Chapter 9
Anomalies

So far we did not worry about how the classical symmetries of a theory are carried
over to the quantum theory. We have implicitly assumed that classical symmetries
are preserved in the process of quantization.

This is not necessarily the case. As we have seen in the previous chapter, quantizing
an interacting field theory is a very involved process requiring regularization and
renormalization. Sometimes, it does not matter how hard we try, there is no way for
a classical symmetry to survive quantization. When this happens one says that the
theory has an anomaly (for areview see [1]). Itis important to avoid the misconception
that anomalies appear due to a bad choice of the way a theory is regularized in the
process of quantization. When we talk about anomalies we mean a classical symmetry
that cannot be realized in the quantum theory, no matter how smart we are in choosing
the regularization procedure.

In Chap. 8 we have already encountered an example of an anomaly: the quantum
breaking of classical scale invariance reflected in the running of the coupling
constants with the energy. In the following we focus on other examples of anomalies,
this time associated with the global and local symmetries of the classical theory.

9.1 A Toy Model for the Axial Anomaly

Probably the best known examples of anomalies appear when we consider axial
symmetries. In a theory of two Weyl spinors u+

L =iy =iulolouy +iu oM u_ with = (Z*) 9.1)

the Lagrangian is invariant under two types of global U(1) transformations. In the first
one both chiralities transform with the same phase, this is a vector transformation:

U(l)y @ us — e®u, 9.2)
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176 9 Anomalies

whereas in the second, the axial U(1), the signs of the phases are different for the
two chiralities

U()a :uy —> ey, (9.3)

Using Noether’s theorem, there are two conserved currents, a vector current
Wor To_un no__
=yyty = u+a+u++u ou_ = Ity =0 9.4)
and an axial vector current
I =Yytysy =uloluy —u'olu. = 9L =0. (9.5)

The theory described by the Lagrangian (9.1) can be coupled to the
electromagnetic field. The resulting classical theory is still invariant under the vector
and axial U(1) symmetries (9.2) and (9.3). Surprisingly, upon quantization it turns out
that the conservation of the axial vector current (9.5) is spoiled by quantum effects

d.J\ ~hE-B. (9.6)

To understand more clearly how this result comes about, we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates (x°, x1) = (¢, x) and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strength .%,,, has
only one independent component that corresponds to the electric field, %y, = —&
(in two dimensions there are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of
the algebra of y-matrices

{y*, ¥} =20"" with 5= ((1) _01 ) 9.7)
In two dimensions the dimension of the representation of the y-matrices is 2. In fact,

remembering the anticommutation relation of the Pauli matrices {0}, 0} = 2§;; is
not very difficult to come up with the following representation

o_ (01 1. 01

This is a chiral representation since the matrix ys is diagonal’
1 0
— 0,1 _
ys=—r"y (0 _1). 9.9)

In any even number of dimensions ys5 is defined to satisfy the conditions ()/5)2 =1
and {ys, y*} = 0.

1
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Writing a two-component Dirac spinor i as

u
V= (uf) (9.10)

and defining as usual the projectors P+ = %(1 =+ y5), we find that the components
u+ of y are respectively right- and left-handed Weyl spinors in two dimensions.

Once we have a representation of the y-matrices we can write the Dirac equation.
Expressed in terms of the components u 4 of the Dirac spinor, we have

(00— 0)uy+ =0, @+ dDu_ =0. 9.11)
The general solution of these equations can be immediately written as
uy =ur (P +xY, uo=u_(x—xh. 9.12)

Hence uy are two wave packets moving along the spatial dimension respectively
to the left (u4) and to the right (z_). Notice that according to our convention the
left-moving u is a right-handed spinor (positive helicity) whereas the right-moving
u_ is a left-handed spinor (negative helicity).

