Chapter 3
Theories and Lagrangians I: Matter Fields

Up to this point we have used a scalar field to illustrate our discussion of the quanti-
zation procedure. However, Nature is richer than that and it is necessary to consider
other fields with more complicated behavior under Lorentz transformations. Before
considering these other fields we pause and study the properties of the Lorentz group.

3.1 Representations of the Lorentz Group

The Lorentz group is the group of linear coordinate transformations that leave
invariant the Minkowskian line element. It has a very rich mathematical structure
that we review in Appendix B. Here our interest is focused on its representations.

In four dimensions the Lorentz group has six generators. Three of them are the
generators J; of the group of rotations in three dimensions SO(3). A finite rotation
of angle ¢ with respect to the axis determined by a unitary vector e can be written
as

Ji
Re,p)=ec 1 J=| 1| 3.1)
J3

The other three generators of the Lorentz group are associated with boosts M; along
the three spatial directions. A boost with rapidity A along a direction u is given by

. Ml
Bu,A) =e M M= [ M, | (3.2)
Mj

The six generators J;, M; satisfy the algebra
(i, Jj] = isijidi,
[Ji, My] = igiji Mg, (3.3)
[Mi, M) = —ieiji i,
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34 3 Theories and Lagrangians I: Matter Fields

The first line are the commutation relations of SO(3), while the second one implies
that the generators of the boosts transform like a vector under rotations. The six
generators of the Lorentz group can be collected into the six independent components
of an antisymmetric rank-two tensor _¢,,, according to

Joi =M, _Zij = ¢&ijili. (3.4

They satisfy
[j;w, fa)\] = inuojv)u - inu)»jvo + inv)»jp.a - inVG/p.)w (3.5)

The Lorentz algebra in terms of _¢,,, has the same form in any space-time dimension.

The task of finding representations of the algebra (3.3) [or (3.5)] might seem diffi-
cult at first sight. In four dimensions the problem is greatly simplified by combining
the generators in the following way

1
Jf:?hiMm. (3.6)
Using (3.3), the new generators JkﬂE are found to satisfy

.07 ] =o0.

Thus, the four-dimensional Lorentz algebra is equivalent to two copies of the algebra
of SU(2) =~ SO(3). Their irreducible representations are identified by (s4,s_),
where s4+ = k4 or k4 + % (with k+ € N) are the spins of the representations of the
two copies of SU(2).

To get familiar with this way of labeling the representations of the Lorentz
group we study some particular examples. Let us start with the simplest one
(s+,s—) = (0,0). This state is a singlet under Jl.jE and therefore also under rota-
tions and boosts. Therefore we have a scalar.

The next interesting cases are (%, 0) and (0, %). States transforming in these
representations are respectively right and left-handed Weyl spinors. Their properties
will be studied in more detail below. Next we deal with (%, %). Equation (3.6) shows
that J; = Jl.+ + J; . Applying the rules of addition of angular momenta we find
that the states transforming in this representations decompose into a vector and a
scalar under three-dimensional rotations. A more detailed analysis shows that the
singlet state is identified with the time component of a four-vector, combining with
the triplet to form a vector under the Lorentz group.

We can consider more “exotic” representations. For example the (1,0) and (0, 1)
representations correspond respectively to selfdual and anti-selfdual rank-two anti-
symmetric tensors TV = —T"*,

1
Ty = j:EsWMT‘”\ (4 selfdual, — anti-selfdual), 3.8)
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Table3.1 Representations of

the Lorentz group in terms of Representation Type of field
the representations of SU(2)x (0,0) Scalar
SUQ) 3.0 Right-handed spinor
(0, %) Left-handed spinor
G P Vector
(1,0) Selfdual antisymmetric 2-tensor
0,1) Anti-selfdual antisymmetric 2-tensor

where )¢5 is the Levi-Civita symbol with four indices. Table 3.1 summarizes the
previous discussion.

To conclude our analysis of the representations of the Lorentz group we notice
that under parity the generators of SO(1,3) transform as'

P:J,' —> J,’, P M,‘ —> —Ml'. (3.9)

This implies that P: JijE — Jl.jF and therefore arepresentation (sg, s ) is transformed
into (s, S1). As a consequence a vector (%, %) is invariant under parity, whereas a
left-handed Weyl spinor (%, 0) transforms into a right-handed one (0, %) and vice
versa.

