Appendix A
Notation, Conventions and Units

For the benefit of the reader we summarize in this Appendix the main conventions
used throughout the book.

A.1 Covariant Notation

We have used the “mostly minus” metric

S O =
\
—_
]
oS O O

My = (A.1)

0o 0 0 -1

Derivatives with respect to the four-vector x* = (ct,x) are denoted by the
shorthand

Sporadically we have used the notation

—

f(x)0,8(x) = f(x)0,8(x) — 0, f (x)g(x). (A2)
As usual space-time indices will be labelled by Greek letters (u,v,... =0,1,2,3)
while Latin indices will be used for spatial directions (i, j, ... = 1,2, 3). We reserved

o,  for Dirac and a, b, c, . . . for Weyl spinor indices.
The electromagnetic four-vector potential A* is defined in terms of the scalar ¢
and vector potential A by

A" = (@, A). (A.3)
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The components of the field strength tensor F,, = 0,A, — 0,4, and its dual F =
%SWU;VF % are given respectively by

0 E E E 0 B, B, B,
_| -E. 0 -B, B, =~ _ | -B. —E,
Flw - _Ey Bz O —Bx ’ F/w - _By —E, OZ Ex ) (A'4)
—E, —B, B 0 -B, E, —-E. O

withE = (E\,E,, E;) and B = (B, By, B;) the electric and magnetic fields. Similar
expressions are valid in the nonabelian case.

A.2 Pauli and Dirac Matrices

We have used the notation ¢/, = (1,+0;) where g; are the Pauli matrices

(00 e (O ) (L) s

They satisfy the identity
0i0; = 51'1‘1 + Eijk Ok, (A6)

from where their commutator and anticommutator can be easily obtained.
Dirac matrices have always been used in the chiral representation

W= <<3i 0§>. (A7)

The chirality matrix is normalized as y? =1 and defined by 75 = —i)%!'y%)>.

In many places we have used the Feynman’s slash notation ¢ = y"a,,.

A.3 Units

Unless stated otherwise, we work in natural units # = ¢ = 1. Electromagnetic
Heaviside-Lorentz units have been used, where the Coulomb and Ampere laws
take the form

1 g4 aF 1 1II

N A8

4 3 7 dl 2mct d (A8)
In these units the fine structure constant is
2
e

= . A9

* T dhe (4.9)

The electron charge in natural units is dimensionless and equal to e ~ 0.303.



Appendix B
A Crash Course in Group Theory

Group theory is one of the most useful mathematical tools in Physics in general
and in quantum field theory in particular. To make the presentation self-contained
we summarize in this Appendix some basic facts about group theory. Here we
limit ourselves to the statement of basic results. Proofs and more detailed
discussions can be found in the many books on the subject, such as the ones listed
in Ref. [1, 2, 3, 4].

B.1 Generalities

Physical transformations have a number of interesting properties. To have an
intuitive example in mind let us think of rotations in three-dimensional space.
These transformations have interesting properties: if two rotations are performed
in sequence the result is another one, and any rotation can be “undone®.

Group theory is a way to translate these elementary properties of rotations or
any other physical transformations into mathematical terms. A group G is a set of
elements among which an operation G x G — G is defined that associates to every
ordered pair of elements (g, g2) of the group another element, their product g g>.
In order to be a group, the set G and the product operation have to satisfy a number
of properties:

e The group product should be associative. This means that given three elements
81,82, 83 € G they satisfy g1(g283) = (8182)83-

e G has a unit element 1 such that g1 = 1g = g for every element g of the group.

e The group G contains together with every element g € G of the group its
inverse, g~! € G, that satisfies the property g 'g = gg~! = 1.

In Physics one usually deals with group representations. These are realizations
of abstract groups in terms of finite or infinite dimensional matrices. In more
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278 Appendix B: A Crash Course in Group Theory

technical terms, it can be said that a representation of a group G is a correspondence
between its elements and the set of linear operators acting on a vector space V. This
correspondence

D(g):V—V (B.1)
has to “mimic” the group product: given g;,8, € G

D(g1)D(g2) = D(g182), D(g;') =D(g1)"". (B.2)

A representation of a group is a set of operators acting of a certain vector
space V. It might well happen that all these operators leave a proper subspace
UCV (e U#V and U # @) invariant, D(g)U C U for any element D(g) of
the representation. When this happens it is said that the representation is reducible.
A reducible representation can be decomposed into irreducible ones. These latter
are the ones that satisfy that if D(g)U C U for any element of the representations
then either U =@ or U = V.