If we insist in interpreting (9.11) as the wave equation for two-dimensional Weyl
spinors, we find the following properly normalized wave functions for free particles
with well defined energy-momentum p* = (E, p)

1.
V0 £ 11y = ﬁe—’m(’ﬂ') with p = FE. (9.13)

As itis always the case with a relativistic wave equation, we have found both positive
and negative energy solutions. For viE), since E = —p, we see that the solutions
with positive energy are those with negative momentum p < 0, whereas the negative
energy solutions are plane waves with p > 0. For the left-handed spinor u_ the
situation is reversed. Besides, since the spatial direction is compact with length L the

momentum p is quantized according to

2nn
p="" ez (9.14)

The spectrum of the theory is represented in Fig.9.1.

Knowing the spectrum of the theory the next step is to obtain the vacuum.
As with the Dirac equation in four dimensions, we identify the ground state of
the theory with the one where all states with E < 0 are filled (see Fig. 9.2.). Exciting
a particle in the Dirac sea produces a positive energy fermion plus a hole that is
interpreted as an antiparticle. This gives us the key on how to quantize the theory.
In the expansion of the operator u 4 in terms of the modes (9.13) we associate positive
energy states with annihilation operators, whereas the states with negative energy are
associated with creation operators for the corresponding antiparticle
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v
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Fig.9.1 Spectrum of the massless two-dimensional Dirac field. We denote by v the states with
dispersion relation £ = Fp

[0,+> [0,~>

Fig.9.2 The two branches in the vacuum of the theory. The solid points represent the filled negative
energy states

MOESY [ai(E)vf) () + bL(EWE (x)*] . (9.15)
E>0

The operator a4 (E) annihilates a particle with positive energy E and momentum
FE, and bl(E ) creates out of the vacuum an antiparticle with positive energy E
and spatial momentum FE. In the Dirac sea picture the operator b (E)" is orig-
inally an annihilation operator for a state of the sea with negative energy —E.
As in four dimensions, the problem of the negative energy states is solved by inter-
preting annihilation operators for negative energy states as creation operators for
the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion of u 4 in Eq. (9.15) satisfy the usual fermionic algebra

{ar(E). a) (E")} = {by.(E), b}, (EN} = 85, p830, (9.16)

where we have introduced the label A, A = 4. In addition, ay (E), a; (E) anticom-
mute with by (E'), b!,(E").
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The Lagrangian of the theory
L = iu', (80 + d)uy + iu’ (3 — d)u_ (9.17)

is invariant under both the U(1)y transformations shown in Eq.(9.2), and U(1)p of
Eq. (9.3). The corresponding Noether currents are

i i i i
w U uy +u_u_ w U Uy —U_U_
JV:(—;1u++uTu_)’ JA:(—I:&_I,{_'_—MTM_). (9.18)

The associated conserved charges are given by
L L
Ov E/dleS =/dx1 (u1u++u";u,), (9.19)
0 0
for the vector current, and

(N

L L
/dleg - /dxl (s —ulu) (9.20)
0 0

for the vector axial one. Using the orthonormality relations for the modes v(iE) (x)

L
/ A"V 0V @) = 8. 921)
0

the conserved charges can be explicitly computed as

Ov=>y [ai(E)mE) — b (E)by(E) +a! (E)a_(E) — bi(E)b_(E)],
E>0

0= [al(E)ar(E) = bl (B (E) — a’ (E)a—(E) + bl (E)b—(E) .
=0 (9.22)

From these expressions we see how Qv counts the net fermion number, i.e. the
number of particles minus antiparticles, independently of their helicity. The axial
charge Qa, on the other hand, counts the net number of positive minus negative
helicity states. In the case of the vector current we have subtracted a formally diver-
gent vacuum contribution to the charge (the “charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either
Qv or Qa, since the occupation numbers do not change. What we want to study
is the effect of coupling the theory to the electric field &. We work in the gauge
/% = 0. Instead of solving the problem exactly we are going to use the following
trick: we simulate the electric field by adiabatically varying in a long time t the
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Fig.9.3 Effect of the E
electric field on the vacuum
shown in Fig. 9.2. Some of

the occupied negative energy
states in the brach v
acquires positive energy,

while the same number of
empty positive energy states
in the branch v_ shift to p
negative energy and become
holes in the Dirac sea

vector potential .<7! from zero value to &1y. From our discussion in Chap.4 (see
Sect.4.1) we know that the effect of the electromagnetic coupling in the theory is a
shift in the momentum according to

p—p—ed’, (9.23)

where e is the charge of the fermions. Since we assumed that the vector potential
varies adiabatically, we can take it to be approximately constant at each time.