It is instructive to see how the representations of the Lorentz group differ from
those of SO(4), the isometry group of four-dimensional Euclidean space. Like the
Lorentz group, it is generated by a set of six generators _¢#,,, whose algebra can
be obtained from Eq. (3.5) by replacing 1, — —8,,. The Lie algebra of SO(4) is
isomorphic to that of SU(2)x SU(2). This can be seen by introducing the generators

N*=n ", N =7%J". (3.10)
The numerical coefficients nZV and ﬁfw (witha =1,2,3and u,v=20,...,3) are

called 't Hooft symbols and are given by

nfw = &apv + 8audvo — Savdp0,
ﬁz,v =E&apv — (Sap,(svo + Bav(sp,o- (3.11)
Here ¢,,,, represents the Levi-Civita antisymmetric symbol with three indices and it
is taken to be zero whenever p or v are equal to zero. Now it is not difficult to check
that the generators (3.10) satisfy the Lie algebra of SU(2)x SU(2)
I:[Va7 Nb] _ i&‘achc, I:Na,ﬁb] _ l-gachC7 [Na,ﬁbjl —0. (3.12)

This shows that the representations of SO(4) can also be labelled in terms of the
irreducible representations of SU(2).

' Parity and other discrete symmetries are studied in detail in Chap. 11.
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3.2 Weyl Spinors

A Weyl spinor u+ is acomplex two-component object that transforms in the represen-
tations (%, 0) and (0, %) respectively. The generators Jii can be explicitly constructed
using the Pauli matrices as

1

Ji+=§gi, J;:O for (%,0),

_ 1 1
Ji+=0, J = Eai for (0, 7). (3.13)

Going back to J/ and K, we find that under a rotation of angle # and axis n and a
boost of rapidity 8 = (B1, B2, B3) the spinors u4 transform as

Uy —> e~ ONFIBIO, (3.14)

To construct a free Lagrangian for the fields u+ we have to look for quadratic
combinations of the fields that are Lorentz scalars. Defining aﬁ = (1, £o;), we can
construct the following quantities

uiaﬁqu, u otu_. (3.15)

The first thing to point out is that, since (Jl.jc)T = JT, the hermitian conjugate fields

ul are in the (0, %) and (%, 0) representation respectively. The combinations (3.15)

transform as a four-vector under (3.14), due to the property
o3 ONEB 0 o1l =3 ONFIR) T _ Al (on, B, (3.16)

where A} (fn, B) gives the transformation of the coordinates x*.

Once the transformation properties of (3.15) are known we can start building
invariants. If, in addition, we also demand that the Lagrangian be invariant under
global phase rotations

Uy —> e"eujE (3.17)

we are left with just one possibility up to a sign, namely
Lo = itk (0 £ 0 - V) uz = iukollus. (3.18)

This is the Weyl Lagrangian. In order to get a more clear idea of the physical meaning
of the spinors u1 we write the equations of motion

(@oEt0o-Vyugr =0. (3.19)

Multiplying this equation on the left by (dp = o - V) and applying the algebraic
properties of the Pauli matrices, we conclude that u satisfy the massless Klein-
Gordon equation
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9,0"usr =0, (3.20)
whose solutions are
us(x) = us (ke ** with £° = |K|. (3.21)
Plugging them back into the equations of motion (3.19) we find
(k| Fk-o)usr =0, (3.22)

implying the following conditions

k| ’ (3.23)

Since the spin operator is s = %0, the previous expressions give the helicity of the
states with wave function u 4, i.e. the projection of the spin along the momentum of
the particle

A k (3.24)
=S —. .
k|

We conclude that u is a Weyl spinor of positive helicity A = % , while u_ hasnegative
helicity A = —%. This agrees with our assertion in the previous section that the
representation (%, 0) corresponds to a right-handed Weyl fermion (positive helicity)

whereas (0, %) is a left-handed Weyl fermion (negative helicity). For example, the
standard model neutrinos are left-handed Weyl spinors and therefore transform in
the representation (0, %) of the Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl
Lagrangian (3.18). There we constructed the invariants from the vector bilinears
(3.15) corresponding to the product representations

GH=(G0e0d) m LH=0hel0. 62

In particular our insistence in demanding the Lagrangian to be invariant under the

global symmetry us+ — ¢!?u rules out the scalar term that appears in the product
representations
(2.0)®(3,0) = 1,0) & (0, 0),
0.1Y®(0.1)=0.1o00). (3.26)

The singlet representations corresponds to the antisymmetric combinations
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apulull, (3.27)

where g, is the antisymmetric symbol g2 = —g31 = 1.

