemW ~e�m+3 u+ g222 3Xj;k=1W ~u�js W ~djtU ~�kiW ~e�ku ; (9.80i)Y [ ~da�t ; ~uas; ~��i ; ~eu℄ = �Y [~ua�s ; ~dat ; ~e�u; ~�i℄�� ; (9.80j)



REFERENCES 217Y [~e�s; ~et; ~e�u; ~ev℄ = g222M2W 
os2 � 3Xi;j=1W ~e�is meiW ~ei+3 tW ~e�j+3 umejW ~ejv+ g228 �1 + tan2 �W � 3Xi;j=1W ~e�is W ~eitW ~e�juW ~ejv+ g22 tan2 �W2 3Xi;j=1 �W ~e�i+3 sW ~ei+3 t �W ~e�is W ~eit�W ~e�j+3 uW ~ej+3 v ; (9.80k)Y [~e�s; ~et; ~��i ; ~�j℄ = g222M2W 
os2 � 3Xk;l=1U ~��ki mekW ~ek+3 tU ~�ljmelW ~e�l+3 s+ g222 3Xk;l=1W ~e�ksU ~�kjW ~eltU ~��li� Æij g224 3Xk=1 ��1� tan2 �W �W ~e�ksW ~ekt + 2 tan2 �WW ~e�k+3 sW ~ek+3 t� ; (9.80l)Y [~��i ; ~�i; ~��j ; ~�j℄ = g228 �1 + tan2 �W � : (9.80m)In (9.80) we have used s; t; u; v = 1; : : : ; 6 to label sfermion mass eigenstates, i; j; k; l;m; n =1; 2; 3 are generation (or sneutrino mass eigenstate) labels, and supers
ripts a; b = 1; 2; 3 areSU(3)-
olor labels. Note that there are two di�erent 
olor 
onne
tions for ~u�~u ~d� ~d verti
es,as shown in (9.80
,d). These two 
olor 
onne
tions are equivalent for intera
tions of foursquarks of the same type, sin
e they 
an be transformed into ea
h other by simply ex
hangingmass eigenstate labels, whi
h are summed in (9.79). When 
omputing the Feynman rulesfrom (9.79) and (9.80), 
are must be taken to symmetrize properly. The result is displayedin Fig. 9.17. Fig. 9.17 is in
luded in Appendix AWe 
on
lude with a remark (
f. ftnt.9). The mixing matri
es appearing in (9.80) areagain not separately invariant under rede�nitions of the \
urrent" eigenstates. However,the produ
ts of mixing matri
es appearing in these expressions are invariant under su
hrede�nitions, sin
e they des
ribe 
ouplings of physi
al parti
les (i.e. mass eigenstates).Referen
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Chapter 10HIGGS BOSONS IN THE MSSM
10.1 Higgs Potential in the MSSMAs dis
ussed in Ch.1, low energy supersymmetry has been theoreti
ally motivated to sta-bilize the mass and the VEV of the Standard Model Higgs boson with respe
t to highers
ales. This makes the Higgs se
tor of a supersymmetri
 extension of the Standard Modelespe
ially interesting. We have already shown in Ch. 8 that the minimal supersymmetri
model requires two Higgs doublets h1;2 (with D as an SU(2) doublet index and Y = �1; 1respe
tively): hD1 � � h11h21 � = � h01h�1 � ; hD2 � � h12h22� = � h+2h02 � : (10.1)We shall see in this 
hapter how these doublets lead to �ve physi
al Higgs parti
les h;H;A;H�and what one 
an say about their masses and 
ouplings [10.1℄, [10.2℄. A noteworthy fea-ture, spe
i�
 to this supersymmetri
 extension, is that all quarti
 self 
ouplings of the Higgs�elds get related to the gauge 
ouplings of the ele
troweak theory. This is quite unlike innonsupersymmetri
 theories where the former are a priori arbitrary. This restri
tion is thekey to various mass bounds and relations [10.3℄ whi
h exist for physi
al Higgs parti
les inthe supersymmetri
 extension of the Standard Model. A se
ond important feature is thatthe 
ouplings of the neutral Higgs parti
les to quark mass eigenstates turn out to be 
avordiagonal. This happens be
ause up type quarks obtain their masses purely from the VEVv2=p2 of h02 while down type ones do so from the VEV v1=p2 of h01. In the language ofGlashow and Weinberg [10.4℄ the Higgs se
tor of the MSSM is a spe
ial 
ase of the `type 2'two Higgs doublet model.We have already given the MSSM superpotential and the soft expli
it supersymmetrybreaking terms in Chs. 8 and 9 respe
tively. The tree level s
alar potential isV = VSUSY + VSOFT ; (10.2)where VSUSY was de�ned in (8.36) and VSOFT in (9.3). Re
all thatFk = ��WMSSM=��yk����; WMSSM = �H1�H2 � fìjH1�Li �Ej � f dijH1�Q �Dj � fuijQ�H2 �Uj : (10.3)219



220 CHAPTER 10. HIGGS BOSONS IN THE MSSMAs before, i; j are generation indi
es and, for any two SU(2)-doublet super�elds AD and BE,A�B � �DEADBE. Moreover, ~DH = �g2hyk~�2hk ; (10.4a)DYH = �gY hykY2 hk ; (10.4b)where we are now using the subs
ript H to refer ex
lusively to the Higgs se
tor and k issummed. Needless to say, both ~D and DY will have additional bilinear terms involvingsquarks as well as those with sleptons.The tree level Higgs potential follows from (10.2) { (10.4) by inputting VSOFT from (9.3)and utilizing the relation ~�AB �~�CD = 2ÆADÆBC � ÆABÆCD. Using the notation hyh � jhj2, it
an be written asVH = 18(g2Y + g22)(jh1j2 � jh2j2)2 + g222 jhy1h2j2 + j�j2(jh1j2 + jh2j2) + VH;SOFT ; (10.5a)VH;SOFT = m21jh1j2 +m22jh2j2 + (m212h1 �h2 + h:
:) ; (10.5b)with 
oeÆ
ients m21; m22 and m212 � B�, 
f.(9.3), having the dimension1 of squared mass. Infollowing the steps to (10.5), it may be noted that h1�h2 = ~hy1h2 where ~h1 = i�2h�1 is an SU(2)doublet with Y = 1. (10.5a) and (10.5b) 
an be rewritten asVH = 18(g2Y +g22)(jh1j2�jh2j2)2+ g222 jhy1h2j2+m21hjh1j2+m22hjh2j2+(m212h1�h2+h:
:); (10.6)where m21;2h = m21;2 + j�j2 : (10.7)The sign of the last RHS term in (10.6) has been 
hosen with 
are. It will be seen later thatm212 = B� is expe
ted to be positive.10.2 Spontaneous Symmetry Breakdown and VEVsA Higgs indu
ed spontaneous symmetry breaking will take pla
e if the minimum of VH isattained at nonzero values of the Higgs �elds:hh1i = 1p2 � v10 � ; hh2i = 1p2 � 0v2 � : (10.8)In (10.6) one 
an2 always absorb a relative phase between h1 and h2 by rede�ning one ofthem with an additional phase; this freedom enables us to de�ne v1;2 as real and positive1We remind the reader that B is a soft supersymmetry breaking parameter with the dimension of mass,while � is a supersymmetry invariant (higgsino mass) parameter.2Any VEV for one 
harged Higgs �eld 
an be rotated to zero by an SU(2) transformation and then theminimization 
ondition means a vanishing VEV for the other 
harged Higgs. This is a 
onsequen
e of inbuiltU(1)em invarian
e whi
h thus remains unbroken.



10.2. SPONTANEOUS SYMMETRY BREAKDOWN AND VEVS 221and also to treat m21; m22 and m212 as real. Re
all from x8.2 that these VEVs 
an be relatedto the W and Z masses byMW = g22 (v21 + v22)1=2; MZ = (g2Y + g22)1=22 (v21 + v22)1=2; (10.9)i.e. (v21 + v22)1=2 = (p2GF )�1 ' 246 GeV: (10.10)Let us 
onsider the parameter tan �, as introdu
ed in (8.24), namelytan � � v2=v1: (10.11)Now, our phase freedom to de�ne v1;2 as positive restri
ts � to the range0 � � � �=2 :Though tan � will generally be left undetermined in this book, 
urrent theoreti
al widsomsuggests [10.5℄ that the value of tan � is restri
ted to the range 1 � tan� <� 60. The lowerand upper bounds both stem from the desired requirement (
f. Ch.11) of radiatively indu
edele
troweak symmetry breakdown by whi
h one of the eigenvalues of the neutral Higgs masssquared matrix, evaluated at v1 = 0 = v2, is driven to be negative by the top Yukawa
oupling via Renormalization Group Evolution. They 
ome also from the requirement of allthe 
ouplings parti
ipating in the RGE equations remaining perturbative upto a high grandunifying s
ale like 2� 1016 GeV. These issues, in
luding additional experimental 
onstraintson tan �, will be dis
ussed more thoroughly in Ch.11.Near the minimum, 
hara
terized by the VEVs hh01;2i = v1;2=p2, hh�1 i = 0 = hh+2 i, it issuÆ
ient to explore the Higgs potential retaining only the neutral Higgs �elds. This part ofthe Higgs potential 
an be written from (10.6) asV 0H = 18(g2Y + g22)2(jh01j2 � jh02j2)2 +m21hjh01j2 +m22hjh02j2 �m212(h01h02 + h:
:) ; (10.12)where the negative sign before the last RHS term proportional to m212 has arisen be
ause�12 = �1. The quarti
 terms in (10.12) vanish along jh01j = jh02j. By further 
hoosingh01 = �h02, we see that the fa
t that V 0H must be bounded from below requires thatm21h +m22h = m21 +m22 + 2j�j2 > 2jm212j : (10.13)Be
ause of quantum 
orre
tions and renormalization group evolution (
f. Ch.11), m21h; m22hand m212 be
ome running quantities | varying with the energy s
ale, 
f. x6.9. However,(10.13) has to be valid at all s
ales. On the other hand, the quadrati
 part of V 0H 
an bewritten as V 0;quadr:H = (h0�1 h02)� m21h �m212�m212 m22h � � h01h0�2 � : (10.14)For the nonzero VEVs v1;2 to develop, at least one of the eigenvalues of the mass squaredmatrix in (10.14) has to be negative. Sin
e (10.13) requires the matrix to have a positive
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e, one is led to the ne
essary 
ondition for spontaneous symmetry breakdown that itsdeterminant be negative, i.e.m412 > m21hm22h = (m21 + j�j2)(m22 + j�j2) : (10.15)(10.15) is valid only at and below the energy s
ale where the spontaneous breaking of ele
-troweak symmetry be
omes operative. Furthermore, (10.13) and (10.15) be
ome mutuallyin
ompatible in the supersymmetry invariant limit when m21h = m22h = �2. Hen
e thereis an intimate 
onne
tion between the breaking of supersymmetry and that ofele
troweak symmetry in the MSSM.Let us return to (10.6) and explore VH at its supposed minimum, i.e. at h1;2 = hh1;2i, asgiven by (10.8). ThusV minH = 132(g2Y + g22)(v21 � v22)2 + 12m21hv21 + 12m22hv22 �m212v1v2 : (10.16)The 
onsisten
y 
onditions for the above mentioned minimum is the vanishing of �V minH =�v1and �V minH =�v2. These respe
tively imply the relationsm21h = m212 v2v1 � 18(g2Y + g22)(v21 � v22) ; (10.17a)m22h = m212 v1v2 + 18(g2Y + g22)(v21 � v22) : (10.17b)By using (10.7), (10.10) and (10.11) in (10.17), the latter 
an be re
ast into the followingequations: �2B� = �2m212 = (m21 �m22) tan 2� +M2Z sin 2� ; (10.18a)j�j2 = (
os 2�)�1(m22 sin2 � �m21 
os2 �)� 12M2Z : (10.18b)10.3 Higgs Masses at the Tree LevelThough we shall see in x10.6 that there are signi�
ant radiative 
orre
tions to Higgs massesin the MSSM, we �rst dis
uss their tree level values here. The mass squared matrix of theHiggs s
alars 
an be obtained from the quadrati
 part of VH , i.e. V (2)H = 12m2lm�l�m withm2lm = � �2VH��l��m� ; (10.19)where �l is the generi
 notation for the real or imaginary part of any Higgs 
omponent �eldand the double derivative is evaluated at the minimum. The 8�8 Higgs mass squared matrixthen breaks up diagonally into a set of 2� 2 matri
es.



