Chapter 6
Towards Computational Rules:
Feynman Diagrams

As the basic tool to describe the physics of elementary particles, the final aim of
quantum field theory is the calculation of observables. Most of the information we
have about the physics of subatomic particles comes from scattering experiments.
Typically, these experiments consist of arranging two or more particles to collide
with a certain energy and to setup an array of detectors, sufficiently far away from
the region where the collision takes place, that register the outgoing products of the
collision and their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechan-
ical amplitudes and how these amplitudes themselves can be evaluated in perturbative
quantum field theory. We keep our discussion rather heuristic and avoid technical
details that can be found in standard texts (see Ref. [1-15] of Chap. 1). The techniques
described will be illustrated with the calculation of the cross section for Compton
scattering at low energies and its application to the study of the polarization of the
cosmic microwave background radiation. Exceptionally, and in order to better show
the computational power of the diagrammatic tools in quantum field theory, these
calculations will be presented in some detail.

6.1 Cross Sections and S-Matrix Amplitudes

In order to fix ideas, we consider the simplest case of a collision experiment where two
particles collide to produce again two particles in the final state. The aim of such an
experiments is a direct measurement of the number of particles per unit time ‘2—][\' @, p)
registered by the detector within a solid angle d£2 in the direction specified by the
polar angles 6, ¢ (see Fig.6.1). On general grounds, we know that this quantity has
to be proportional to the flux of incoming particles! fi,. The proportionality constant
defines the differential cross section

! This is defined as the number of particles that enter the interaction region per unit time and per

unit area perpendicular to the direction of the beam.
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Fig.6.1 Schematic setup of detector
a two-to-two-particles
scattering event in the center /

Q

of mass reference frame
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/
-
detector
dN
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In natural units fj, has dimensions of (length)_3, so the differential cross section has
dimensions of (Iength)?. It depends, apart from the direction (6, ¢), on the parameters
of the collision (energy, impact parameter, etc.) as well as on the masses and spins
of the incoming and outgoing particles.

The differential cross section measures the angular distribution of the products of
the collision. It is also physically interesting to quantify how effective the interaction
between the particles is in order to produce a nontrivial dispersion. This is measured
by the total cross section, which is obtained by integrating the differential cross
section over all directions

o= /d(cos@)/dfp—(e o). 6.2)

To gain some physical intuition on the meaning of the total cross section, we can
think of the classical scattering of a point particle off a sphere of radius R. The
particle undergoes a collision only when the impact parameter is smaller than the
radius of the sphere and a calculation of the total cross section yields ¢ = 7 R?. This
is precisely the cross area that the sphere presents to incoming particles.

The starting point for the calculation of cross sections is the probability ampli-
tude for the corresponding process. In a scattering experiment, one prepares a system
with a given number of particles with definite momenta py, ..., p,. In the Heisen-
berg picture this is described by a time independent state labelled by the incoming
momenta of the particles (to keep things simple we consider spinless particles) that
we denote by

|p19~--’pn;in>- (63)
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As a result of the scattering, a number k of particles with momenta p’, ..., pj are
detected. Thus, the system is now in the “out” Heisenberg picture state

P}, ... py:out) (6.4)

labelled by the momenta of the particles detected at late times. The probability
amplitude of detecting k particles in the final state with momenta p|, ..., pj in
the collision of n particles with initial momenta py, ..., p, defines the S-matrix
amplitude

S(in — out) = (p}, ..., py;outlpi, ..., py;in). (6.5)

It is very important to keep in mind that both (6.3) and (6.4) are time-independent
states in the Hilbert space of a very complicated interacting theory. However, since
both at early and late times the incoming and outgoing particles are far apart from
each other, the “in” and “out” states can be thought as two states |pq, ..., p,) and
[P}, - -, p,) in the Fock space of the corresponding free theory. Then, the overlaps

(6.5) can be written in terms of the matrix elements of an S-matrix operator S acting
on the free Fock space

(PYs---s Pr; out|pi, ..., py;in) = (p’l,...,p,/(|§|p1,...,p,,). (6.6)

The operator Sis unitary, St = 3’1, Lorentz invariant and its matrix elements are
analytic in the external momenta.

In a scattering experiment there is the possibility that the particles do not interact
at all and the system is left in the same initial state. It is useful to factor out this
possibility from the S-matrix elements between initial and final states by writing

S=1+iT, 6.7)

where 1 represents the identity operator. In this way, all nontrivial interactions
are encoded in the matrix elements of the T-operator, ( plf, e, p,’(|i f"| Pls--» Pn)-
Furthermore, in these matrix elements it is convenient to factor out a delta function
implementing momentum conservation to define the invariant scattering amplitude,

iMi

(F181i) = (fli) + @m)*s@ (Z pi— > p,-)i///,-ﬁf. (6.8)

final initial

Using the Lorentz invariance of the S-matrix it is not difficult to show that i.#;_, f
is a relativistic invariant as well (hence its name). Our next task is to show how
observable quantities such as decay rates or cross sections can be obtained from the
knowledge of this invariant amplitude. Then we will turn to the problem of computing
the amplitude itself in quantum field theory.

In studying a scattering problem in the infinite volume limit we would have to
consider localized wave packets for the asymptotic in and out states. Although this
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can be done, it is rather cumbersome. This is the reason why we are going to employ
a common trick consisting in working with plane waves for the in and out states,
while putting the system at the same time in a space-time box of finite but large
volume VT. We will see how at the end of the calculation all dependence on the size
of the box drops out and the limit V — oo, T — oo can be taken safely.