At first sight it might seem that the term (3.27) vanishes identically due to the anti-
symmetry of the e-symbol. However we should keep in mind that the spin-statistics
theorem (more on this later) demands that fields with half-integer spin have to satisfy
the Fermi-Dirac statistics and therefore satisfy anticommutation relations, whereas
fields of integer spin follow the statistic of Bose-Einstein and, as a consequence, quan-
tization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermions u 4 are anticommuting Grassmann fields

ulul, +ubud = 0. (3.28)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy
the Fermi-Dirac statistics) do not exist classically. The reason is that they satisfy
the Pauli exclusion principle and therefore each quantum state can be occupied, at
most, by one fermion. Therefore the naive definition of the classical limit as a limit
of large occupation numbers cannot be applied. Fermion fields do not really make
sense classically.

Since the combination (3.27) does not vanish, we can construct a new Lagrangian

,Sﬂv%eyl = iulaﬁaﬂui - %(%buiui + h.c.) (3.29)
This mass term, called of Majorana type, is allowed if we do not worry about breaking
the global U(1) symmetry u+ — e'?u.. This is not the case, for example, of charged
chiral fermions, since the Majorana mass violates the conservation of electric charge
or any other gauge U(1) charge. In the standard model, however, there is no such a
problem if we introduce Majorana masses for right-handed neutrinos, since they are
singlets under all standard model gauge groups. Such a term will break, however, the
global U(1) lepton number charge, the operator £,,v% V?e changes the lepton number
by two units. We will have more to say about this later.

3.3 Dirac Spinors
We have seen that parity interchanges the representations (%, 0) and (0, %), ie. it
changes right-handed with left-handed fermions

P:uy — u-. (3.30)

An obvious way to build a parity invariant theory is to combine a pair or Weyl
fermions u and u_ of opposite helicity in a single four-component spinor

— (4
v = (u_) (3.31)
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transforming in the reducible representation (%, 0) & (0, %).

Since now we have both u and u_ simultaneously at our disposal, the equations
of motion for uy, i aﬂ’; duu+ = 0 can be modified, while keeping them linear,
to introduce a mass term

iod,uy = mu_ H
o ] — i(g+ 2u)8m/f=m((1)(l))w. (3.32)

ioﬁaﬂu_ =mu4

These equations of motion can be derived from the Lagrangian density

s (oh 0 01
Lbire = i)' (0+ 05) Outy = my’ (1 0) 2 (3.33)
To simplify the notation it is useful to define the Dirac y-matrices as
0 o
" o__ —
yt = (a_,’f 0 ) (3.34)

and the Dirac conjugate spinor i
= _ i 0 _ i (01
v=y'y =¢ (10). (3.35)
The Lagrangian (3.33) can be written in the more compact form
PDirac = W (iyuap. - m) v, (3.36)
whose equations of motion give the Dirac equation (1.10) with the identifications
yo=8 yi=id. (3.37)
The y-matrices defined in (3.34) satisfy the Dirac algebra
"y =2 (3.38)
[¢]
In d dimensions this algebra admits representations of dimension 2L?1. Equation
(3.34) gives the chiral representation of the algebra (3.38). Other equivalent repre-
sentations can be constructed exploiting the invariance of (3.38) under unitary trans-
formations y* — Uy*U".

A representation of the Lorentz algebra SO(1,d — 1) can be constructed using
the y-matrices as

S ==L [ = o, (3.39)

By definition, Dirac fermions ¥ in d dimensions transform under the Lorentz group
in this representation.
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When d is even the representation (3.39) is reducible. In the case of interestd = 4
this result is easy to prove by defining the chirality matrix

. 10
ys = —iyyly?y’ = (0 _1). (3.40)
The matrix y5 anticommutes with all other y-matrices and as a consequence

[5.0"] =0. (3.41)

Using Schur’s lemma (see Appendix B) this implies that the representation of the
Lorentz group provided by o#¥ is reducible into subspaces spanned by the eigen-
vectors of y5 with the same eigenvalue. Introducing the projectors P+ = %(1 =+ ys5)
these subspaces correspond to

Py = (g*), Py = (2_), (3.42)

which are precisely the Weyl spinors introduced above.