10.3. HIGGS MASSES AT THE TREE LEVEL 223Charged Goldstones and HiggsThe total 
harged Higgs mass term, obtained by using (10.8) in (10.6), is given byV quadrh� =(h+1 h+2 )�m21h + 18(g2Y + g22)(v21 � v22) + 14g22v22 m212 + 14g22v1v2m212 + 14g22v1v2 m22h � 18(g2Y + g22)(v21 � v22) + 14g22v21 ��h�1h�2 �= �m212v1v2 + 14g22� (h+1 h+2 )� v22 v1v2v1v2 v21 ��h�1h�2 � ; (10.20)where { in the last step { eqs. (10.17) have been used. The vanishing determinant and thenonvanishing tra
e of the matrix in the RHS of (10.20) imply massless as well as massive
harged modes. The former are the Goldstone boson pair G� whi
h 
ombine with themassless W� to give them mass. The latter pertain to the physi
al 
harged Higgs parti
lesH�. Thus one has m2G� = 0 ; (10.21a)m2H� = �m212v1v2 + 14g22� (v21 + v22) : (10.21b)It follows from (10.20) and (10.11) that the 
orresponding mass diagonal �elds areH� = sin � h�1 + 
os � h�2 ; (10.22a)G� = � 
os � h�1 + sin � h�2 ; (10.22b)The 
ouplings of G� in a general R-gauge are given in Ref. [10.1℄. However, we formulateour dis
ussions in the unitary gauge where G� are set equal to zero.Neutral Goldstone and CP odd HiggsChoosing �`;m in (10.19) to be =m h01;2, we have the 
orresponding mass squared matrix:m2=m h0 =�m21h + 18(g2Y + g22)(v21 � v22) m212m212 m22h � 18(g2Y + g22)(v21 � v22)� = m212 � v2=v1 11 v1=v2� ;(10.23)on
e again using (10.17). As before, the vanishing determinant and the nonvanishing tra
eimply a massless neutral Goldstone mode G (whi
h 
ombines with the massless Z) and aneutral s
alar whi
h is CP odd on being a linear 
ombination of the imaginary 
omponentsof the neutral Higgs �elds. In fa
t, we havem2G0 = 0 ; (10.24a)m2A = m212v1v2 �v21 + v22� = 2m212sin 2� : (10.24b)
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e sin 2� is restri
ted to be positive, (10.24b) makes sense only if m212 is positive {at least at ele
troweak energy s
ales. This is the explanation of the 
hoi
e of the sign of thelast RHS term in (10.6). The mass diagonal �elds 
orresponding to (10.24) areAp2 = =m h01 sin � + =m h02 
os � ; (10.25a)G0p2 = �=m h01 
os � + =m h02 sin � : (10.25b)In the physi
al basis, the CP odd neutral Higgs mass term in the Lagrangian density be
omes12(G0 A)� 0 m2A��G0A � ;and the 
orre
t normalization of m2A in (10.24b) 
an be 
he
ked from this. The 
ouplingsof G0 in a general R-gauge 
an be found in Ref. [10.1℄, but again, in the U-gauge of ours,G0 = 0.Neutral CP even HiggsTurning to the <e h01;2 
omponents, we �nd the 
orresponding mass squared matrix inan analogous way to bem2<e h0 = 12 � 2m21h + 14(g2Y + g22)(3v21 � v22) �2m212 � 12v1v2(g2Y + g22)�2m212 � 12v1v2(g2Y + g22) 2m22h + 14(g2Y + g22)(3v22 � v21)�= � m2A sin2 � +M2Z 
os2 � �(m2A +M2Z) sin� 
os ��(m2A +M2Z) sin � 
os � m2A 
os2 � +M2Z sin2 � � ; (10.26)where (10.10), (10.17) and (10.24b) have been used. The eigenvalues of the matrix in theRHS of (10.26), standing for the tree level physi
al squared masses of the two CP even Higgss
alars (H; h) of the MSSM, arem2H;h = 12 �m2A +M2Z � f(m2A +M2Z)2 � 4M2Zm2A 
os2 2�g1=2� : (10.27)In (10.27) we have de�ned H to be the heavier of the two, i.e. mh � mH . The 
orrespondingmass diagonal �elds are1p2H = (<e h01 � v1p2) 
os� + (<e h02 � 1p2v2) sin� ; (10.28a)1p2h = �(<e h01 � v1p2) sin� + (<e h02 � 1p2v2) 
os� : (10.28b)Referring ba
k to the matrix of (10.26) as �A BB C �, the angle of rotation � in (10.28) isseen to obey the relations [10.1℄, [10.2℄sin 2� = 2Bp(A� C)2 + 4B2 = �m2H +m2hm2H �m2h sin 2� ; (10.29a)
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os 2� = A� Cp(A� C)2 + 4B2 = �m2A �M2Zm2H �m2h 
os 2� ; (10.29b)tan 2� = m2h +m2Hm2A �M2Z tan 2� = m2A +M2Zm2A �M2Z tan 2� : (10.29
)Sin
e � is in the range 0 � � � �=2, (10.29a) restri
ts � to the interval��=2 � � � 0 :A geometri
al depi
tion is given in Fig. 10.1. Note that we always havesin(� � �); 
os(� + �) � 0 :
h2

0

h0
1

2

v1

2

v2

h

α

β H

Fig.10.1. Geometri
al depi
tion of physi
al CP even neutral Higgs states.Relations and 
onstraintsThe Higgs mass spe
trum is 
ompletely 
ontrolled by two new parameters whi
h 
anbe taken to be mA and tan�. These strongly in
uen
e the other masses, e.g. mh ! 0 ifmA ! 0. The following tree level relations and 
onstraints [10.1{10.3℄ emerge from (10.21b),(10.24b) and (10.27): m2H� = m2A +M2W > max (M2W ; m2A) ; (10.30a)m2h +m2H = m2A +M2Z ; (10.30b)mh < min (mA;MZ)j 
os 2�j < min (mA;MZ) ; (10.30
)mH > max (mA;MZ) ; (10.30d)
os2(� � �) = m2h(M2Z �m2h)m2A(m2H �m2h) : (10.30e)Thus the 
harged Higgs bosons H� are predi
ted to be heavier than the W . Of the CPeven neutral ones, one light Higgs h is expe
ted to be lighter than the Z and one heavier His expe
ted to ex
eed the Z in mass. The mass of the CP odd Higgs A is expe
ted to bebetween those of the two CP even ones. The 
ontents of (10.30
) and (10.30d) are illustratedin Fig. 10.2 below where mh< and mH> are the absolute (�-independent) upper and lower
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tively. For large tan � (i.e. j 
os 2�j ! 1) , mh saturates mh<from below and mH 
omes down to mH> from above. These are all tree level predi
tions;we dis
uss radiative e�e
ts on these mass bounds in x10.6.
MZ

MZ

mH>

mh<

mh<

Am

mH>

Fig.10.2. Tree level upper and lower mass bounds on h and H as a fun
tion of mA.10.4 Higgs-parti
le Verti
esThe ele
troweak parameters of the Standard Model, together with tan� and �, 
ompletelydetermine the 
ouplings of the physi
al Higgs parti
les to the Standard Model gauge bosonsand fermions. We shall �rst dis
uss those and then 
ome to Higgs self 
ouplings. A dis
ussionof Higgs 
ouplings to sparti
les is relegated to x10.5. In (8.32) we have already given theHiggs 
ontribution to the supersymmetri
 part of the MSSM Lagrangian density. From thisone 
an obtain all the Higgs 
ouplings to fermions and gauge bosons in terms of the originallyintrodu
ed but unphysi
al Higgs �elds h01;2 and h�1;2. The 
onversion to 
ouplings with massdiagonal Higgs �elds 
an be easily done through the transformations (10.22), (10.25) and(10.28). One should also put G� = 0 = G0 in the unitary gauge whi
h we 
hoose. Forsimpli
ity, we 
on�ne ourselves to one generation of up and down type fermions (massesmu and md respe
tively): fL � � fuLfdL � ; fuR; fdR, where f 
overs both quarks and leptons.Generation e�e
ts 
an be obtained by interpretingmu;d as 3�3 diagonal quark mass matri
esand multiplying the 
harged Higgs 
oupling to fermions by the Cabibbo-Kobayashi-Maskawamatrix V.The Higgs-fermion-antifermion Yukawa intera
tions 
an then be written asLY = � g2md2MW 
os �Xf �fdfd(H 
os�� h sin�) + ig2md tan �2MW Xf �fd
5fdA� g2mu2MW sin �Xf �fufu(H sin� + h 
os�) + ig2mu 
ot �2MW Xf �fu
5fuA+ g2p2MW Xf �H+ �fu(mu 
ot� PL +md tan� PR)fd + h:
:� ; (10.31)with f being summed over quarks and leptons. The 
orresponding vertex 
ouplings (i timesthe 
oeÆ
ients of the intera
tion terms in L) are given in Fig. 10.3. We do the same for