The probability amplitude for the process is |{ f| S |i)|* which, for nontrivial tran-
sitions, is given by the modulus squared of the second term on the right-hand side
of Eq. (6.8). The presence of the momentum conservation delta function makes the
computation problematic. This is precisely where working at finite volume comes
handy. The idea is to write one of the delta functions in terms of its Fourier transform

2
@m)*s® (Z = p,-) = (2m)*s™ (Z pi—2 p,-)
final initial final initial
X /d4xexp |::(Zpl’ - Z pj)-xj| .
final initial
(6.9)

The remaining delta function then sets the argument of the exponential to zero and
we have

Q2m)*s® (Z pi— Pj)

final initial

2
= VT Q2n)*s® (Z Pl - Z pj). (6.10)

final initial

With this result we can compute the non-diagonal probability amplitude |{ f| S li)]2.
Dividing by 7, the transition probability per unit time is given by

wis = VQ2mr)*s® (Z P I’j)|i///i—>f|2~ 6.11)

final initial

In both scattering and decay processes, the final states have a continuous energy
spectrum. To compute the probability for the particles in the final state to have
momenta in a volume element d°p)---d°p, around (p},...,p,), we should
multiply (6.11) by the number of states contained in it. Let us assume we have
one particle in the volume V (or in other words, that the state is normalized to one).
The number of available states within a momentum space volume element d° p can
be directly written as

Vd3p
e 6.12
(2 h)3 (6.12)
where we have momentarily restored the powers of / so the reader can clearly identify
the density of states in phase space.

In the calculation of the S-matrix elements at infinite volume, the one-particle
states |p) satisfy the relativistic normalization (2.20). By putting the system in a
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box of large volume V, the states become normalizable with (p|p) = 2E,V. Thus,
if we insist in using (6.12) for the final density of states of each outgoing particle
we should not compute the S-matrix element between the relativistically normalized
states |p) but rather between the properly normalized ones (2Ep V)~12|p). Thus,
since the probability amplitude involves the modulus squared of the amplitude, to
find the correct expression for the number of states we should correct Eq. (6.12) by
the normalization factor of the final states

Vdip 1 dp 1
Qrh)3 2E,V  (2wh)3 2E,

(6.13)

We see how the volume cancels out and the infinite volume limit can be taken safely.
Moreover, the resulting expression is relativistically invariant. Doing this for every
particle in the final state of the scattering/decay process leads to the so-called phase
space factor

k 3.7
d’p: 1
ddy = P 6.14
k H(Zn)3 2E] (©6.14)

i=1

where E! = | /mi2 + pgz and we have restored natural units.

After this preliminary discussion we can compute the particle decay rate where
we have a single particle in the initial state with momentum p. As explained above,
the proper normalization of the initial state introduces an extra factor of (2Ep V) ~lin
the square of the S-matrix element leading to (6.11). This has the effect of removing
the remaining volume dependence, and we obtain the decay width

k
1
dr = E(zn)“a(‘” p— E Py | | i pPd Dy (6.15)
P i
j=1

To calculate the total rate for this particular decay channel we should integrate over
all final momenta. In doing that it is important to bear in mind that one has to divide
the expression by a factor [ [, n,!, where n, is the number of identical particles of
type a. This is crucial to avoid overcounting the number of final states.

Here we notice that the factor of E; Uin front of (6.15) has a simple physical
meaning. Its suppression effect for large |p| accounts for the relativistic effect of
time dilation due to the motion of the decaying particle. In the rest frame this is equal
to the rest mass m. The calculation of the total decay width for a particle requires not
only to integrate over final momenta but also to sum over all possible decay channels,
namely

Fow = > T}, (6.16)

channels

where [ is the width of the ith decay channel. The lifetime of the particle is given
by the inverse of the total width Itgg.
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We study now the calculation of the differential and total cross sections in the
scattering of two particles with an arbitrary number of particles in the final state. The
differential cross section for this problem is given by the number of particles scattered
within an infinitesimal solid angle along the final momenta p|, ..., p;, divided by the
flux of incoming particles fi,, thus generalizing Eq. (6.1). In terms of the probability
density per unit time computed in Eq. (6.11), this gives

1 Wi— f

do = ——
4E\E2V?  fin

ddy 6.17)

To get this expression we have multiplied by 2E; V)~ '(2E,V)~! to take care of
the normalization of the incoming states as discussed previously.

We need to compute the incoming flux fi,. The number of particles approaching
the target (say particle 2) in a time df across a surface dS orthogonal to the beam is
given by n|vy — v2|dtd S, with n the number density of projectiles (in this case the
particle 1). Since in the calculation of the S-matrix amplitude we have normalized
our states such that there is one particle per unit volume, we have that n = V! and
the incoming flux is fi, = |v1 — v2|/ V. Plugging this result into (6.17), we see how
the powers of the volume cancel out and the differential cross section in the infinite
volume limit reads

|///i—>f|2

n
7T 4E By _V2|(2n)48(4> pi+p2— ZP& d®y, (6.18)

j=1

where d @y is the phase space factor for the k particles in the final state. To calculate
the total cross section we have to integrate over all final momenta and include the
necessary symmetry factors if identical particles are produced as the result of the
collision.

An inspection of Eq. (6.18) shows that the only piece depending on the observer’s
frame is the denominator F' = 4E E>|vy — v2|. The presence of this term implies
that the measurement of the differential and total cross sections of the same collision
in various reference frames takes different values. This is an important point that we
discuss now in some detail.

We consider first a collinear reference frame in which the momenta of the two
colliding particles lie along the same direction, p; || p2. This class of frames include
two cases of particular interest: the laboratory frame, where one of the particles is at
rest (for example p> = 0), and the center of mass frame where the center of mass is
atrest, pp = —p1.