We have to understand the effect on the vacuum depicted in Fig. 9.2 of switching
on the vector potential. Increasing adiabatically 7! results, according to Eq. (9.23),
in decreasing the momentum of the state. What happens to the energy depends on
whether we consider states with dispersion relation £ = —p (the branch v ) or
E = p (the branch v_).

The result is that the two branches move as shown in Fig.9.3. Thus, some of
the negative energy states of the v branch acquire positive energy while the same
number of the empty positive energy states of the other branch v_ become empty
negative energy states. Physically, this means that the external electric field & creates
a number of particle-antiparticle pairs out of the vacuum.

We have to count the number of such pairs created by the electric field after a time
79. This is given by

L
N = —eé'1p. (9.24)
2

To get this expression we have divided the shift of the spectrum e& 7o by the separation
between energy levels given by ZT” [cf. Eq.(9.14)]. The value of the charges at the
time T are

Ov(r) =(N—-0)+((0—-N) =0,
Qa(ro) = (N —0) —(0— N) =2N. (9.25)

We conclude that the coupling to the electric field produces a violation in the conser-
vation of the axial charge per unit time given by
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. e
Oa=—&L. (9.26)
T
This result translates into a nonconservation of the axial vector current
eh
%K=;& (9.27)

where we have restored & to make clear that we are dealing with a quantum effect.
In addition, the fact that AQy = 0 guarantees that the vector current remains
conserved also quantum mechanically, 9, J\’; =0.

9.2 The Triangle Diagram

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial
anomaly [3, 4]. We have presented a heuristic analysis consisting of studying the
coupling of a two-dimensional massless fermion to an external classical electric
field to compute the violation in the conservation of the axial vector current due to
quantum effects.

This suggests an alternative, more sophisticated way to compute the axial anomaly.
Gauge invariance requires that the fermion couples to the external gauge field through
the vector current J\’f via a term in the Lagrangian

L =iy + ey ), (9.28)
where 7, (x) represents the classical external gauge field. To decide whether the
axial vector current is conserved quantum mechanically we compute the vacuum
expectation value

(B Tx (0), 5 (9.29)
where the subscript indicates the expectation value is computed in the vacuum of the
theory coupled to the external field. This quantity can be evaluated in powers of .27},

using either the operator formalism or functional integrals. The first nonvanishing
term is

@wwumyzw/ﬁ%%CW@n%u—yy (9.30)

where

CH¥(x) = QO[T [ (x)J(0)] |0) = =Q'W (9.31)
Jy K
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In this correlation function the state |0) represents the Fock space vacuum of the free
fermion theory. It can be evaluated using Wick’s theorem. The Feynman diagram
summarizes the Wick contractions required to compute the time-ordered correlation
function of the two currents

v il — ., (9.32)
CHY(x) = Olwr* sy (x) wr" w(0)[0).

We have concluded that the axial anomaly is controlled by the quantity 3, C*”(x).
In computing the anomaly we have to impose the conservation of the vector current.
This is crucial, since the gauge invariance of the theory depends upon it.> Doing this,
one arrives at the result

eh
Op I ) er = =" Fo, 9.33)
with e = —¢10 = 1 and .7, v 1 the field strength of the external gauge field. It is

immediate to check that the diagramatic calculation renders the same result (9.27)
obtained in the previous section using a more heuristic argumentation.