10.4. HIGGS-PARTICLE VERTICES 227the trilinear gauge-gauge-Higgs and Higgs-gauge-Higgs as well as the quarti
 gauge-gauge-Higgs-Higgs verti
es instead of writing out the algebrai
 expressions in L.Fig. 10.3 is in
luded in Appendix BWe 
an make the following 
omments on the 
ouplings of Fig. 10.3.� Tree level Higgs 
ouplings to fermions are parity 
onserving and that of A to matterfermions involves a 
5. That is why, in 
ontrast with the `s
alars' h and H, A issometimes 
alled the `pseudos
alar' Higgs. But, in the presen
e of CP violation, loope�e
ts 
an mix the `s
alar' and `pseudos
alar' Higgs bosons, espe
ially sin
e the MSSMadmits additional sour
es of CP violation beyond the CKM phase.� The parameters mu and md refer to masses of up and down type quarks respe
tivelyfor ea
h generation.� Bose statisti
s forbids the ZHH and Zhh trilinear 
ouplings, while any ZhH 
ouplingis forbidden by CP invarian
e. Sin
e the latter is violable, a ZhH 
oupling 
ould exist.� The absen
e of any tree level ZW�H� or 
W�H� 
oupling is not surprising sin
eneither 
an o

ur [10.1℄ in any model 
ontaining just SU(2)L doublet and singlet Higgs�elds.� The 
ouplings for the verti
es (W+W�h and W+W�H), (W+HH� and W+hH�),(ZHA and ZhA), (ZZH and ZZh) and (ZZh and ZhA) are pairwise 
omplementary,i.e. if one is suppressed by the 
ombination of mixing angles, the other is nearly fullstrength.� For large tan� and moderate �, the neutral CP even Higgs 
ouplings with the downtype fermions get enhan
ed relative to those with up type ones. For the CP odd Higgs,this statement is true independent of �.Turning to the self 
ouplings of the Higgs bosons, we noti
e that they follow from theHiggs potential VH of (10.5) on using the formulae for the physi
al Higgs �elds, namely(10.22a), (10.25a) and (10.28). Following Ref. [10.1℄, one 
an introdu
e the 
onvenientdi�erential operatorsDH � (p2)�1[
os�(�=�h01 + �=�h0�1 ) + sin�(�=�h02 + �=�h0�2 )℄ ;Dh � (p2)�1[� sin�(�=�h01 + �=�h0�1 ) + 
os�(�=�h02 + �=�h0�2 )℄ ;DA � (p2)�1i[sin �(�=�h01 � �=�h0�1 ) + 
os �(�=�h02 � �=�h0�2 )℄ ;DH� � sin � �=�h�1 + 
os � �=�h�2 ;DH+ � sin � �=�h+1 + 
os � �=�h+2 :



228 CHAPTER 10. HIGGS BOSONS IN THE MSSMNow the 
ubi
 and quarti
 vertex fa
tors listed beside ea
h vertex below (with legs, a; b; 
spanning h;H;A and a; b; 
; d spanning h;H;A;H�) 
an be obtained respe
tively fromDaDbD
VH and DaDbD
DdVH evaluated at hh01i = v1=p2; hh�1 i = 0 = hh+2 i; hh02i = v2=p2.We list these 
ubi
 and quarti
 self 
oupling verti
es of the physi
al Higgs bosons in Fig.10.4. Fig. 10.4 is in
luded in Appendix BThe de
oupling limit in the Higgs se
tor of the MSSM is attained [10.5℄ by taking mAto be very large : mA ! 1. (In pra
ti
e, this usually obtains on
e mA ex
eeds 250 GeV).From (10.27) and (10.30) we now have the resultsmh !MZ j 
os 2�j; 
os2 2� ! m2h=M2Z ; (10.32a)m2H ! m2A +M2Z sin2 2� ; (10.32b)j 
os(� � �)j !M2Z j sin 4�j=(2m2A) : (10.32
)In this limit we have mA � mH � mH� and 
os(� � �) ' 0, i.e. � � � ! �=2 andsin� ' � 
os � up to 
orre
tionsO(M2Z=m2A). Thus the lightest Higgs parti
le h saturates3 itsupper mass boundMZ j 
os 2�j while the other Higgses all be
ome uniformly heavy. Moreover,a perusal of the gauge 
ouplings of the Higgs parti
les, all des
ribed above, shows that theverti
es HW+W , HZZ, ZAh, W�H�h, ZW�H�h and 
W�H�h are all proportional to
os(� � �) while the verti
es hZZ, ZAH, W�H�H, ZW�H�H and 
W�H�H are allproportional to sin(���). Hen
e any vertex involving at least one ve
tor boson and exa
tlyone heavy Higgs parti
le (H;A or H�) vanishes as 
os(� � �) when mA ! 1. Turning tomatter fermions, the 
oupling strengths of the CP even neutral Higgs s
alars to down typeand up type fermions { relative to those of the Standard Model Higgs { are given belowhfd �fd: � sin�
os � = sin(� � �)� tan� 
os(� � �) ; (10.33a)hfu �fu: 
os�sin � = sin(� � �) + 
ot � 
os(� � �) ; (10.33b)Hfd �fd: 
os�
os � = 
os(� � �) + tan � sin(� � �) ; (10.33
)Hfu �fu: sin�sin � = 
os(� � �)� 
ot � sin(� � �) : (10.33d)Fig. 10.3 and (10.33) imply that, in the de
oupling limit j� � �j ! �=2, the 
ouplings ofthe lightest Higgs s
alar h to fermions and gauge boson pairs are identi
al to those of theStandard Model Higgs. Likewise, Fig. 10.4 shows that the self 
ouplings hhh and hhhh alsoredu
e to their SM values in this limit. Thus, for a heavy A withmA �MZ , the e�e
ts of theextra s
alars H�, H and A in the MSSM de
ouple and the residual s
alar h, while saturatingits appear mass bound, looks just like the SM Higgs boson �0. The onset of de
oupling is3The reader is reminded that the present dis
ussion is at the tree level.
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ontrolled by (10.32
), and is depi
ted in Fig. 10.5 where the fun
tions sin2(� � �) and
os2(� � �), i.e. the squared 
oupling strengths of h and H respe
tively to WW (
f. Fig.10.3) relative to that of the SM Higgs, are plotted against mA for two 
hara
teristi
 valuesof tan�. Though the tree level results, mentioned above, 
hange somewhat on a

ount ofradiative 
orre
tions (
f. x10.6), this last statement remains valid. The low energy e�e
tives
alar se
tor of the MSSM indeed be
omes indistinguishable from that of the SM in thede
oupling limit, ex
ept that, unlike in the latter, the mass of the lightest Higgs parti
leperfor
e remains bounded from above.
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Fig.10.5. Squared 
oupling strengths of h and H to WW , relative to that of the SM Higgs, asfun
tions of mA, 
ourtesy A. Djouadi.10.5 Higgs-sparti
le Verti
esHiggs 
ouplings to neutralinos and 
harginosThe 
ouplings of the Higgs bosons to the ele
troweak neutralinos and 
harginos originatefrom the gauge strength Yukawa 
ouplings of gauginos to the s
alar and fermioni
 