It is not difficult to check that in the collinear case the combination E| E>|v] — V2|
is invariant under boosts along the direction of the two incoming momenta. This
means that the value of the differential and total cross section is the same in all
collinear frames. Moreover, we can write

P1 P2

Ey  E
=4|Erp1 — E1p2| = 4 (E2lp1] + E1lp2)) .

Feont =4E1Ea|vy — V2| =4E1E>

(6.19)
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where in writing the last identity we have used that in the collinear frames the two
particles are approaching each other from opposite directions. It can be written in a
Lorentz invariant form

Feon = 4/ (p1 - p2)? — m3m3. (6.20)

Then, the differential cross section measured in a collinear frame is given by

|% .|2 n
docon = =/ @)@ pr+pa— D ) | dor.  (621)
4\/(171 - p2)? — mim3 Jj=1
The corresponding total cross section is obtained by integrating over all momenta in
the final state, namely

: / dp 1
Ocoll = H : :
4\/(p1 Cp)? — m%m% oo (2m)? 2E;

states

x |ty f 2@y 8@ [ pr+pa— D pi |- (6.22)
s

We will make use of this expression in Sect. 6.4 when studying Compton scattering.

Due to their invariance under Lorentz transformations, Egs. (6.21) and (6.22)

allow the computation in an arbitrary frame of the cross section measured by the

collinear observer. For example, in a general frame where the two particles collide

with velocities vi and v; the collinear cross section is obtained by using the following
expression for Feop

Feoll = 4E1 Eav/ (v — v2)2 — (V] x v2)2. (6.23)

In various physical setups, most notably in astrophysics, one needs to compute the
cross sections measured by a generic observer with respect to whom the momenta
of the colliding particles form an arbitrary angle. This requires the evaluation of the
denominator in Eq. (6.18) in a generic “oblique” frame,

Fopl = 4E1Ez|vi — V2| = 4|Exp; — Erp2]. (6.24)

To relate Fyp; to the corresponding factor for the collinear observer, Fiq)1, we split the
incoming momenta into their components parallel and perpendicular to the center of
mass momentum Py, = p1 + po2,

P P
pi| = (_p,P2 cm) Pem, PiL=pi —Pi| (6.25)
cm
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with i = 1, 2. It is not difficult to show that p;; = —p21 = p.. Applying now this
decomposition to Eq. (6.24) we arrive at

Fopl = 4\/(E2P1\| — Eipy))? + (E1 + E2)?p]. (6.26)

To go from the oblique frame to the center of mass frame, we only have to perform
a boost with velocity

1

V=—"Pu. 6.27
This boost only transforms the parallel components of the momenta, p; . Itis possible
to show that the combination E,p1) — E1p2| appearing under the square root in Eq.
(6.26) is left invariant by the boost. Hence, it can be computed either in the oblique
or the center of mass frame and consequently we can write

Fly = Fly + 16[(E L+ Ep)? — (ES™ + ESm)z}pi, (6.28)

where we have used superscripts to indicate the quantities that are referred to the
center of mass frame. Finally, we notice that the second term inside the square
brackets is just the Lorentz invariant quantity (p| + p»)2. Evaluating it in the oblique
frame we arrive at the final expression

F02b] = Fczoll + 16P2¢P3m- (6.29)

We have seen that in a collision experiment all collinear observers measure the
same value of the cross section.? This is not the case, however, for the cross section
measured by another observer boosted with respect to the collinear ones along a
direction forming a non-zero angle with the beams. In this oblique frame, both
P.n and p aredifferent from zero and from Eq. (6.29) the cross section is suppressed
by alarger value in the denominator. This can be understood heuristically by thinking
that, as the result of this transverse boost, the area of the sections normal to the beams
are Lorentz contracted.

We have learned how particle cross sections are given in terms of the invariant
amplitude for the corresponding processes, which in turn are related to the S-matrix
amplitudes. Generically, an exact computation of these amplitudes in quantum field
theory is not feasible. Nevertheless, in many physical situations it can be argued that
interactions are weak enough to allow for a perturbative evaluation. In the remainder
of this chapter we will describe how S-matrix elements can be computed in pertur-
bation theory using Feynman diagrams and rules. These are very convenient book-
keeping techniques allowing both to track all contributions to a process at a given
order in perturbation theory and to compute them.

2 This is a particular case of Eq. (6.29) where p, = 0 for all collinear observers.
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6.2 From Green’s Functions to Scattering Amplitudes

The basic quantities to be computed in quantum field theory are the vacuum expec-
tation values of products of the operators of the theory. Particularly useful are time-
ordered Green’s functions of a number of local operators &; (x)

<9|T[ﬁl (xl)..ﬁ,,<xn>]|9>, 6.30)

where [£2) is the ground state of the theory and the time ordered product has been
defined in Eq. (2.63).

The interest of these correlation functions lies in the fact that they can be related
to S-matrix amplitudes through the so-called reduction formula. The idea consists
of replacing a particle of momentum p in the in- or out-state by the insertion of a
certain quantum field ¢ (x) interpolating between the vacuum and the one-particle
states with the normalization

(2|¢(t,x)|p) = p(p)e  Eo!TPX, (6.31)

where ¢ (p) is the one-particle wave function, carrying the corresponding indices
and quantum numbers: for example, ¢ = 1 for a scalar field while ¢ = ¢, (p, )
for the electromagnetic field.> This expression fixes the global normalization of the
field, while the coordinate dependence is completely determined by the translational
invariance of the vacuum state |£2) [see Eq. (2.36)].