The calculation of the axial anomaly can be also carried out in four dimensions
along the same lines. Again, we have to compute the vacuum expectation value of the
axial vector current coupled to an external classical gauge field .27,,. Now, however,
the first nonvanishing contribution comes from the term quadratic in the external
gauge field, namely

2
e
(0pd") s = = / d*y1d* 2050 C*Y (x, y) ety (x = y1 + 32) o (x — y2), (9.34)
where now

CM (x, y) = (0IT [JX (x) Iy (») Iy (0)] 10). (9.35)

This correlation function can be computed diagrammatically as

N

Cuvo(x’y) _ (9.36)

symmetric

2 In fact there is a tension between the conservation of the vector an axial vector currents. The
calculation of the diagram shown in Eq.(9.31) can be carried out imposing the conservation of
the axial vector current, which results in an anomaly for the vector current. Since this would be
disastrous for the consistency of the theory, we choose the other alternative.
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This is the celebrated triangle diagram. The subscript indicates that, in fact, C*"”
is given by two triangle diagrams with the two photon external legs interchanged.
This is the result of Bose symmetry and can be explicitly checked by performing the
Wick contractions in the correlation function (9.35).

The evaluation of the integral in the right-hand side of (9.34) is complicated by
the presence of divergences that have to be regularized. As in the two-dimensional
case, the conservation of the vector currents has to be imposed. The calculation gives
the following anomaly for the axial vector current [3, 4]

2
(O dl) o = —1275/”“%9‘”. 9.37)
This result has very important consequences in the physics of strong interactions as
we will see in the next section.

We have paid attention to the axial anomaly in two and four dimensions. Chiral
fermions exists in all even-dimensional space-times and, as a matter of fact, the axial
vector current has an anomaly in all even-dimensional space-times. More precisely,
if the dimension of the space-time is d = 2k, withk = 1, 2, .. ., the anomaly is given
by a one-loop diagram with one axial current and k vector currents, i.e. a (k+ 1)-gon.
For example, in 10 dimensions the axial anomaly comes from the following hexagon
diagram

As in the four-dimensional case, Bose symmetry and the conservation of all vector
currents has to be imposed.

9.3 Chiral Symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quantum
Chromodynamics (QCD) introduced in Sect.5.3 (see also [5-7] for reviews). Here
we will consider a slightly more general version with an arbitrary number of colors
and flavors: a nonabelian gauge theory with gauge group SU(N,) coupled to a number
N of quarks. These are spin-% particles Qif labelled by the color and flavor quantum
numbersi =1,..., Ncand f = 1,..., Ny. The interaction between them is medi-
ated by the Nf — 1 gauge bosons, the gluons Aﬁ, withA=1,..., Nf — 1. Letus
recall that in the real world N, = 3 and Ny = 6, corresponding to the six quarks:
up (1), down (d), charm (c), strange (s), top (¢) and bottom (b).
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For reasons that will be clear later we work in the limit of vanishing quark masses®
m ¢ — 0. In this case the QCD Lagrangian is given by

Ny
1 / - ) . )
Zoco =~ FA Y + Y (101p0] +i0kPO%).  ©38)
=1

where the subscripts L and R indicate respectively left and right-handed spinors,

0f 4= 2(1:£ 190’ (9.39)
LR = 5 V5 > .
and the field strength F ;‘V and covariant derivative D, are respectively defined in
Eqgs.(4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(N s); x U(Ny) g acting on the flavor indices and defined
by

Ny , f f
01— 3 W0 eLml
U(Ny), - f= UNp)g - Ny . (9.40)
0~ 2 WrsrQ
Q{e_’ Q£ R A= RIff'%<R

with U, Ugr € U(Ny). Since UN) = U(1) x SU(N), this global symmetry group
can be written as SU(Nf); X SUNf), x U(1)p x U(1)g. The abelian subgroup
U(l), x U(1)g can be now decomposed into their vector U(1)p and axial U(1)a
subgroups defined by the transformations

Q{ — el Q{ Q{ — el Q{
Ul)p: U(l)y :
Q{?—>ei“Q£ Q{?ee_i“Q{?

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

Nf i Nf
K=>0"yol 1t=>0"ys0’. (9.41)
f=1 f=1

The conserved charge associated with the vector current J\’f is the baryon number
counting the number of quarks minus the number of antiquarks.