omponentof a given 
hiral supermultiplet. In two 
omponent notation these are given by the last RHSterm in (5.36) for abelian intera
tions, and by the �fth RHS term in (5.55) for nonabelian,presently SU(2), intera
tions with the Higgs super�elds H1 and H2 being the relevant 
hiralsuper�elds. The 
orresponding terms in the intera
tion Lagrangian density 
an be rewrittenin terms of the four 
omponent gaugino and higgsino �elds of (9.17) and (9.30) by using theidentities (3.28a,b) and (3.29a,b) to obtain the resultLH ~�~� = � g2p2 hh01 �~h01PR~�3 +p2~�+PR~h+� + h�1 �p2~h01PR~�+ � ~�3PR~h+�+h02 �p2~h+PR~�+ � ~h02PR~�3�+ h+2 �~h+PR~�3 +p2~�+PR~h02�i� gYp2 �h+2 ~h+PR~�0 + h02~h02PR~�0 � h01~h01PR~�0 � h�1 ~�0PR~h+� + h:
: (10.34)Finally, we use (9.18), (9.19), (9.27), (10.22a), (10.25a) and (10.28) to express (10.34) in
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hargino, neutralino and Higgs mass eigenstates:LH ~�~� = �g2 (H 
os�� h sin�) �~�+k (PRQkm + PLQ�mk) ~�+m + 12 ~�0n (PRQ00nl + PLQ00�ln ) ~�0l ��g2 (H sin�+ h 
os�) �~�+k (PRSkm + PLS�mk) ~�+m � 12 ~�0n (PRS 00nl + PLS 00�ln ) ~�0l ��ig2An~�+k [PR (Qkm sin � + Skm 
os �)� PL (Q�mk sin � + S�mk 
os �)℄ ~�+m+12 ~�0n [PR (Q00nl sin � � S 00nl 
os �) + PL (S 00�ln 
os � �Q00�ln sin �)℄ ~�0l�� hg2H� ~�0l �PRQ0Rlk + PLQ0Llk� ~�+k + h:
:i : (10.35)In (10.35) we have introdu
ed the following quantities:Qkm � 1p2Vk1Um2 ; (10.36a)Skm � 1p2Vk2Um1 ; (10.36b)Q0Rlk � sin � �Zl3Uk1 � 1p2Uk2 (Zl2 + tan �WZl1)� ; (10.36
)Q0Llk � 
os � �Z�l4V�k1 + 1p2V�k2 (Z�l2 + tan �WZ�l1)� ; (10.36d)Q00nl � 12 [Zn3 (Zl2 � tan �WZl1) + Zl3 (Zn2 � tan �WZn1)℄ ; (10.36e)S 00nl � 12 [Zn4 (Zl2 � tan �WZl1) + Zl4 (Zn2 � tan �WZn1)℄ : (10.36f)We have 
losely followed the notation of Ref.[10.2℄ in de�ning the above quantities. Theonly di�eren
e is an overall fa
tor of g2 in the de�nition of Q0R and Q0L whi
h have beenput in order to 
onform with the 
onvention used for the other 
oeÆ
ients in the intera
tionLagrangian density (10.35). The 
orresponding Feynman rules are given in Fig. 10.6 in theAppendix, the only nontrivial feature being an extra fa
tor of two in verti
es involving twoMajorana (neutralino) fermions.Fig. 10.6 is in
luded in Appendix BRe
all from Ch.9 that Uk1; Vk1; Zk1 and Zk2 label gaugino 
omponents, while Uk2; Vk2; Zk3and Zk4 label higgsino 
omponents. Thus eqs. (10.36) 
learly re
e
t the origin of the quanti-ties de�ned from Higgs{higgsino{gaugino intera
tions. These 
ouplings are not proportionalto the masses of the 
orresponding 
harginos and neutralinos. In fa
t, as dis
ussed in x9.2,gaugino{higgsino mixing in the 
hargino and neutralino se
tors is often suppressed. The neu-tral Higgs bosons will then predominantly 
ouple to two di�erent 
harginos and neutralinos.However, 
hargino and neutralino �nal states 
an nonetheless play a prominent role in the
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ays of the heavy neutral Higgs bosons A and H if mA; mH � 2mt and tan � is not large.Conversely, �nal states 
ontaining the light neutral Higgs boson h 
an play an important rolein the de
ays of the heavier neutralinos and 
harginos into lighter ones. On the other hand,the lower bound m~��1 > 100 GeV, whi
h 
omes from 
hargino sear
hes at LEP, implies thatthe de
ays H� ! ~��k ~�0l 
an dominate only over the small region of parameter spa
e wherem~�+1 +m~�01 < mH+ < mt +mb. Indeed, LEP sear
hes imply that m~�+1 +m~�01 � 140 GeV, ifthe \gaugino mass uni�
ation 
ondition", 
f. (9.21), holds. Finally, note that the 
ouplingsof h;H and A would be s
alar and pseudos
alar respe
tively, were all rotation matri
es inthe 
hargino and neutralino se
tor stri
tly real.Sfermion Higgs 
ouplingsThe 
ouplings between Higgs bosons and sfermions re
eive 
ontributions from the super-symmetri
 F - and D-terms in the s
alar potential, as well as from trilinear soft supersymme-try breaking terms. The same terms also 
ontribute to sfermion mass matri
es and have been
olle
ted in (9.42) and (9.45) for sleptons and squarks respe
tively. We use (10.22a), (10.25a)and (10.28) to move to the Higgs mass eigenstate basis. The quarti
 F - and D-terms thenalso give rise to trilinear intera
tions of a single Higgs parti
le with two sfermions, due tothe VEVs of the neutral 
omponents of the Higgs �elds. We �rst present the relevant pie
esof the intera
tion Lagrangian density in the 
urrent basis for sfermions. This allows easier
omparison with results in the literature. Moreover, as dis
ussed in x9.5, in many realisti
SUSY models intergeneration sfermion mixing 
an often be negle
ted, in whi
h 
ase the masseigenstates are essentially equal to 
urrent eigenstates. For ease of presentation, we showthe trilinear and quarti
 intera
tions of Higgs bosons with sleptons and squarks separately.For any angle �, we use s�; 
�; t� and (
t)� to mean sin�, 
os�, tan� and 
ot� respe
tively,ex
ept that the 
orresponding symbols for �W are sW ; 
W ; tW and (
t)W respe
tively. Theresults for the relevant 
ubi
 and quarti
 intera
tions areLH ~̀�~̀ = g2p2MWH+n~��i ~ejR h� (me)ij � (meAe�)ij t�i+~��i ~ejL h�memye�ij t� �M2W Æijs2�i o+ g22MW 
� ~e�iL~ejR h(meAe�)ij (H
� � hs� � iAs�)+� (me)ij (Hs� + h
� + iA
�)i + h:
:+ g2MW 
� h~e�iL~ejL �memye�ij + ~e�iR~ejR �myeme�iji (hs� �H
�)+ g2MW2 �hs(�+�) �H
(�+�)�Xi �j~�ij2 �1 + t2W �� j~eiLj2 �1� t2W ��2 j~eiRj2 t2W � : (10.37)



232 CHAPTER 10. HIGGS BOSONS IN THE MSSMLH~q�~q = g2p2MWH+n~uyiL ~djR h� (md)ij � �mdAd��ij t�i+~uyiR ~djL h�� (m�u)ij � (m�uAu)ij (
t)�i+~uyiL ~djL ��mumyu�ij (
t)� + �mdmyd�ij t� �M2W Æijs2��+~uyiR ~djR �myumd�ij (t� + (
t)�)o+ g22MW 
� h ~dyiL ~djRn �mdAd��ij (H
� � hs� � iAs�)+� (md)ij (Hs� + h
� + iA
�)o + h:
:i+ g22MW s� h~uyiL~ujRn (muAu�)ij (Hs� + h
� � iA
�)+� (mu)ij (H
� � hs� + iAs�)o+ h:
:i+ g2MW 
� (hs� �H
�) � ~dyiL ~djL �mdmyd�ij + ~dyiR ~djR �mydmd�ij�� g2MW s� (Hs� + h
�) h~uyiL~ujL �mumyu�ij + ~uyiR~ujR �myumu�iji+ g2(MW=2)Xi �j~uiLj2 �1� t2W=3�� ��� ~diL���2 �1 + t2W=3�+(2t2W=3)�2 j~uiRj2 � ��� ~diR���2�� �hs(�+�) �H
(�+�)� : (10.38)LHH ~̀�~̀ = g222p2M2WH+~��i ~ejLns�
2� �memye�ij (H
� � hs� + iAs�)�M2W Æij �Hs(�+�) + h
(�+�) � iA
2�� o+ h:
:� g224M2W 
2� �H2
2� + h2s2� �Hhs2� + A2s2��� h~e�iL~ejL �memye�ij + ~e�iR~ejR �myeme�iji� g22t2�2M2WH+H� h~��i ~�j �memye�ij + ~e�iR~ejR �myeme�iji+ g228 ��h2 �H2� 
2� + 2Hhs2� + A2
2���Xi �j~�ij2 �1 + t2W�� j~eiLj2 �1� t2W �� 2t2W j~eiRj2�� g224 H+H�
2�Xi �j~�ij2 �1� t2W�� j~eiLj2 �1 + t2W �+ 2t2W j~eiRj2� : (10.39)
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LHH~q�~q = g222p2M2WH+n~uyiL ~djLh �mumyu�ij 
�s2� (Hs� + h
� � iA
�)+�mdmyd�ij s�
2� (H
� � hs� + iAs�)�M2W Æij �Hs(�+�) + h
(�+�) � iA
2�� i+~uyiR ~djR �H
(���) � hs(���)� 2s2� �myumd�ij o + h:
:� g224M2W 
2� �H2
2� + h2s2� �Hhs2� + A2s2��� � ~dyiL ~djL �mdmyd�ij + ~dyiR ~djR �mydmd�ij�� g224M2W s2� �H2s2� + h2
2� +Hhs2� + A2
2��� h~uyiL~ujL �mumyu�ij + ~uyiR~ujR �myumu�iji� g222M2WH+H� �~uyiL~ujL �mdmyd�ij t2� + ~dyiL ~djL �mumyu�ij (
t)2�+~uyiR~ujR �myumu�ij (
t)2� + ~dyiR ~djR �mydmd�ij t2��+ g228 ��h2 �H2� 
2� + 2Hhs2� + A2
2���Xi �j~uiLj2 �1� t2W=3�� ��� ~diL���2 �1 + t2W=3�+(2t2W=3)�2 j~uiRj2 � ��� ~diR���2��� g224 H+H�
2�Xi �j~uiLj2�1 + 13t2W�� ��� ~diL���2 �1� t2W=3��(2t2W=3)�2 j~uiRj2 � ��� ~diR���2�� : (10.40)The following points about (10.37){(10.40) are noteworthy:� The hermitian 
onjugation in these equations a
ts only on terms to the left of theh:
: as written, terms to the right being already hermitian after summation over thegeneration indi
es i and j.� The 
oupling of one Higgs boson to two sfermions is again not proportional to thesfermion mass. In the 
ase of third generation sfermions the usually most important
ontributions to su
h a trilinear 
oupling are those proportional to � or one of the
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e the absolute values of these quantities 
an be signi�
antly largerthanMW . Indeed, in prin
iple, su
h 
ouplings o�er the only dire
t experimental a