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines
followed for the free real scalar field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation—annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equation.
In the case of the scalar field the elements of the basis were labelled by their four-
momentum k. Now, however, the field has several components so we have to add an
extra label. Equation (3.23) suggest the following definition of the helicity operator

of a Dirac spinor
1 k
_a' . —_— O
=27 w7 ) (3.43)
( 0 30

Each element of the basis of functions is labelled by its four-momentum k£ and the
corresponding eigenvalue s of the helicity operator.
For positive energy solutions of the Dirac equation we take

ulk,s)e kx  g= iE’ (3.44)
where uy (k, s) (¢ = 1, ..., 4) is a four-component spinor. Substituting in the Dirac
equation we obtain’

¥ —mu(k,s) = 0. (3.45)

In the same way, for negative energy solutions we have

2 From now on we will frequently use the Feynman slash notation, ¢ = y*a -
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vk, s)e* s =+—, (3.46)

where vy (k, s) has to satisfy
K +myv(k,s) =0. (3.47)

Multiplying Eqs. (3.45) and (3.47) on the left respectively by (¥ & m) we find that
the momentum is on the mass shell, k2 = m?2. Hence, the wave function for both
positive- and negative-energy solutions is labelled by the three-momentum Kk of the
particle, u(k, s), v(k,s).

Before proceeding any further we consider the case of a massless Dirac fermion.
Using the equation ¥u(k, s) = 0 it is not difficult to show that the helicity operator
(3.43) satisfies

cauk, s) = %ysu(k, s), (3.48)

and similarly for v(k, s). This means that when m = 0 helicity (i.e., the projection of
the spin along the direction of motion) and chirality (the eigenvalue of the ys matrix)
are equivalent concepts. In this case the helicity of the spinor is a relativistic invariant.
This is no longer true when m # 0 because when the particle moves with a speed
smaller than the speed of light the sign of A can be changed by a boost reversing the
direction of k. Hence, the helicity of a massive Dirac spinor has no invariant meaning
and moreover it is not equivalent to its chirality.
The spinors u(k, s), v(k, s) can be normalized according to

ulk, s)ulk,s) =2m,
V(k, S)V(k, S) = —2m. (349)

Given this normalization, the following identities can be obtained
uk, )y u(k, s) =2k",
vk, s)y vk, s) =2k", (3.50)

as well as the completeness relations

> ualk, gk, s) = (K +m)ap,

s:i%
> valk, gk, s) = (¥ —m)ap, (3.51)

—t 1
s=t5

with k° = Ex = vk + m2. A general solution to the Dirac equation including
creation and annihilation operators can be written as
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1 N . .
t, X u K, 5)b(k, s)e~ Exitikx
Vo (t. %) = Z / Gy 2 Ltk DK, 5)

Ty (k. )d (K, s)e’Ekf—"k"‘]. (3.52)

Unlike the real scalar field studied in the previous chapter, the Dirac field is not
hermitian. As a consequence, the operators l;(k, s) and d (k, s) are independent and
not related by Hermitian conjugation.

Since we are dealing with half-integer spin fields, the spin-statistics theorem forces
a modification of the canonical quantization prescription (2.57). In the case of the
Dirac field the canonical Poisson brackets are replaced by anticommutators

if-,-jpp — {+ ). (3.53)

Thus we arrive to the following canonical anticommutation relations for @(t, X)

Walt, %), Y56, ¥)) = 8(x — ¥)ap, (3.54)

with the other anticommutators vanishing. From Eq. (3.52) we find that the operators
bT(Kk,s), b(k, s) satisfy the algebra’

{b(k,s),b" (K, s} =21)} 2Ex)s(k — K')8,y,
{b(k,s), bk, s’)} ={bT(k, s), bT(k’, s’)} =0. (3.55)

They respectively create and annihilate a spin-— particle (for example, an electron)
out of the vacuum with momentum k and helicity s.
In the case of d(k, s), d"(k, s), they satisfy the fermionic algebra

{dk,s),d (K, s} =2n)* QE)S(k — Ky,
{dK,s),dK, s ={d"K,s),d &, s)}=0. (3.56)

Hence we have a set of creation—annihilation operators for the corresponding antipar-
ticles (for example positrons). This is clear if we notice that d T(Kk, s) can be seen as
the annihilation operator of a negative energy state of the Dirac equation with wave
function v, (K, s). In the Dirac picture this corresponds to the creation of an antipar-
ticle out of the vacuum (see Fig.1.2). Finally, all other anticommutators between
b(k,s), b'(k,s)and d(k,s), d'(k, s) vanish.