To keep our discussion as simple as possible, we will not derive the reduction
formula, or even write it down in full detail. Suffice it to say that the reduction
formula states that any S-matrix amplitude

(Pl.-... pg;out|pr, ..., py;in) (6.32)

can be written in terms of the Fourier transform of a time-ordered correlation function

/d“x] ...d“xk/d“m ...a"‘yn<9|T[<zb<x1>T ...¢(xk>*¢<y1>...¢<yn)]|9>

., . T
x ePU X1t FipE Xk ,—ip1-V1 PnYn (6.33)

where ¢ (x) is a field that “creates” the particles out of the vacuum. Since the
momenta of the particles in the asymptotic states are on-shell, the expression (6.33)
has to be evaluated in the limit piz, p? — m?, where it diverges. In the reduc-
tion formula connecting (6.32) with (6.33) these poles are cancelled by factors of

3 The field ¢ (x) appearing in Eq. (6.31) is the so-called “renormalized” field, and it is not canon-

ically normalized. It is related to the canonically normalized “bare” field ¢o(x) by an overall
numerical factor, ¢o(x) = \/Zy¢(x), where Zy = 1 in the case of a free field. The difference
between bare and renormalized fields will become clear in Chap. 8 (see Sect. 8.3).
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pl.2 — m? and p}z — m?. The technical details and the form taken by the reduction
formula for various quantum field theories can be found in the textbooks listed in
Ref. [1-15] of Chap. 1.

The “interpolating field” used to write the scattering amplitude in terms of Green’s
functions is not uniquely determined. Any local field satisfying the normalization
Eq. (6.31) can be used for this purpose. The scattering amplitudes calculated from a
quantum field theory are invariant under local field redefinitions. For example, for a
massive field ¢ (x) we could use in Eq. (6.33) instead of ¢ (x) the local field

1
¢'(x) = ——0¢p(x) (6.34)
m

that also interpolates between the one-particle states and the vacuum with the correct
normalization (6.31).

6.3 Feynman Rules

The reduction formula transforms the problem of computing S-matrix elements to
the evaluation of time-ordered correlation functions. These quantities are easy to
compute exactly for free fields. For an interacting theory, generically we can only
evaluate them perturbatively. Using path integrals, the vacuum expectation value of
the time-ordered product of a number of operators can be written as

[ D¢D¢TO\(x1) ... Oy (x,)eS199")
(QIT[ﬁl(xl)...ﬁn(xn)}l.Q) B [ 269¢eiSl6.67] . (6.35)

For a theory with interactions, neither the path integral in the numerator or in the
denominator are Gaussian and cannot be computed exactly. In spite of this, Eq. (6.35)
is still very useful to implement a perturbative calculation. The action S[¢, ¢ ] can
be split into the free (quadratic) and the interaction parts

Sip, &1 = Sold, o1+ Sime[, ¢71. (6.36)

All dependence on the coupling constants of the theory comes from the second piece.
Expanding exp(i Sin¢) in power series of the coupling, we find that each term in the
series expansion of the integrals in Eq. (6.35) has the following structure

/ 292 ... ]eS0199", (6.37)

where “[...]” denotes certain monomial of fields.

The crucial point is that the integration measure Z¢ 2¢" exp(i Sp) only involves
the free action, so the path integrals (6.37) are Gaussian and therefore can be
computed exactly. The same conclusion can be reached using the operator formalism.
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In this case the correlation function (6.30) can be expressed in terms of correlation
functions of operators in the interaction picture ¢, (x). The advantage of using this
picture is that the field operators satisfy the free equations of motion

idr = [¢r1, Hol (6.38)

and therefore can be expanded in creation—annihilation operators. Time-ordered
correlation functions are then computed using Wick’s theorem.

The previous discussion outlines the strategy to calculate S-matrix amplitudes in
perturbation theory: using the reduction formula they are expressed in terms of time-
ordered correlation functions that in turn are calculated in terms of a series expansion
in the coupling constants. The most convenient way to carry out this program is by
using Feynman diagrams and rules. They provide a very economical way not only to
keep track of each term in the expansion but also to compute their contributions. In
what follows we will refrain from giving a detailed derivation of the Feynman rules.
Instead we will present them using heuristic arguments.

For the sake of concreteness we focus on the case of QED first. We use the action
(4.87) with the gauge fixing term included (see Sect.4.6). Expanding the covariant
derivative and setting £ = 1 (called the Feynman gauge) we have

1 — 1 _
S = /d4x |:—ZFWF’” +Yif —m)y — 5(ea,m‘)2 — elﬂ}/ul/fAM] . (6.39)
We begin with the quadratic part. Integrating by parts we have
4 1 nv o s
So= [ d’x EAM(n 0507)Ay + Y —m)paVa |- (6.40)

The action contains two types of propagating particles, photons and fermions, repre-
sented by wavy and straight lines respectively:

Ay Ao~~~ A Yy = ]

The arrow in the fermion line does not represent the direction of the momentum
but the flux of (negative) charge. This distinguishes particles form antiparticles: if
the fermion propagates from left to right (i.e. in the direction of the charge flux) it
represents a particle, whereas when it does from right to left it corresponds to an
antiparticle. Photons are not charged and therefore wavy lines have no orientation.