essto the A�parameter. In pra
ti
e, however, these 
ouplings are diÆ
ult to measuresin
e they involve three as yet undis
overed parti
les.� The only signi�
ant 
ontributions to the Higgs 
ouplings to �rst and se
ond generationsfermions are the pure gauge terms. In 
ontrast, the quarti
 intera
tions of thirdgeneration sfermions are often dominated by 
ontributions proportional to m2f .� The F -term 
ontributions to the 
ouplings of SU(2)L-doublet, \left 
hiral" sfermionsare proportional to mfmyf , while those of SU(2)L-singlet, \right 
hiral" sfermions areproportional to myfmf . This is analogous to the LL and RR entries of the squaredsquark mass matrix listed in (9.46).� The relative sign between the SU(2) and U(1)Y D-term 
ontributions to the quarti
intera
tions di�ers for neutral and 
harged Higgs boson pairs. For example, the H+H�pair 
ouples more strongly to ~eL pairs than to ~� pairs, while the opposite is true forpairs of neutral Higgs bosons.In the �nal step, (9.51) and (9.54) are to be utilized to 
onvert the 
urrent eigenstatesfermion �elds in (10.37){(10.40) into mass eigenstate ones. We 
an use a notation similarto that in x9.8. The �nal result for Higgs-sfermion intera
tions 
an then be written asLH ~f = X�; ~f; ~f 0C[�; ~f; ~f 0℄� ~f � ~f 0 + X�;�0; ~f; ~f 0D[�; �0; ~f; ~f 0℄��0 ~f � ~f 0; (10.41)where � and �0 stand for any of the �ve physi
al Higgs �elds of the MSSM, while ~f and ~f 0are sfermion �elds. Invarian
e under SU(3)C implies that ~f 0 must be a squark if and onlyif ~f is a squark; both squarks must then have the same 
olor index, whi
h therefore neednot be displayed. Moreover, we shall again assume that the superpotential is written in abasis where the leptoni
 Yukawa 
ouplings are 
avor diagonal. The 
oeÆ
ients des
ribingslepton-Higgs intera
tions 
an then be written down. First, we display the 
oeÆ
ients of thevarious 
ubi
 Higgs-slepton-slepton terms. They areC[H+; ~�i; ~es℄ = g2p2MW n 3Xk=1 U ~��ki h�mekW ~ek+3 s + �m2ekt� �M2W s2��W ~eksi� 3Xj;k=1 t� (meAe�)kj U ~��ki W ~ej+3 so; (10.42a)C[H�; ~es; ~�i℄ = �C[H+; ~�i; ~es℄�� ; (10.42b)C[H; ~�i; ~�j℄ = �
g[~�℄
�+�Æij ; (10.42
)C[h; ~�i; ~�j℄ = 
g[~�℄s�+�Æij ; (10.42d)C[H; ~es; ~et℄ = 
A[~es; ~et℄
� + 
�[~es; ~et℄s� � 
g[~es; ~et℄
�+� ; (10.42e)
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A[~es; ~et℄s� + 
�[~es; ~et℄
� + 
g[~es; ~et℄s�+� ; (10.42f)C[A; ~es; ~et℄ = ig22MW n 3Xi=1 ��meiW ~e�is W ~ei+3 t � ��meiW ~e�i+3 sW ~eit�+t� 3Xi;j=1 h(meAe)ijW ~e�j+3 sW ~eit � (meAe�)ijW ~e�is W ~ej+3 ti o:(10.42g)All 
oeÆ
ients C[�; ~̀; ~̀0℄ not listed in eqs.(10.42) vanish. One 
ould rewrite the matrixmeA�ein terms of its eigenvalues and 
orresponding 3� 3 rotation matri
es. We have not done sosin
e the eigenvalues of this matrix have no spe
ial physi
al meaning, in 
ontrast to those ofthe SM matter fermion mass matri
es. Moreover, we have introdu
ed the quantities
A[~es; ~et℄ � g2MW 
�n� 3Xi=1 m2ei �W ~e�is W ~eit +W ~e�i+3 sW ~ei+3 t�+12 3Xi;j=1 h�meAey�ijW ~e�is W ~ej+3 t + (meAe)ijW ~e�j+3 sW ~eiti o;(10.43a)
�[~es; ~et℄ � g22MW 
� 3Xi=1 mei ��W ~e�is W ~ei+3 t + ��W ~e�i+3 sW ~eit� ; (10.43b)
g[~�℄ � g2MW2 �1 + t2W � ; (10.43
)
g[~es; ~et℄ � g2MW2 3Xi=1 �W ~e�is W ~eit �t2W � 1�� 2t2WW ~e�i+3 sW ~ei+3 t� : (10.43d)The 
oeÆ
ients of the various quarti
 Higgs-Higgs-slepton-slepton intera
tions 
analso be displayed. They areD[H+; H�; ~�i; ~�j℄ = g22
2�4 �t2W � 1� Æij � g22t2�2M2W 3Xk=1 U ~��ki U ~�kjm2ek ; (10.44a)D[H+; H�; ~es; ~et℄ = 3Xi=1 ng22
2�4 �W ~e�is W ~eit �1 + t2W �� 2t2WW ~e�i+3 sW ~ei+3 t�� g22t2�2M2Wm2eiW ~e�i+3 sW ~ej+3 to; (10.44b)D[H+; H; ~�i; ~es℄ = �dg[~�i; ~es℄s�+� + dY [~�i; ~es℄
� ; (10.44
)D[H�; H; ~es; ~�i℄ = �D[H+; H; ~�i; ~es℄�� ; (10.44d)



236 CHAPTER 10. HIGGS BOSONS IN THE MSSMD[H+; h; ~�i; ~es℄ = �dg[~�i; ~es℄
�+� � dY [~�i; ~es℄s� ; (10.44e)D[H�; h; ~es; ~�i℄ = �D[H+; h; ~�i; ~es℄�� ; (10.44f)D[H+; A; ~�i; ~es℄ = idg[~�i; ~es℄
2� + idY [~�i; ~es℄s� ; (10.44g)D[H�; A; ~es; ~�i℄ = �D[H+; A; ~�i; ~es℄�� ; (10.44h)D[H;H; ~�i; ~�j℄ = �dg[~�℄
2� Æij ; (10.44i)D[H; h; ~�i; ~�j℄ = 2dg[~�℄s2� Æij ; (10.44j)D[h; h; ~�i; ~�j℄ = dg[~�℄
2� Æij ; (10.44k)D[A;A; ~�i; ~�j℄ = dg[~�℄
2� Æij ; (10.44l)D[H;H; ~es; ~et℄ = �dY [~es; ~et℄
2� � dg[~es; ~et℄
2� ; (10.44m)D[H; h; ~es; ~et℄ = dY [~es; ~et℄s2� + 2dg[~es; ~et℄s2� ; (10.44n)D[h; h; ~es; ~et℄ = �dY [~es; ~et℄s2� + dg[~es; ~et℄
2� ; (10.44o)D[A;A; ~es; ~et℄ = �dY [~es; ~et℄s2� + dg[~es; ~et℄
2� : (10.44p)We again list only the nonvanishing 
oeÆ
ients; for example, D[H�; H+; ~f; ~f 0℄ � 0, for~f 6= ~f 0. The Lagrangian density in (10.41) is nonetheless hermitian. Moreover, we haveintrodu
ed the quantities dg[~�℄ � g228 �1 + t2W � ; (10.45a)dg[~�i; ~es℄ � g222p2 3Xj=1 U ~��ji W ~ejs ; (10.45b)dg[~es; ~et℄ � �g228 3Xi=1 �2t2WW ~e�i+3 sW ~ei+3 t +W ~e�is W ~eit �1� t2W �� ; (10.45
)dY [~�i; ~es℄ � g22s�2p2M2W 
2� 3Xj=1 m2ejU ~��ji W ~ejs ; (10.45d)dY [~es; ~et℄ � g224M2W 
2� 3Xi=1 m2ei �W ~e�is W ~eit +W ~e�i+3 sW ~ei+3 t� : (10.45e)The analogous expressions for Higgs intera
tions with squarks are 
ompli
ated by non-trivial quark 
avor mixing. In addition to rotating the squarks into mass eigenstates usingthe matri
esW~u andW~d, we also need to diagonalize the quark mass matri
es using (8.12).The 
oeÆ
ients of the various 
ubi
 Higgs-squark-squark intera
tion terms are givenbelow. They are
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C[H+; ~us; ~dt℄ = g2p2MW 3Xi;j=1nW ~u�is W ~dj+3 th 3Xk=1 �UdLik mdkUdR�jk � �mdAd��ij t�i+W ~u�j+3 sW ~dith 3Xk=1 ��UuL�ik mukUuRjk � (m�uAu)ij (
t)�i+W ~u�is W ~djth 3Xk=1 �UuLik m2ukUuL�jk (
t)� + UdLik m2dkUdL�jk t���M2W Æijs2�i+W ~u�i+3 sW ~dj+3 t (t� + (
t)�) 3Xk;l=1UuRik mukV qLkl mdlUdR�jl o;(10.46a)C[H�; ~dt; ~us℄ = �C[H+; ~us; ~dt℄�� ; (10.46b)C[H; ~ds; ~dt℄ = 
A[ ~ds; ~dt℄
� + 
�[ ~ds; ~dt℄s� � 
g[ ~ds; ~dt℄
�+� ; (10.46
)C[h; ~ds; ~dt℄ = �
A[ ~ds; ~dt℄s� + 
�[ ~ds; ~dt℄
� + 
g[ ~ds; ~dt℄s�+� ; (10.46d)C[H; ~us; ~ut℄ = 
A[~us; ~ut℄s� + 
�[~us; ~ut℄
� � 
g[~us; ~ut℄
�+� ; (10.46e)C[h; ~us; ~ut℄ = 
A[~us; ~ut℄
� � 
�[~us; ~ut℄s� + 
g[~us; ~ut℄s�+� ; (10.46f)C[A; ~ds; ~dt℄ = ig22MW 3Xi;j=1nt� h�m�dAd�ijW ~d�j+3 sW ~dit � �mdAd��ijW ~d�is W ~dj+3 ti+ 3Xk=1mdk h�UdLik UdR�jk W ~d�is W ~dj+3 t � ��UdL�ik UdRjk W ~d�j+3 sW ~diti o;(10.46g)C[A; ~us; ~ut℄ = ig22MW 3Xi;j=1n(
t)� h(m�uAu)ijW ~u�j+3 sW ~uit � (muAu�)ijW ~u�is W ~uj+3 ti+ 3Xk=1muk ��UuLik UuR�jk W ~u�is W ~uj+3 t � ��UuL�ik UuRjk W ~u�j+3 sW ~uit�o:(10.46h)The quantity V qLk` appearing in (10.46a) is an element of the Cabibbo-Kobayashi{Maskawamatrix of (8.40). Moreover, we have introdu
ed the quantities