The Hamiltonian operator for the Dirac field is

Z /(2 5 bT(k, )bk, 5) — d(k, s)d" (k, s)]. (3.57)

3 To simplify notation, and since there is no risk of confusion, we drop from now on the hats to

indicate operators.
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At this point we realize again the necessity of quantizing the theory using anti-
commutators instead of commutators. Had we used canonical commutation rela-
tions, the second term inside the integral in (3.57) would give the number operator
dt(k, s)d(k, s) with a minus sign in front. As a consequence, the Hamiltonian would
be unbounded from below and we would be facing again the instability of the theory
already noticed in the context of relativistic quantum mechanics. However, using the
anticommutation relations (3.56), the Hamiltonian (3.57) takes the form

d’k 1
H = Z /(27r)3 2Ex Eka(k s)b(K, s) + Exd'(k, s)d(k, s)]

-2 / d3kExs(0). (3.58)

As with the scalar field, we find a divergent vacuum energy contribution due to the
zero-point energy of an infinite number of harmonic oscillators. Unlike the case of
the scalar field, the vacuum energy here is negative. This is interesting because, as it
will be explaned in Chap. 13, there is a certain type of theories called supersymmetric
where the number of bosonic and fermionic degrees of freedom is the same. For this
kind of theories the contribution of the vacuum energy of the bosonic field exactly
cancels that of the fermions. The divergent contribution in the Hamiltonian (3.58)
can be removed by the normal order prescription

k1
i Z / (2n)? 2Ex [ Bk’ (k. )b (K, 5) + Eid (k. )d (k. 9)]. - (359)

Finally, let us mention that using the Dirac equation it is easy to prove the conser-
vation of the four-current

J =gy, 8" =0 (3.60)

As we will explain further in Chap. 7, this current is associated to the invariance of
the Dirac Lagrangian under the global phase shift v — ¢’y In electrodynamics
the associated conserved charge

0= q/d3xj° (3.61)

is identified with the electric charge, with g the charge of the particle created by
b(Kk, s) acting on the vacuum.

Since we are dealing with a free theory, all correlation functions can be written
in terms of those with two fields. The Feynman propagator is given by

Sep(x1, 22) = OIT [V r1) W (32 ]10)

4 .
T —m Le B
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while the other two-point correlation functions are zero

(OIT [ (xD)¥p(x2) ] 10) = (OIT [ Yo (x) ¥ 5(x2)] 0) = 0, (3.63)

as can be seen by direct computation using the field expansion in terms of creation-
annihilation operators. Due to the fermionic character of the Dirac field, the definition
of the time-ordered product includes a number of minus signs associated with the
permutation of the two fields. For the particular case of a Dirac spinor and its conju-
gate we have

T[wa () (y)] =0 = ) Ya P (0) — 000 = xOP () Ya(x). (3.64)

The rule for higher order point functions is the same as in the bosonic case (“earlier”
fields always to the right) apart from the fact that each term comes now multiplied
by the sign needed to bring the original expression into the time order.

The computation of the vacuum expectation value of the time-ordered product
of a number of ¢ and W fields can be done using an extension of Wick’s theorem
introduced in Sect. 2.2 for a real scalar field. The main difference is that now the
Wick contractions only occur between a Dirac field v/ (x) and its conjugate v/ (x)

Iﬂa(xl)wﬁ(m) —> Sap(x1, X2). (3.65)

In addition, since the fields anticommute, there are extra signs associated with
the permutations required to bring together in the correct order the fields that are
Wick-contracted. The details can be found in the standard texts (see for example
Ref. [1-15] in Chap. 1).

The Dirac field can also be quantized using the path integral formalism introduced
in Chap. 2. The propagator (3.62) can be written as

DYDY o (1) (x2)e 1V ]
[oyeste)

Sap (X1, x2) = (3.66)

This expression has, however, a very important difference with its bosonic counterpart
shown in Eq. (2.89). Whereas in both cases all fields inside the path integral are
functions and not operators, here v and v/ are anticommuting functions. This fact is
crucial in performing the functional integration. Anticommuting objects have to be
integrated using the so-called Berezin rules