Next we turn to the cubic part of the action containing a photon field, a spinor and
its conjugate

Sint = —e / d*x Y Vo Va A (6.41)

In a Feynman diagram this interaction is represented by the vertex:
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To compute an S-matrix amplitude to a given order in e, one should draw all possible
diagrams with as many vertices as the order in perturbation theory, and the number
and type of external legs dictated by the in and out states of the amplitude. It is
very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the
conservation of the electric charge. In addition, one should only consider diagrams
that are topologically non-equivalent, i.e. that cannot be smoothly deformed into one
another while keeping the external legs fixed.*

To show practically how Feynman diagrams are drawn, we consider Bhabha scat-
tering: elastic electron—positron scattering

et +e — et e

Our problem is to compute the S-matrix amplitude to leading order in the electric
charge. Since the QED vertex contains a photon line and our process does not have
photons in the initial or the final states, drawing a Feynman diagram requires at least
two vertices. In fact, the leading contribution is of order ¢% and comes from the
following two diagrams

Incoming and outgoing particles appear respectively on the left and the right of
these diagrams. The identification of electrons and positrons is done by comparing
the direction of the charge flux with the direction of propagation. For electrons the
flux of charge goes in the direction of propagation, whereas for positrons they go in

4 From the point of view of the operator formalism, the requirement of considering only diagrams
that are topologically nonequivalent comes from the fact that each diagram represents a certain
Wick contraction in the correlation function of interaction—picture operators.
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opposite directions. These are the only two diagrams that can be drawn to this order
in perturbation theory.

It should be noticed that the two diagrams contribute with opposite signs. The
reason is that the second diagram can be obtained from the first one by interchanging
the incoming positron external line attached to the vertex on the left with that of
the outgoing electron coming from the vertex on the right. This permutation of two
fermions introduces the minus sign.

We have learned how to draw Feynman diagrams in QED. Now it is time to
compute the contribution of each one to the amplitude using the Feynman rules. The
idea is simple: each of the diagram’s building blocks (vertices as well as external and
internal lines) comes associated with a term. Putting all of them together according
to certain rules results in the contribution of the corresponding diagram to the ampli-
tude. In the case of QED in the Feynman gauge (§ = 1), we have the following
correspondence for vertices and internal propagators:

= (),

p—m+ie
U Ao~ v . —iMuvy
p*+ie
B
nu == fiey;a.

o

In addition, each vertex carries a factor (27)*8® (p; + p» + p3) implementing
momentum conservation, where we take the convention that all momenta are entering
the vertex. The Feynman rules for other values of the gauge fixing parameter & only
differ from the ones above by an extra term in the photon propagator. In addition,
one has to perform an integration over the momenta running in internal lines with
the measure

d*p
Qm)*’

(6.42)

and introduce a factor of —1 for each fermion loop in the diagram.’

5 The contribution of each diagram comes also multiplied by a symmetry factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to one for many diagrams.
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A number of integrations over the internal momenta can be eliminated using the
delta functions from the vertices. The result is a global delta function implementing
the total momentum conservation in the diagram [cf. Eq. (6.8)]. In fact, there is a
whole class of diagrams for which all integrations can be eliminated in this way.
These are the so-called tree level diagrams containing no closed loops. As a general
rule, there will be as many remaining integrations as the number of independent
loops in the diagram.

Generically, finding the contribution of a Feynman diagram with ¢ independent
loops involves the calculation of integrals of the form

d*q) d*qe
I(p1,..., = ey QU Pls vy Pn)s 6.43
(1 Pn) 0t ) f(q1 qe; pi Pn) (6.43)
where f(q1,...,9¢; P1,---, pn) 1S a rational function of its arguments and
P1s ..., py are the external momenta. In many cases these integrals are divergent.

When the divergence is associated with the limit of small loop momenta it is called
an infrared divergence. They usually cancel once all diagrams contributing to a given
order in perturbation theory are added together. The second type of divergences that
one expects in the integrals (6.43) comes from the region of large loop momenta.
These are called ultraviolet divergences. They cannot be cancelled by adding the
contribution of different diagram and have to be dealt with using the procedure of
renormalization. We will discuss this problem in some detail in Chaps. 8 and 12.

This is not the end of the story. In the calculation of S-matrix amplitudes the
contribution of the Feynman diagram contains factors associated with the external
legs. These are the wave functions and/or polarization tensor of the corresponding
asymptotic states containing all the information about the spin and polarization of
the incoming and outgoing particles. In the case of QED these factors are:

Incoming fermion: o —»@ = uq(p,s)

Incoming antifermion: —4—@ = Va(p,s)

Outgoing fermion: @—»— o =  Ug(p,s)

Outgoing antifermion: @-4— o = va(p.s)
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Incoming photon: u '\f\-@ = &(p)
Outgoing photon: @V\» u = &()”

Here uy(p, s), ve (P, s) are the positive and negative energy solutions of the Dirac
equation introduced in Chap. 3, whereas £,(p, 1) is the polarization tensor of the
photon with polarization A. Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram, and all external
momenta are on-shell, p? = ml2

The use of Feynman diagrams is not restricted to quantum field theory, they can
also be found in condensed matter physics and statistical mechanics. Their calculation
is not an easy task. The number of diagrams contributing to a process grows very
fast with the order of perturbation theory and the integrals arising in calculating loop
diagrams soon get very complicated.

Feynman rules can be constructed for any interacting quantum field theory with
scalar, vector or spinor fields. For the nonabelian gauge theories introduced in Chap. 4
these are:

I MY (pY — p§) + permutations
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o,C A,D
—ig2 [fABEfCDE (nucnvl _ nulnvc)
+ permutations]

u,A v.B

Asinthe case of QED, each vertex includes a delta function implementing momentum
conservation.

It is not our aim here to give a full and detailed description of the Feynman
rules for nonabelian gauge theories. We only point out that, unlike the case of QED,
here the gauge fields interact among themselves. These three and four gauge field
vertices are a consequence of the cubic and quartic terms in the Lagrangian (4.54).
The self-interactions of the nonabelian gauge field theories have crucial dynamical
consequences and its at the very heart of their physical successes.