238 CHAPTER 10. HIGGS BOSONS IN THE MSSM

A[ ~ds; ~dt℄ � g2MW 
� 3Xi;j=1n12 hW ~d�is W ~dj+3 t �mdAd��ij +W ~d�j+3 sW ~dit �m�dAd�iji� 3Xk=1m2dk hUdLik UdL�jk W ~d�is W ~djt + UdRik UdR�jk W ~d�i+3 sW ~dj+3 tio;(10.47a)
A[~us; ~ut℄ � g2MW s� 3Xi;j=1n12 hW ~u�is W ~uj+3 t (muAu�)ij +W ~u�j+3 sW ~uit (m�uAu)iji� 3Xk=1m2uk �UuLik UuL�jk W ~u�is W ~ujt + UuRik UuR�jk W ~u�i+3 sW ~uj+3 t�o;(10.47b)
�[ ~ds; ~dt℄ � g22MW 
� 3Xi;j;k=1mdk h�UdLik UdR�jk W ~d�is W ~dj+3 t + ��UdL�ik UdRjk W ~d�j+3 sW ~diti ; (10.47
)
�[~us; ~ut℄ � g22MW s� 3Xi;j;k=1muk ��UuLik UuR�jk W ~u�is W ~uj+3 t + ��UuL�ik UuRjk W ~u�j+3 sW ~uit� ; (10.47d)
g[ ~ds; ~dt℄ � �g2MW2 3Xi=1 �W ~d�is W ~dit�1 + 13t2W�+ 23W ~d�i+3 sW ~di+3 tt2W� ; (10.47e)
g[~us; ~ut℄ � g2MW2 3Xi=1 �W ~u�is W ~uit �1� 13t2W�+ 43W ~u�i+3 sW ~ui+3 tt2W� : (10.47f)Similarly the 
oeÆ
ients of the various quarti
 Higgs-Higgs-squark-squark intera
-tion terms 
an be written down. They areD[H+; H�; ~ds; ~dt℄ = � g222M2W 3Xi;j;k=1 hUdRik m2dkUdR�jk W ~d�i+3 sW ~dj+3 tt2�+UuLik m2ukUuL�jk W ~d�is W ~djt(
t)2�i+ g22
2�4 3Xi=1 �W ~d�is W ~dit�1� 13t2W��23W ~d�i+3 sW ~di+3 tt2W� ; (10.48a)



10.5. HIGGS-SPARTICLE VERTICES 239D[H+; H�; ~us; ~ut℄ = � g222M2W 3Xi;j;k=1 �UuRik m2ukUuR�jk W ~u�i+3 sW ~uj+3 t(
t)2�+UdLik m2dkUdL�jk W ~u�is W ~ujtt2�i� g22
2�4 3Xi=1 �W ~u�is W ~uit �1 + 13t2W��43W ~u�i+3 sW ~ui+3 tt2W� ; (10.48b)D[H+; H; ~us; ~dt℄ = dY u[~us; ~dt℄s� + dY d[~us; ~dt℄
�+dY ud[~us; ~dt℄
��� � dg[~us; ~dt℄s�+� ; (10.48
)D[H�; H; ~dt; ~us℄ = �D[H+; H; ~us; ~dt℄�� ; (10.48d)D[H+; h; ~us; ~dt℄ = dY u[~us; ~dt℄
� � dY d[~us; ~dt℄s��dY ud[~us; ~dt℄s��� � dg[~us; ~dt℄
�+� ; (10.48e)D[H�; h; ~dt; ~us℄ = �D[H+; h; ~us; ~dt℄�� ; (10.48f)D[H+; A; ~us; ~dt℄ = �idY u[~us; ~dt℄
� + idY d[~us; ~dt℄s� + idg[~us; ~dt℄
2� ; (10.48g)D[H�; A; ~dt; ~us℄ = �D[H+; A; ~us; ~dt℄�� ; (10.48h)D[H;H; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄
2� � dg[ ~ds; ~dt℄
2� ; (10.48i)D[H; h; ~ds; ~dt℄ = dY [ ~ds; ~dt℄s2� + 2dg[ ~ds; ~dt℄s2� ; (10.48j)D[h; h; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄s2� + dg[ ~ds; ~dt℄
2� ; (10.48k)D[A;A; ~ds; ~dt℄ = �dY [ ~ds; ~dt℄s2� + dg[ ~ds; ~dt℄
2� ; (10.48l)D[H;H; ~us; ~ut℄ = �dY [~us; ~ut℄s2� � dg[~us; ~ut℄
2� ; (10.48m)D[H; h; ~us; ~ut℄ = �dY [~us; ~ut℄s2� + 2dg[~us; ~ut℄s2� ; (10.48n)D[h; h; ~us; ~ut℄ = �dY [~us; ~ut℄
2� + dg[~us; ~ut℄
2� ; (10.48o)D[A;A; ~us; ~ut℄ = �dY [~us; ~ut℄
2� + dg[~us; ~ut℄
2� : (10.48p)In (10.48) we have introdu
ed the quantitiesdY u[~us; ~dt℄ � g22
�2p2M2W s2� 3Xi;j;k=1UuLik m2ukUuL�jk W ~u�is W ~djt ; (10.49a)dY d[~us; ~dt℄ � g22s�2p2M2W 
2� 3Xi;j;k=1UdLik m2dkUdL�jk W ~u�is W ~djt ; (10.49b)



240 CHAPTER 10. HIGGS BOSONS IN THE MSSMdY ud[~us; ~dt℄ � g22p2M2W s2� 3Xi;j;k;l=1UuRik mukV qLkl mdlUdR�jl W ~u�i+3 sW ~dj+3 t ; (10.49
)dY [ ~ds; ~dt℄ � g224M2W 
2� 3Xi;j;k=1m2dk hUdLik UdL�jk W ~d�is W ~djt + UdRik UdR�jk W ~d�i+3 sW ~dj+3 ti ; (10.49d)dY [~us; ~ut℄ � g224M2Ws2� 3Xi;j;k=1m2uk �UuLik UuL�jk W ~u�is W ~ujt + UuRik UuR�jk W ~u�i+3 sW ~uj+3 t� ; (10.49e)dg[~us; ~dt℄ � g222p2 3Xi=1 W ~u�is W ~djt ; (10.49f)dg[ ~ds; ~dt℄ � �g228 3Xi=1 �W ~d�is W ~dit �1 + 13t2W�+ 23W ~d�i+3 sW ~dj+3 t tan2 �W� ; (10.49g)dg[~us; ~ut℄ � g228 3Xi=1 �W ~u�is W ~uit �1� 13t2W� + 43W ~u�i+3 sW ~uj+3 tt2W� : (10.49h)The 
orresponding Feynman rules are shown in Fig. 10.7.Fig. 10.7 is in
luded in Appendix B10.6 Radiative E�e
ts on MSSM Higgs Parti
lesThe properties of the Higgs parti
les in the MSSM and the relations among them, followingnaturally from supersymmetry, have been dis
ussed in x10.3{x10.5 at the tree level. How-ever, it is now known [10.6℄ that signi�
ant 
hanges are indu
ed radiatively in many of theexpressions and relations, appearing in those se
tions, by quantum loop 
orre
tions. Weshall dis
uss some of these e�e
ts at the one loop level, 
on�ning ourselves largely to themass of the lightest Higgs h. That is where they are most spe
ta
ular and are of the greatestimportan
e to experiment. Before going into the details, let us make three general points:� One needs to be 
lear about the meaning of a physi
al Higgs mass when radiative e�e
tsare to be taken into a

ount. The on-shell mass is de�ned as the square root of thatvalue of q2 for whi
h the real part of the inverse s
alar propagator q2 �m2tree +�(q2),�(q2) being the one loop self energy 
orre
tion, vanishes. However, we will 
omputeradiative 
orre
tions to stati
 Higgs masses.� Radiative 
orre
tions to the mass of h are dominated by loops involving the top quarkt and its stop partners ~t1;2, 
f. Fig. 10.8. This domination o

urs owing to the largeYukawa 
oupling that these states have with h. Contributions from loops mediated byother states are negligible by 
omparison and will be ignored.
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t supersymmetry, tree level Higgs masses are prote
ted by thenonrenormalization theorem dis
ussed in Ch.6. This explains why radiative 
orre
tionsto those masses are 
ontrolled by Ms, the s
ale of soft supersymmetry breaking.
t1,2
~

t1,2
~

t1,2
~

h h h h h h h h

t

t

h hFig.10.8. One loop self energy diagrams for h.The radiatively 
orre
ted Higgs se
tor of the MSSM has been the subje
t of 
onsiderablestudy over several years. We do not go here into the initial and orginal works, but a detaileddis
ussion with a histori
al perspe
tive and a 
omplete set of pertinent referen
es may befound in the se
ond paper 
ited in Ref. [10.1℄. Three main tools have been employed in theliterature: (1) dire
t diagrammati
 
al
ulations, (2) renormalization group methods and (3)e�e
tive potential te
hniques. Let us fo
us our attention on the 
orre
tion to mh as a sample
ase. The pro
edure in (1) is to adopt a straight 
omputational approa
h by 
al
ulating theone loop self energy diagrams for h as given in Fig. 10.8.In 
ontrast, the methodology in (2) is that of Renormalization Group Evolution (RGE).For instan
e, when the sparti
le mass spe
trum (
hara
terized by the s
ale Ms) is mu
hheavier than the weak s
ale, i.e. Ms �MZ , the quarti
 self 
oupling of h at the s
ale Ms istaken from (10.12) and (10.28b) to be132 
os2 2� [g2Y (Ms) + g22(Ms)℄2 :It is then evolved to its value at the ele
troweak s
ale by means of the Standard ModelRGE and used in the 
omputation of the mass of h utilizing Standard Model expressions.However, we 
hoose to present below an exposition of approa
h (3) { namely that of thee�e
tive potential { in 
al
ulating the 
orre
tion to the tree level value of mh. Thoughthis method is numeri
ally not as a

urate as the diagrammati
 one, it is pedagogi
allymore interesting and gives a better theoreti
al insight into these loop indu
ed radiative
orre
tions. In addition, the in
lusion of leading two loop 
orre
tions and the 
omputationof 
orre
tions to stati
 Higgs self 
ouplings are more straightforward in this approa
h.We start by 
onsidering the stati
 approximation in whi
h the e�e
tive a
tion is approx-imated by the one loop e�e
tive potential. The a
tual 
al
ulation of the one loop e�e
tivepotential 
an be found in standard text books [10.7{10.9℄. The �nal expression readsV 1H(Q) = V 0H(Q) + �V (1)H (Q) ; (10.50a)