The nonabelian part of the global symmetry, group SU(N ), x SU(N f)g can also
be decomposed into its vector and axial factors, SU(N )y, x SU(Ny),, defined by
the following transformations of the quarks fields

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.
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PN 7 Py 7
01— f;l UrpQp 0~ f;l UrpQy,
SU(Ny)y : . SU(Ny), : . (9.42)
f f
0%~ f;l Usp Ok 0}~ f;l Uy Qk

/ !

where U is a SU(N y) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges

Ny
I =/ /
W=D 0lymahpof
£ =1

Ny
W= o yrsah ol 9.43)
1 f'=1

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed according to

U(Ns), x UNp) g = SUNs)y x SUNp), x U()g x U(l)x.  (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.

As argued in Sect. 9.1, the conservation of the axial vector currents J /’: and J : "
can in principle be spoiled by an anomaly. In the case of the abelian axial current J K
the relevant quantity to compute is the correlation function

CHYO (x,2") = COIT [JX (%) Jzange (') Jgmge (0] 10

f Q
N, 0 g (9.45)
=) = o'
f=1| Jy P
o,

symmetric

Here j;l{fge is the nonabelian conserved current coupling to the gluon field

Ny
jde=>"0"yre o, (9.46)

f=1
where, to avoid confusion with the generators of the global symmetry, we have
denoted by 74 the generators of the gauge group SU(N.). The anomaly can



186 9 Anomalies
be read now from Bl(f) C™ (x, x”). If we impose Bose symmetry with respect to the
interchange of the two outgoing gluons and the conservation of the vector currents,
we find that the axial abelian global current has an anomaly given by*

2
8Tk = _%gmm FA. 9.47)

In the case of the nonabelian axial global symmetry SU(Ns)a the calculation of
the anomaly is made as above. The result, however, is quite different since in this case
we conclude that the nonabelian axial vector current J : " is not anomalous. This can
be easily seen by noticing that associated with the axial vector current vertex we have
a generator T of SU(N 1), whereas for the two gluon vertices we have the generators
74 of the gauge group SU(N,..) Therefore, the triangle diagram is proportional to the
group-theory factor

o g
of | ~TrT' Tr{t', 7%} =0 (9.48)
JH
A g
O

symmetric

vanishing because the generators of SU(N 7) are traceless.

From here we could be tempted to conclude that the nonabelian axial symmetry
SU(Nf)a is nonanomalous. However this is not the whole story, since quarks are
charged particles that also couple to photons. Thus there is a second potential source
of an anomaly coming from the the one-loop triangle diagram coupling J /i“ to two
photons

¥ o/ Y
O [ @ )G O] 0= 3 | = o' 9.49)
=1zt v
symmetric
where jé‘m is the electromagnetic current
Ny
i =>"q;0"y 0/, (9.50)

f=1

4 The normalization of the generators T of the global SU(Ny) is given by T(T'T’) = %8 1,
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with gy the electric charge of the f-th quark flavor. A calculation of the diagram in
(9.49) shows the existence of the Adler-Bell-Jackiw anomaly given by

I
KT

Ny
N;Z DT pra7 | € FuyFon, (9.51)
f=1

where F,, is the field strength of the electromagnetic field coupling to the quarks.
The only chance for the anomaly to cancel is that the factor between brackets in this
equation be identically zero.

Before proceeding let us summarize the results found so far. Due to the presence
of anomalies the axial part of the global chiral symmetry, SU(Ns)a and U(1)a,
are not realized quantum mechanically in general. We found that U(1), is always
affected by an anomaly. However, the right-hand side of the anomaly equation (9.47)
is a total derivative, so the anomalous character of J K does not explain the absence
of U(1)A multiplets in the hadron spectrum, since a new current can be constructed
which is conserved. In addition, the nonexistence of candidates for an associated
Nambu-Goldstone boson with the right quantum numbers indicates that U(1)4 is not
spontaneously broken either, so it has to be explicitly broken somehow. This is the
so-called U(1)-problem solved by 't Hooft [8], who showed how the contribution
from instantons describing quantum transitions between vacua with topologically
nontrivial gauge field configurations results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(N,) gauge theory, the axial nonabelian symmetry
is spontaneously broken due to the presence at low energies of a vacuum expectation
value for the fermion bilinear 9 Q/