6.4 An Example: Compton Scattering at Low Energies

We illustrate now the use of Feynman diagrams in the calculation of observables
in physical processes by studying an example with important physical applications.
This is the calculation of the cross section for the dispersion of photons by free
electrons: Compton scattering

yk,e)+e (p,s) — yk',e)+e (p,s). (6.44)

Inside the parenthesis we have indicated the momenta for the different particles,
as well as the polarizations and spins of the incoming and outgoing photons and
electrons respectively. We study this scattering in the nonrelativistic limit for the
electrons.

The first step in our calculation is to identify all the diagrams contributing to (6.44)
at leading order. Since the vertex of QED contains two fermion and one photon leg
it is immediate to realize that any diagram contributing to this process must contain
at least two vertices, so the leading contribution is of order e2. A first diagram that
can be drawn is:
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There is however a second possibility given by the following diagram:

These two diagrams are topologically nonequivalent, since deforming one into the
other requires changing the label of the external legs. In addition, unlike the example
of the Bhabha scattering studied in the previous section, both diagrams contribute
with the same sign. This is because they are related by interchanging the incoming
with the outgoing photon. Since photons are bosons, no minus sign comes from this
permutation.

Using the Feynman rules of QED we find the contribution of the two diagrams
to be

(6.45)

where m, is the electron mass and we have factored out (277)* times the delta function
implementing momentum conservation. As explained in Sect. 6.3, all incoming and
outgoing particles are on-shell,

pP=m2=p? and k> =0=14k". (6.46)

Our calculation involves only tree-level diagrams, so there is no integration left
over internal momenta. To get an explicit result we begin by simplifying the numer-
ators. The following simple identity turns out to be very useful

@ = —pd + 2(a - b)1. (6.47)

In addition, we are interested in Compton scattering at low energy when electrons
are nonrelativistic particles. This is known in the literature as Thomson scattering.
To be more precise, we take all spatial momenta much smaller than the electron mass

Ipl. k[, [p'[, K| < m,. (6.48)
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In this approximation, the amplitude for Compton scattering simplifies substantially.
Let us begin with the first term in Eq. (6.45). Applying the identity (6.47) we obtain

@K+ m)f®up,s) =—¢KG —meu, s) + kfIu(p, s)

(6.49)
+2p-e®u(p,s).

The first term on the right-hand side of this equation vanishes using Eq. (3.45).
Moreover, in the approximation (6.48) we find that the electrons’ four-momenta can
be written p#, p’* ~ (m,, 0) and therefore

p-ek) =0. (6.50)

This follows from the absence of the temporal photon polarization, £ (k) = 0. Thus,
we conclude that at low energies

@+ K+ mfKu(p, s) = kfu(p, s) (6.51)

and similarly for the second term in Eq. (6.45)

@ =¥ +mof' &) up,s) = —K¢ &) up,s). (6.52)

Next, we turn to the denominators in (6.45). Using the mass-shell condition we
find

(p+k)2—m§:p2+k2+2p~k—mz:2p-k

(6.53)
= 2w, k| —2p - k

and

/

(p—k —m2=p*+k?+2p-k' —m>=-2p-k

6.54
= —2w,|K'|+2p K. (6->4)

Working again in the low energy approximation (6.48), these two expressions
simplify to

(p+Kk)?—m; ~2mkl, (p—k)* —mg~—2m,K|. (6.55)

e

Collecting all results we obtain

~ 2 i(p',s) €' (K'Y Ze(k)
H ' :!;N oo ) [0 et

P S
+ e(k) F@""lﬁ_k'}*] u(p,s).

(6.56)

Using the identity (6.47) a number of times, as well as the transversality condition
of the polarization vectors (4.32), we end up with a simpler expression
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(6.57)

With a little extra effort one can show that the second term on the right-hand side
of this equation vanishes. First we notice that in the low energy limit |k| ~ |k|. If,
in addition, we use the conservation of momentum k — k' = p’ — p and the identity
(3.45) we can write

u(p’, sH# kg (k)* (Iil é,') (p,s) ~ H”(Pﬂ)ﬂk){f 'K (P —meu(p, s).
(6.58)

Next we use the identity (6.47) to take the term (p’ —m,) to the right. Finally, keeping
in mind that in the low energy limit the electron four-momenta are orthogonal to the
photon polarization vectors [see Eq. (6.50)], we conclude that

up’, sH¢ ¢ &) (P —meup, s) =u@, s — me)¢ K¢ &) up,s) =0
(6.59)

where the last identity follows from the equation satisfied by the conjugate positive—
energy spinor, z(p’, s") (' —m.) = 0.

After all these lengthy manipulations we have finally arrived at the expression of
the invariant amplitude for the Compton scattering at low energies

2

ity = [ek) - & K] (P s %u(p, ). (6.60)

To calculate the cross section we need to compute |.#;_, ¢ |2, as shown in Eq. (6.18).
For many physical applications, however, one is interested in the dispersion of
photons with a given polarization by electrons that are not polarized, i.e. whose
spins are randomly distributed. To describe this physical setup we have to average
over initial electron polarization (since we do not know them) and sum over all
possible final electron polarization (because our detector is blind to this quantum
number),

2

1 2
|it///,9f|2=5(me—|k|) (k) - &' (K)* Z Z @', s Wup, )|

s= :I: s'=
(6.61)

The factor of % comes from averaging over the two possible polarizations of the
incoming electrons. The sums in this expression can be calculated without much
difficulty. Expanding the absolute value
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> X Ee ol = X Y [ue o aw | @@ s wum. )],
S::l:% s’::t% s:j:% s/:j:%
(6.62)
and using that y#T = y%y#10 one finds, after some manipulations,