242 CHAPTER 10. HIGGS BOSONS IN THE MSSM�V (1)H (Q) = 164�2STr M4(h) �lnM2(h)Q2 � 32� : (10.50b)In (10.50), V 0H(Q) is the tree level Higgs potential with its 
ouplings renormalized at somes
ale Q, M(h) is the �eld dependent mass matrix and the supertra
e, 
f. 5.10, 
overs allsupermultiplet �elds whose masses depend on the VEVs of the Higgs �elds.Corre
tions in the absen
e of ~tL-~tR mixingWe have earlier noted that the most important loop 
orre
tions to the Higgs potential VH
ome from the top-stop se
tor of the theory. To keep the dis
ussion simple, we will 
onsideronly these. First, we negle
t any mixing between the SU(2)L doublet (~tL) and singlet (~tR)squarks and assume equal soft supersymmetry breaking squared masses ~m2 for those two�elds. The relevant �eld dependent masses then arem2t (h) = f 2t jh02j2 ; (10.51a)m2~t1(h) = m2~t2(h) = ~m2 + f 2t jh02j2 ; (10.51b)where ft is the top Yukawa 
oupling strength, being equal to mt(2p2GF )1=2= sin�. We havenegle
ted D-term 
ontributions to the stop masses sin
e they are proportional to ele
troweakgauge 
ouplings. They are thus suppressed by at least one power of M2Wm�2t 
ompared tothe pure Yukawa 
ontribution.Ea
h fermion or boson 
ontributes to the supertra
e of (10.50b) with a multipli
ativeweight fa
tor equal to the number of independent degrees of freedom asso
iated with it. Letus re
all that ea
h Dira
 fermion 
ontains four degrees of freedom, while ea
h 
omplex s
alarhas two. In addition, we have to in
lude a 
olor fa
tor of three. Altogether, we thus havefrom (10.50b) that�V (1)H;t�~t(Q) = 316�2 �( ~m2 + f 2t jh02j2)2�ln ~m2 + f 2t jh02j2Q2 � 32�� (f 2t jh02j2)2�ln f 2t jh02j2Q2 � 32�� ;(10.52)where the overall fa
tor of 3 in the numerator 
omes from 
olor. As already advertised, thetwo terms in the RHS of (10.52) 
an
el exa
tly in the limit of unbroken supersymmetry.In order to understand the physi
al signi�
an
e of these 
orre
tions, we �rst have to redothe minimization of the Higgs potential. In x10.2 we had minimized the tree level expressionwhi
h we now 
all V (0)H . Here we will do the same for V (0)H + �V (1)H;t�~t. As evident from(10.52), in the limit of vanishing ~tL-~tR mixing, 
orre
tions from the top-stop se
tor onlyinvolve the se
ond Higgs doublet h2. Therefore (10.17a) remains un
hanged. On the otherhand, (10.17b) now be
omesm22h = m212 
ot � + M2Z2 
os 2� � 3f 2t16�2 �f(m2~t )� f(m2t )� ; (10.53)where we have introdu
ed the fun
tionf(m2) � 2m2�ln m2Q2 � 1� (10.54)



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 243and m2t ; m2~t are squared masses of the top and the stops respe
tively. We need not, for themoment, be bothered by the presen
e of the lnQ2 term sin
e it 
an ultimately be absorbedin the renormalization of m22h.As in (10.19), we 
al
ulate the mass squared matri
es now for the CP odd and CP evenHiggs bosons by taking se
ond derivatives of V (0)H + �V (1)H;t�~t with respe
t to the imaginaryand real parts of the neutral Higgs �elds respe
tively. On
e again, only the VEV v2 (and notv1) 
ontributes to (10.53) as a 
onsequen
e of our assumption of no ~tL-~tR mixing. Therefore,only the 2, 2 entries in the 
on
erned matri
es 
an possibly re
eive 
orre
tions from thetop-stop se
tor. Moreover, sin
e the VEVs v1 and v2 are real, the derivatives have to betaken at =m h01 = =m h02 = 0. It is then easy to see that the �nal result for the masssquared matrix of the CP odd states is the same as at the tree level, i.e. (10.23). Theexpli
it 
orre
tion to the 2,2 entry from the se
ond derivative of (10.53) exa
tly 
an
els the
orre
tion to m22h, given in (10.53). However, su
h is not the 
ase for the 2,2 element of themass squared matrix of the CP even Higgs s
alars, (
f. 10.26). There we �nd the following�nite and positive 
orre
tion: �LL22 = 3f 2tm2t4�2 ln m2~tm2t � �hsin2 � ; (10.55)where �h = 3GFm4tp2�2 ln m2~tm2t : (10.56)We have put the supers
ript LL on �22 to denote the fa
t that (10.56) is a leading logarithm(in the ratio m~t=mt) expression.The one loop 
orre
tion to (10.26), in this s
enario, readsÆm2<e h0 = 0� 0 00 �hsin2 � 1A ; (10.57)so that (10.27), (10.29
) and (10.30b) extend respe
tively tom2h;H = 12"m2A +M2Z + �hsin2 � � n(m2A +M2Z)2 sin2 2�+ �(M2Z �m2A) 
os 2� + �hsin2 ��2 o1=2# ; (10.58a)tan 2� = (m2A +M2Z) tan 2� �m2A �M2Z + �hsin2 � 
os 2���1 ; (10.58b)m2h +m2H = m2A +M2Z + �hsin2 � : (10.58
)
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Fig.10.9. Other Higgs masses vs mA for tan� = 1.5 and 30 with m~t ' 1 TeV; adapted from Ref.[10.10℄.In Fig. 10.9 the Higgs masses mh; mH and mH� , as given in (10.58a), are plotted [10.10℄against mA, the mass of the CP odd Higgs boson, for two rather extreme values of tan�.For tan � > 1, the mass eigenvalue of h in
reases monotoni
ally with mA, saturating to itsmaximum upper bound mh < (M2Z 
os2 2� + �h)1=2 (10.59)for modest values of mA, i.e. mA > 300 GeV. For large tan � and m~t taken to be O(TeV),the RHS of (10.59) is � 110 GeV. We shall see later that the possibility of ~tL{~tR mixing 
anin
rease this upper bound4. At this level, the 
harged Higgs mass is still given by (10.30a)and is hen
e independent of tan �, as shown in [10.10℄ Fig. 10.9. The tree level propertiesof the Higgs mass spe
trum in the de
oupling limit (mA ! 1) are still maintained. Nowthe A;H;H� Higgs parti
les remain nearly degenerate while the lightest h saturates itsmaximum mass value. The tree level mass orderings, mH > m�H > mA remain valid forsmall tan �. Otherwise, the larger tan� 
urves in Fig. 10.9 are fairly similar to the 
urvesin Fig. 10.2, with MZ repla
ed by fM2Z + �2hg1=2.Eq. (10.56) represents the 
elebrated 
orre
tion whi
h has a quarti
 power dependen
eon the mass of the top quark. Note that it has only a logarithmi
 dependen
e on the stopmass squared m2~t whi
h is 
hara
teristi
 of the square of the soft supersymmetry breakings
ale Ms. This would seem to 
ontradi
t our starting proposition that 
orre
tions to themasses of Higgs bosons should be proportional to supersymmetry breaking masses. Thisapparent 
ontradi
tion is resolved by the fa
t that the shift in the tree level parameter m22his indeed proportional to m2~t �m2t , 
.f.(10.53). One would need to �ne tune the parametersappearing in this equation if the tree level part were mu
h smaller than the 
orre
tion term.Furthermore, noti
e that the renormalization s
ale Q has disappeared from (10.56). Thisis to be expe
ted sin
e this equation des
ribes the 
orre
tion to a relation among physi
al4Indeed, the �nal experimental lower bound on the mass of an SM-like Higgs boson of about 115 GeVfrom the 
ompleted runs at LEP indi
ates the need for some amount of ~tL-~tR mixing unless ~tL;R-masses aremu
h in ex
ess of 1 TeV. This point will be dis
ussed in more detail in x15.5.



10.6. RADIATIVE EFFECTS ON MSSM HIGGS PARTICLES 245quantities (masses of CP even Higgs bosons one hand and MZ ; mA on the other). Indeed,it 
an be shown already at the level of the e�e
tive potential (10.50) that the expli
it lnQ2dependen
e of the one loop 
orre
tion 
an
els against a similar dependen
e of the runningquantities appearing in the tree level potential. In the simpli�ed s
enario, 
onsidered by usso far, it follows from (10.52) that the entire lnQ2 dependen
e 
ollapses to��V (1)H� ln Q2 = � 38�2 ~m2�f 2t jh02j2 + 12 ~m2� : (10.60)Thus the �rst term in the RHS of (10.60) exa
tly 
an
els the Q2-dependen
e of m22h(Q)jh02j2.The se
ond term in the RHS of (10.60), a �eld independent 
onstant, is of no immediateinterest to parti
le physi
s, though it may 
ontribute to the 
osmologi
al 
onstant.Corre
tions with ~tL-~tR mixingLet us now introdu
e a nonzero ~tL-~tR mixing, des
ribed (
.f. 9.62
) by the o�-diagonalmatrix element5 �mt(At + � 
ot�) of the stop squared mass matrix. We will also allow thesoft supersymmetry breaking ~tL and ~tR mass terms to di�er. The eigenvalues of the �elddependent ~t squared mass matrix are then given bym2~t1;2(h) = f 2t jh02j2 + 12 hm2~tL +m2~tR �q(m2~tL �m2~tR) + 4f 2t jAth02 + �h0�1 j2 i : (10.61)Note that these eigenvalues depend on both neutral Higgs �elds h01;2. The 
orresponding oneloop 
orre
tion to the Higgs e�e
tive potential now be
omes�V (1)H;t�~t(Q) = 332�2"m4~t1(h)(ln m2~t1(h)Q2 � 32) +m4~t2(h)(ln m2~t2(h)Q2 � 32)�2f 4t jh02j4�ln f 2t jh02j2Q2 � 32�#:Both the minimization 
onditions �VH=�h01 = 0; �VH=�h02 = 0 are now a�e
ted by radiative
orre
tions. Therefore, (10.17) 
hange tom21h = m212 tan� � 12M2Z 
os 2� � 3f 2t32�2 �(�+ At tan �)m2~t1 �m2~t2 �f(m2~t1)� f(m2~t2)� ; (10.62a)m22h = m212 
ot � + 12M2Z 
os 2�� 3f 2t32�2 (f(m2~t1) + f(m2~t2)� 2f(m2t ) + At(At + � 
ot�)m2~t1 �m2~t2 [f(m2~t1)� f(m2~t2)℄) :(10.62b)5We take At and � to be real here.
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e again, the squared mass matri
es for the neutral Higgs bosons 
an be 
omputedfrom the se
ond derivatives of the Higgs potential. The 
al
ulation for the CP odd 
ase isgreatly simpli�ed by the observation that the �rst derivatives of any of the �eld dependenttop (stop) masses with respe
t to the imaginary parts of h01 and h02 vanish in the (real)minimum of the Higgs potential. A straightforward 
al
ulation yields the resultm2=m h0 = (m212 +�)� tan� 11 
ot � � ; (10.63)with � = � 3f 2t32�2 �Atm2~t1 �m2~t2 [f(m2~t1)� f(m2~t2)℄ : (10.64)As anti
ipated, this 
orre
tion vanishes in the limit of no ~tL-~tR mixing (� = At = 0). Theone loop 
orre
ted mass of the physi
al CP odd Higgs boson A thus be
omesm2A = 2(m212 +�)sin 2� : (10.65)The expli
it lnQ2 dependen
e 
an again be shown to 
an
el in this equation, if m212 andtan � are understood to be running parameters. However, this 
an
ellation works exa
tlyonly in one loop order; beyond that, terms of order [f 2tm2~t ln(m2~t =Q2)℄2 remain in (10.65). Inthe interest of perturbative stability, one should therefore 
hoose a renormalization s
ale Q
lose to the stop mass, e.g. Q = pm~t1m~t2 . This is totally analogous to the 
hoi
e made inperturbative QCD 
al
ulations (involving massless partons) of the renormalization s
ale tobe 
lose to the external momentum.The generalization of (10.57), in
luding ~tL-~tR mixing, now readsÆm2<e h0 = ��11 �12�12 �22 � ; (10.66)with �11 = 3GFm4t2p2�2 sin2 � "�(At + � 
ot�)m2~t1 �m2~t2 #2 2� m2~t1 +m2~t2m2~t1 �m2~t2 ln m2~t1m2~t2! ; (10.67a)�12 = 3GFm4t2p2�2 sin2 � �(At + � 
ot�)m2~t1 �m2~t2 ln m2~t1m2~t2 + At� �11 ; (10.67b)�22 = 3GFm4tp2�2 sin2 � "ln m~t1m~t2m2t + At(At + � 
ot�)m2~t1 �m2~t2 ln m2~t1m2~t2 #+ �At� �2�11: (10.67
)Again, ea
h of eqs. (10.67) is independent of Q2. Note also that the 
orre
ted value (10.65)of m2A has to be used in the tree level squared mass matrix (10.26).We have, so far, 
onsidered 
orre
tions only from the top-stop se
tor. If tan �, the ratio ofthe Higgs VEVs, be
omes very large, the bottom Yukawa 
oupling 
an be 
omparable to thatof the top and make substantial additional 
orre
tions to (10.62), (10.65) and (10.66). These
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an be obtained from our expressions by the following three substitutions:- (1) inter
hangetop (stop) masses and 
ouplings with those of the bottom (sbottom); (2) inter
hange h01 andh02, i.e. tan� $ 
ot �; (3) inter
hange the shifts of m21h and m22h, i.e. the leading logarithmi