(0|§f Qf|0) #0  (no summation in f!). (9.52)

This nonvanishing vacuum expectation value for the quark bilinear breaks chiral
invariance spontaneously to the vector subgroup SU(Ny)y, so the only subgroup of
the original global symmetry that is realized in the full theory at low energy is

U(Ns), x UWNp) g —> SUW )y x U(D) . (9.53)

Associated with this breaking, Nambu—Goldstone bosons should appear with the
quantum numbers of the broken nonabelian currents. For example, in the case of QCD
the Nambu—Goldstone bosons associated with the spontaneous symmetry breaking
induced by the vacuum expectation values (iiu), (dd) and ((itd — du)) have been
identified as the pions 79, 7%. These bosons are not exactly massless due to the
nonvanishing mass of the # and d quarks. Since the global chiral symmetry is already
slightly broken by mass terms in the Lagrangian, the associated Goldstone bosons
also have masses although they are very light compared to the masses of other
hadrons.

In order to have a better physical understanding of the role of anomalies in the
physics of the strong interactions we particularize our analysis to the case of real
QCD. Since the u and d quarks are much lighter than the other four flavors, QCD at
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low energies can be well described by including only these two flavors and ignoring
heavier quarks. In this approximation, from our previous discussion we know that
the low energy global symmetry of the theory is SU(2)y x U(1)p, where now the
vector group SU(2)y is the well-known isospin symmetry. The axial U(1)a current
is anomalous due to Eq.(9.47) with Ny = 2. In the case of the nonabelian axial

symmetry SU(2)a, taking into account that ¢, = %e and g4 = —%e and that the

three generators of SU(2) can be written in terms of the Pauli matrices as T K — %UK

we find

> @Nrgs = D (T g7 =0,

f=u,d f=u,d

3 2 e
> (T g7 = = (9.54)
f=u.d

3.
Therefore J," is anomalous.

The anomaly in the axial vector current Jzﬂ has an important physical conse-
quence. As we learned in Chap. 5 the flavor wave function of the neutral pion 7¥ is
given by

(litu) — |dd)) . (9.55)

Sl -

The isospin quantum numbers of |%) are those of Ji“ . In fact, the correspondence

goes even further. The divergence of the axial vector current 9, Jg“ has precisely the
same quantum numbers as the pion. This means that, properly normalized, it can be
identified as the operator creating a pion 7° out of the vacuum

170) ~ 9,J310). (9.56)

This leads to the physical interpretation of the triangle diagram (9.49) with Ji” as
the one loop contribution to the decay of a neutral pion into two photons

70— 2y (9.57)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [9, 10]
presented a calculation, using current algebra techniques, according to which the
decay of the pion into two photons should be suppressed. This however contradicted
the experimental evidence showing the existence of such a decay. The way out to
this paradox, as pointed out in [3, 4], is the axial anomaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram
leads to a divergent integral that has to be regularized. It is in this process that the
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Adler-Bell-Jackiw axial anomaly appears resulting in a nonvanishing value for the
7% — 2y amplitude.’

9.4 Gauge Anomalies

The existence of anomalies associated with global currents does not necessarily mean
difficulties for the theory. On the contrary, as we saw in the case of the axial anomaly,
its existence provides a solution of the Sutherland—Veltman paradox and an expla-
nation of the electromagnetic decay of the pion. The situation is very different when
we deal with local symmetries. A quantum mechanical violation of gauge symmetry
leads to many problems, from lack of renormalizability to nondecoupling of nega-
tive norm states. This is because the presence of an anomaly in the theory implies
that the Gauss’ law constraint D - E4 = p4 cannot be consistently implemented
in the quantum theory. As a consequence, states that classically were eliminated by
the gauge symmetry become propagating in the quantum theory, thus spoiling the
consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left
and right-handed fermions transform in different representations of the gauge group.
Physically, the most interesting example of such theories is the electroweak sector of
the standard model where, for example, left handed fermions transform as doublets
under SU(2) whereas right-handed fermions are singlets. On the other hand, QCD
is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