> [a@ sHpump. o) = { > ua(p, $)ip(p, s)} ®)po [ > un(p’,svup(p’,s’)} #)pu

SIS VR | 1 |
s=k5 s'=+5 s=+3 §'=*5

=Tr[(f + mKP + mek] . (6.63)

where the final result has been obtained using the completeness relations (3.51). The
final evaluation of the trace can be done using the relation (6.47) to commute j#’ and
k. Using k? = 0 and that we are working in the low energy limit, we have®

Te [ + moOk @ + mek] = 2(p - k) (p - )Trl ~ 8m2 |k (6.64)

With this we arrive at the following value for the invariant amplitude for the Compton
scattering at low energies

il 2 =4e* [e(k) - &/ (K)*| (6.65)

We have reached the end of our calculation. Plugging |i.#;_, ¢|* into (6.22) and
dropping the integration over the direction of the outgoing particles we find the
differential cross section for the scattering of a photon by an electron at rest

do 1 — 2\ 2
L2 e it P =) |ek) )] 6.66
a2 = ehmom2 1] (4nme) k) - & (K| (6.66)

The prefactor of the last expression is precisely the square of the classical electron
radius r¢j. In fact, the result can be rewritten as

do 3

4 _ 2 K) &' (K)*|?, 6.67
1o = 3507 e () (6.67)
where o7 is the total Thomson cross section
4
8
oy =—_ =2 (6.68)

T 6mm2 3

obtained from integrating (6.66) over angles.

One of the most important physical consequences of Eq. (6.67) is that a net
polarization is produced in the scattering of unpolarized radiation off nonrelativistic
charges. To see this, we take the Thomson differential cross section and average over

6 We use also the fact that the trace of the product of an odd number of Dirac matrices is always
zZero.
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Fig.6.2 This figure z
illustrate Eq. (6.70). The
“vertical” component of the
unpolarized radiation A K
arriving from the x direction
is suppressed in the photons
scattered along the z axis.
This results in a linear
polarization of the scattered = y
radiation

Yx

the polarization of the incoming photon. Denoting by e(k, a), with a = 1, 2, a basis
for the photon polarizations, this average gives

1 1
3 > Jekoa)- &' k)| = 3 > ek a)ej(k, a)* | e (ke (k). (6.69)
a=1,2 a=1,2

The sum inside the brackets can be computed using the normalization of the polar-
ization vectors, |e(k, n)|*> = 1, and the transversality condition k - e(k,n) = 0

1 1 kik; I N o (L
5 Z |8(k, a) -z’;‘/(k/)*|2 = 5 (85./ j){;‘j(k )Si(k)

k2
a=1,2

[1 — k- e’(k’)|2] : (6.70)

R -

where k = % is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polar-
izations parallel to the direction of the incoming photon. At the same time, the
differential cross section reaches its maximum values when the polarization of the
scattered photon lies in the plane normal to K. This is represented in Fig. 6.2, where
nonpolarized radiation coming from the x direction is scattered by a nonrelativistic
electron. According to Eq. (6.70) the vertical polarization is fully suppressed in the
radiation scattered along the z direction, thus producing linear polarization.

6.5 Polarization of the Cosmic Microwave
Background Radiation

The differential cross section of Thomson scattering we have derived is relevant in
many areas of physics, but its importance is paramount in the study of the cosmolog-
ical microwave background radiation (CMB). Here we are going to review briefly
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L

[

Fig.6.3 In these figures the larger density of unpolarized photons arriving from different directions
is represented through two parallel lines indicating the polarization. The left panel shows the scat-
tering of isotropic radiation by a free electron and how this does not produce any net polarization
in the scattered photons. On the right panel, on the other hand, the anisotropy in the intensity of
the radiation has a quadrupole component, being larger along the x direction. The result is a net
polarization in the photons scattered along the z axis

X X 7
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how polarization emerges in the cosmic radiation and discuss why its detection could
serve as a window to the physics of the very early universe. Our presentation will
be rather sketchy. A thorough analysis of this problem can be found in many places,
such as [1, 2].

Just before recombination the universe is filled with a plasma of electrons inter-
acting with photons via Compton scattering. This plasma has a temperature of the
orderof T ~ 1keV and therefore electrons are nonrelativistic (7 < m, ~ 0.5MeV),
so the approximations leading to the Thomson differential cross section apply. At the
last scattering surface there is no way to know the polarization state of the photons
in the plasma before they are scattered by electrons to produce the CMB radiation
that we detect today. Therefore we have to average over incoming polarizations as
shown at the end of the previous section.

The relation between the polarization of the CMB and the anisotropies in the
density of photons at last scattering can be understood with the help of Fig.6.2. We
consider the polarization of photons traveling along the z direction resulting from
the scattering of photons traveling along the x and y axis. Since Thomson scattering
suppresses all polarizations in the direction of the incoming photons we find that the
two polarizations in the scattered radiation come from the “horizontal” polarizations
of the incoming photons. If the number of photons coming from the x and y directions
are the same no net polarization is produced. This is shown in the left panel of Fig. 6.3.
It is an instructive exercise to check that no polarization is produced either in the
presence of a dipolar anisotropy.

When the anisotropy has a quadrupole component, on the other hand, the situation
changes. Then the intensity of the unpolarized radiation approaching from the x and
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y directions is different and so is the relative intensity of the two polarizations in the
scattered radiation along the z axis. The outgoing radiation is then polarized.