orre
tions from the bottom-sbottom se
tor only a�e
t m21h. Note that even if tan� is ashigh as mt=mb, the `leading' logarithmi
 
orre
tions from the b-~b se
tor to the squared massmatrix of the CP even Higgs bosons are suppressed by a fa
tor (mb=mt)2 as 
ompared withthose from the t-~t se
tor and thus 
an be safely negle
ted; however, the nonlogarithmi

orre
tions from ~bL-~bR mixing 
an be signi�
ant in this 
ase.The question 
an be raised as to whether one 
an go beyond the one loop 
orre
tionsfrom heavy quarks/squarks, presented above. Leading two loop 
orre
tions at O(��s) to(10.67) 
an be in
orporated with just a little more e�ort. This is done by treating the topmass in the overall m4t fa
tor as a s
ale dependent running quantity. In other words, mtshould be interpreted as the MS (or DR) mass, not the pole mass. The two quantities arerelated by the boundary 
ondition [10.11℄mt(mt) = mpolet �1� 4�S3� � (10.68)plus higher order 
orre
tions. The s
ale dependen
e of mt for s
ales Q � m~t is the same asin the nonsupersymmetri
 SM:mt(Q) = mt(mt) � �S(Q)�S(mt)�12=23 : (10.69)The �rst (leading log) term in (10.67
) 
an be understood to have originated from the runningof the SM Higgs self 
oupling from the s
ale6Ms = pm~t1m~t2 (10.70)to the s
ale mt. Using this observation, the leading two loop 
orre
tions to this term 
anbe easily in
orporated by taking the fa
tor m4t at the intermediate s
ale pMsmt. All otherterms in (10.67) 
an be absorbed in the boundary 
ondition on the Higgs self 
oupling atthe s
ale Ms; the m4t fa
tors in all su
h nonlogarithmi
 terms should therefore be taken atthe high s
ale Ms.By far, the most signi�
ant e�e
t of the radiative 
orre
tions, dis
ussed in this se
tion,is that they relax the upper bound (10.30
) on the mass of the lighter CP even Higgs s
alarh. We had already derived an upper bound � 110 GeV in the absen
e of ~tL-~tR mixing, buthere we give the more general result when su
h a mixing is present. For a given value oftan �, mh is still maximal when mA is large (the \de
oupling limit", as dis
ussed earlier),but the bound is now given bym2h < M2Z 
os2 2� +�11 
os2 � +�12 sin 2� +�22 sin2 � ; (10.71)with the �'s given by (10.67). Numeri
ally, the 
orre
tion �22 is usually the most importantone. The absolute upper bound is still rea
hed for tan� � 1 (i.e. j 
os 2�j ! 1) just as at6We assume here for simpli
ity that supersymmetry breaking is 
hara
terized by this one mass s
ale.



248 CHAPTER 10. HIGGS BOSONS IN THE MSSMthe tree level. For equal ~tL and ~tR soft supersymmetry breaking mass terms, a simple yeta

urate formula for this upper bound obtains in the limit jmtAtj � m2~t :m2h �M2Z + 3GFp2�2 "m4t (pmtMs) ln(M2s =m2t )+(At)2M�2s m4t (Ms)(1� 112(At)2M�2s )#; (10.72)with Ms as given by (10.70). We have explained why the two m4t fa
tors in the RHS of(10.72) have to be taken at di�erent s
ales. Taking Ms = 1 TeV and mpolet = 175 GeV fromdire
t TEVATRON experiments [10.12℄, one �nds mt(pmtMs) ' 157 GeV and mt(Ms) '150 GeV. Sin
e the last RHS term in (10.72) is maximal at At = p6Ms, one then obtainsan absolute upper bound on mh whi
h is a 
riti
al test of MSSM, namelymh < 132 GeV: (10.73)Comparing with (10.59), we see that the e�e
t of nonzero At; � are quite signi�
ant andshifts the upper bound on the h-mass by more7 than 20 GeV. Radiative 
orre
tions 
antherefore push mh well beyond the rea
h of existing e+e� 
olliders. We �nally mention thatthe treatment presented here has re
ently been extended by in
luding 
orre
tions O(f 2t g2)to the squared Higgs mass matrix and by allowing for large CP violating phases in the thirdgeneration squark se
tor [10.15℄. These phases lead CP even and CP odd Higgs states tomix but do not alter the upper bound (10.73) on mh. Later, in Ch.14, we shall dis
uss thegeneralization of (10.73) to 
over extensions of the MSSM.Con
luding remarksBefore 
on
luding this se
tion, we want to make some brief general remarks on one loopradiative 
orre
tions to the 
harged Higgs mass and also to Higgs 
ouplings in the MSSM.We have already shown that, in the absen
e of ~tL-~tR mixing (i.e. negle
ting the e�e
ts of �and At) { the 
harged Higgs mass is given by (10.30a) and is independent of tan �. Evenwith ~tL-~tR mixing, the one loop 
orre
tions to m2H� remain small if the renormalizations
ale Q is 
hosen in a way su
h that perturbation theory is reliable. Expli
it expressionsfor these 
orre
tions may be found in Ref. [10.6℄. It is worth remarking here, though, that
orre
tions from the top (stop)-bottom (sbottom) se
tor go to zero in the limit of a vanishingbottom Yukawa 
oupling. We further remind the reader that all D-term 
ontributions to thesquark mass matri
es were negle
ted. The in
lusion of su
h terms will introdu
e additional
orre
tions of order g22m2t =(8�2) or g22M2W=(8�2). These 
orre
tions 
an be 
omputed along7We have presented here the results within the e�e
tive potential framework, impli
itly working withMS renormalized parameters. A more re
ent analysis [10.13℄ shows that a diagrammati
 
al
ulation in theon-shell renormalization s
heme, again in
luding leading two loop 
orre
tions, almost exa
tly reprodu
es theresult from the e�e
tive potential approa
h, on
e the di�eren
e between the two renormalization s
hemeshas been taken into a

ount. One should nonetheless assign a theoreti
al error of two to three GeV to thepredi
ted value of mh, due to higher order terms. An upward shift of su
h a magnitude has very re
entlybeen found [10.14℄ from two loop O(f4t ) 
orre
tions.



REFERENCES 249the lines presented here. Though, stri
tly speaking, these modify [10.6℄ the relation (10.30a),they are numeri
ally unimportant. Note also that a 
omplete 
al
ulation of pure ele
troweakO(g22M2W ) 
orre
tions should in
lude 
ontributions from loops involving �rst and se
ondgeneration sfermions as well as those from the gauge-Higgs-gaugino-higgsino se
tor. Turningto Higgs 
ouplings, one loop radiative 
orre
tions, at the level dis
ussed in this se
tion, donot a�e
t Higgs-gauge and Higgs-fermion 
ouplings8 dire
tly. They only 
ome in indire
tlythrough a shift in the value of �, as indi
ated by (10.58b). Only in the 
ase of Higgs self
ouplings are there some dire
t 
ontributions [10.16℄. For instan
e, ignoring ~tL-~tR mixing,the 
oeÆ
ients (denoted by ����) of �ig2MZ=(2 
os �W ) in the triple s
alar Hhh and HAAverti
es are 
hanged from what appear in Fig. 10.4 to�Hhh = 2 sin 2� sin(� + �)� 
os 2� 
os(� + �) + 3 �h sin�M2Z sin3 � 
os2 � ; (10.74a)�HAA = � 
os 2� 
os(� + �) + �h sin�M2Z sin3 � 
os2 � : (10.74b)Our �nal 
omment is on the stati
 approximation. That may not work so well for Higgsbosons whi
h are heavy, e.g. with masses 
omparable to those of the top/stop(s). Indeed,on-shell 
ouplings of H and A then often develop imaginary dispersive parts from loopsindu
ed by the latter.
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