Ny N_
1 _,- . IV
L= FYEL 41 2 PO +i 3yl pOyl, (9.58)

i=1 j=1

where the chiral fermions 1/ transform according to the representations riA . of the

gauge group G (A = 1,...,dimG). The covariant derivatives D,(Li) are, as usual,
defined by

Dyl =,y —igymARTLYL. (9.59)

The anomaly is determined by the parity-violating part of the triangle diagram with
three external gauge bosons, summed over all chiral fermion species running in the
loop. All three vertices in the diagram include a projector P4 or P_ and the parity-
violating terms are identified as those containing a single ys. Splitting the gauge
current into its vector and axial vector part, we conclude that the gauge anomaly
comes from the triangle diagram with one axial and two vector gauge currents

5 An early computation of the triangle diagram for the electromagnetic decay of the pion was

made by Steinberger in [11].
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.Cu
Jv
OIT [j3H )9 ()5°(0)] 10) = G (9.60)
jA“ J{iv
symmetric
LAp Ap .
where jy," and j, " are given by
Ny N_
LA —i ; — ;
W=D Wyl 4+ D eyl
i=1 j=1
Ny N_
LA —i ; — ;
NED NI L D W ZR 9.61)

i=1 i=1
Luckily, we do not have to compute the whole diagram in order to find an anomaly
cancellation condition. Itis enough if we calculate the overall group theoretical factor.
In the case of the diagram in Eq. (9.60) for each fermion species running in the loop
this factor is equal to

Tr [Tiéi{rif;iv Ti,ci}] ; (9.62)

where the sign & corresponds respectively to the generators of the representations of
the gauge group for the left and right-handed fermions. Hence, the anomaly cancel-
lation condition reads

Ny N_
ZTr [rif‘+{ri?+, tl-,c+}] — ZTr [rﬁ‘_{rﬁ_, rf_}] =0. (9.63)
i=1 j=1

Knowing this we can proceed to check the anomaly cancellation in the standard
model SU3)x SU(2)x U(1)y. Lefthanded fermions (both leptons and quarks) trans-
form as doublets with respect to the SU(2) factor whereas the right-handed compo-
nents are singlets. The charge with respect to the U(1)y part, the weak hypercharge
Y, is determined by the Gell-Mann—Nishijima formula

0=Ts+7Y, (9.64)

where Q is the electric charge of the corresponding particle and 73 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding represen-
tation: T3 = %03 for the doublets and 73 = 0 for the singlets. For the first family of
quarks (i, d) and leptons (e, v,) we have the following field content

i
u i i
quarks: : u' d.
d" ), R.3 R.=3

leptons: (V; ) €R.—1 (9.65)
L —_

o

N—=
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where i = 1, 2, 3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y. Denoting the representations of SU(3)x SU(2)
x U(l)y by (n¢, ny)y, with n. and n,, the representations of SU(3) and SU(2)
respectively and Y the hypercharge, the matter content of the standard model consists
of a three family replication of the representations

left-handed fermions: (3, 2)& (1, 2)5 |
6

[N]

right-handed fermions: (3, D§ (3, DX, (1, DE,. (9.66)
3

)

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3)x SU(2)x U(1)y appears in each vertex:

SU®3)3 SU@2)3 U3
SU3)% SU(2) SU(2)? U(1)

SU@3)? U(l) SU@2) U(1)?

SU@3) SU(2)?

SU(3) SU(2) U(1)

SUB) U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example, the
anomaly for the SU(3)? case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)? the cancellation happens term by
term using the Pauli matrices identity ojox = 8¢ + i€ jx¢0¢ leading to

Tr [oi{oj, ok}] = 2 (Troi) 86 = 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity

ZYi—Zyﬁ:mzx(éfﬂx (_%)3_3X (%)3

left right
1\° 3 3 3
—3x (_5) — (=1’ = (_Z) + (Z) =0. (9.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. We see how the matter content of the standard
model conspires to yield a consistent quantum field theory.