The previous heuristic arguments show that the presence of a net polarization in
the CMB is the smoking gun of quadrupole anisotropies in the photon distribution
at the last scattering surface. There are several possible physical causes for such an
anisotropy. One of them, however, is specially glaring. Gravitational waves propa-
gating through the plasma induce changes in its density with precisely the quadrupole
component necessary to produce the polarization in the CMB radiation.

Now we make this discussion more precise. The polarization of radiation can be
described using three Stokes parameters: O measures the excess of horizontal versus
vertical, U of diagonal versus antidiagonal and V of left versus right polarization.
CMB experiments allow the measurements of these parameters for the background
radiation arriving from a direction in the sky specified by a unit vector n.

To compute the parameter Q (i) we consider the polarizations along the directions
defined by the unit vectors &., = —&, and &, = —e&g, normal to the plane defined by fi
(see left panel in Fig. 6.4). We denote by f (ﬁ, n) the distribution function of photons
in the plasma with momentum along the unit vector K at the last scattering surface
in the sky direction n. This distribution function does not depend on the polarization
of the photons because the incoming radiation is taken to be unpolarized. Using the
expression of the Thomson cross section (6.67), the Stokes parameter Q (i) can be
written as

o) ~ > /dﬂ(ﬁ)f(ﬁ,ﬁ)[Ie(k,a)'éelz—Ie(k,a)-%lz], (6.71)

a=1,2

where we integrate over the directions of the incoming photons and have omitted a
global normalization constant. To write this expression we have taken the intensity
of scattered radiation to be proportional to the Thomson differential cross section
averaged over polarizations. The resultis integrated over the direction of the incoming
photons weighted by the distribution function. The sum over polarizations can be
explicitly done using the result derived in Eq. (6.69) to give

. 1 Py et oA [ A N2 L a2
) ~ -3 / a2 £k ) [ k-ec)? - k2. 6.72)

In order to evaluate the parameter U () we need to consider the polarizations
along the unit vectors defined by (see right panel in Fig.6.4)

A

€ , = €, +€), €y = €, —€p). 6.73
o=, b = —&) (6.73)

This parameter is then given by the difference in intensity of the scattered radiation
with these polarizations, namely
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Fig.6.4 Polarization states used to define the Stokes parameter Q(f)) and U (fi) for a photon
scattered by a nonrelativistic electron and arriving from the direction n. The notation used in the
unit vectors €  and e x, reflects the point of view of an observer located at the origin looking in

the direction defined by n

Um)~ > /dQ(ﬁ)f(ﬁ, n)|:|8(k,a) @17 — ek, a) -é,&|2}

a=1,2
1 ~ ~ A A~
= —E/d.Q(k)f(k, fi) [(k 87— (k- é&)2], (6.74)

where in the second line we have carried out the sum over incoming polarizations.
A look at Fig. 6.4 shows that Q(n) and U (h) can be transformed into one another,
up to a sign, by a rotation of 7 along the line of sight fi.

Finally, the Stokes parameter V (1) measures the net circular polarization of the
CMB photons arriving from the last scattering surface

Vi)~ > / a2 f k) [letk, @) &4 — ek, a) - -]

a=1,2
— [asdosdm [k-e.p - k-eF]=o. 6.75)
where 4 = — % (é, £iép) and the last identity follows immediately from &% = €.

This result reflects the fact that Thomson scattering does not distinguish between left
and right polarizations.

The measurement of Q(fi) and U (n) provides important information about the
distribution function of photons at decoupling f (k, ), as we will see shortly. In
order to carry out the integration over Kk in Egs. (6.72) and (6.74) we use the system
of coordinates defined by the three unit vectors €4, €., and n, as shown in Fig.6.5.
After a bit of algebra we arrive at

QM) £iU®h) ~ — / AR, @) F O, ¢'; A)sin? 0'eF2? (6.76)
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Fig.6.5 A photon with
momentum K is scattered by
a nonrelativistic electron
located at the origin. The [ I /

frame vectors R, €., and &,
are the ones shown in the left
panel of Fig.6.4 9
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e

where the dependence on the unit vector K is indicated by its polar coordinates
(¢', 0".

There is something very interesting about this expression. The functional depen-
dence on k of the term multiplying f (k, f1) is that of the spherical harmonics

[5 o
Y0, ¢) =3 %sin29’ei2’¢. (6.77)

Thus, the only way to make the integral (6.76) nonzero is that the distribution function
f (ﬁ, n) contains a quadrupole anisotropy. In other words, what we have concluded is
that the measurement of the polarization of the CMB gives direct information about
the quadrupole component of the distribution function of photons at decoupling!

The distinction between Q(fi) and U (n) is rather arbitrary, since one parameter
can be transformed into the other by an appropriate rotation along n. In fact, under
such a rotation of angle ¢ the complex combinations of the two Stokes parameters
in Eq. (6.76) transform as

Q) £iU) — T [Q(h) £iU®)]. (6.78)

Now, Q(n) £ iU (n) defines two complex functions on the two—dimensional sphere
whose points are labelled by the unit vector n. Eq. (6.78) defines a local SO(2)
rotations in the sphere under which Q(n) 4 iU (i) transform as quantities with spin
42. Were they scalars, we could expand them using the ordinary spherical harmonics
Y/" (). Due however to their nontrivial transformation properties, the expansion has
to be made in terms of a basis of eigenfunctions of the Laplace operators on the sphere
$? with the appropriate transformations under SO(2) local rotations. The sought for
basis of functions are generalizations of the standard spherical harmonics called the
spin—weighted spherical harmonics of spin 42, denoted by 4, Y;" (fi). Here we will
not elaborate on their properties (see [2] for details). For us it is enough to know that
they can be used to write the expansion