A very important result concerning irreducible representations is Schur’s
lemma: if D(g) is a irreducible representation of a group G acting on a complex
vector space V, and if there is an operator A : V — V that commutes with all the
elements of this representation, then A must be proportional to the identity,
A = /1. Here 1 is some complex number.

Schur’s lemma can be a useful tool in deciding whether a representation is
reducible. If given a group representation we manage to find an operator that,
commuting with all elements of such representations, is not proportional to the
identity this automatically implies that the representation is reducible. This
criterium was used in Chap. 3 to show that Dirac spinors transform in a reducible
representation of the Lorentz group.

B.2 Lie Groups and Lie Algebras

Specially interesting for their applications in quantum field theory are the Lie
groups whose elements are labelled by a number of continuous parameters. In
mathematical terms this means that a Lie group G can be seen as a manifold where
the parameters provide a set of (local) coordinates. The simplest example of a Lie
group is SO(2), the group of rotations in the plane. Each element R(0) is labelled
by the rotation angle 0, with the multiplication acting as R(0)R(6,) = R(60; + 6>).
The angle 0 is defined modulo 27, therefore the manifold of SO(2) is a
circumference S'.

One of the interesting properties of Lie groups is that in a neighborhood of the
identity any element can be expressed in terms of a set of generators T4
(A=1,...,dimG) as

00

D(g) = exp(—iod'T) = Z

n=0

3

n! oA T (B.3)
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where ¢4 € C are a set of coordinates of G in a neighborhood of 1. Using the
general Baker-Campbell-Haussdorf formula (see for example [5], p. 81-82), the
multiplication of two group elements is encoded in the value of the commutator of
two generators, that in general has the form

[T, 7] = ifA2eTe, (B.4)

where f48C€ € C are called the structure constants. The generators can be
normalized in such a way that f48C is completely antisymmetric in all its indices.

The set of generators 74 with the commutator operation (B.4) define the Lie
algebra g associated with the Lie group G. Hence, given a representation of the Lie
algebra of generators we can construct a representation of the group by
exponentiation (at least locally near the identity).

Besides their dimension, i.e. the number of generators, Lie algebras are
characterized by their rank. This is defined as the maximal number of generators
that commute among themselves. It is easy to see that those commuting generators
form a subalgebra, called the Cartan subalgebra of the Lie algebra. The rank of a
Lie algebra is therefore equal to the dimension of its Cartan subalgebra.

We illustrate these concepts with three particular examples of physical
relevance.

u@
This is about the simplest Lie group one can imagine. Its Lie algebra consists
of a single generator, 7. Group elements can then be written as

Ux) = e ™. (B.5)

with o a real number. This group is abelian and all its irreducible representations
are one-dimensional. This last result can be easily proved using Schur’s lemma.
This means that irreducible representations are of the form

D,(a) = e ", (B.6)

where ¢ is a real number labeling the representation. This number is the analog of
the electric charge for the U(1) gauge group of QED.

It is useful to make a distinction between noncompact and compact U(1)
groups. The difference lies in the fact that in the first case « takes its values over
the whole real line. For a compact U(1), on the other hand, the parameter o varies
in a compact range. This latter case is realized when all irreducible representations
of the group U(1) are characterized by values of ¢ that are integer multiples of
some real number gy, i.e. ¢ = ngo with n € Z. If this is the case one has

D, (oc + 2—2) = D,(x) (B.7)

for every g. This periodicity is not satisfied when the U(1) is noncompact, in which
case ¢ can take any real value.
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SUQ2)

The group SU(2) is well-known from the theory of angular momentum in
quantum mechanics. Its Lie algebra has three generators {7', 7% T} that
satisfy

[T*, T = it (B.8)

The generators

1
T+ = —(T" +i1%), T° (B.9)
V2 ’

can alternatively be used to write the SU(2) Lie algebra as
[T3,T*) = 41+, [T7,T7]=T". (B.10)

Either form of the algebra shows that no subset of generators is mutually
commuting. Therefore the Cartan subalgebra of SU(2) can be taken to be made of
a single generator that, by convention, we can take to be T°>.

Using (B.10), the irreducible representations of the Lie algebra of SU(2) can be
constructed following the standard techniques familiar from quantum mechanics.
They are characterized by their spin s, a nonnegative integer or half-integer, and
have dimension 2s + 1. Here we focus on two basic representations. One is the

fundamental two-dimensional representation with spin s = % The generators can
be written in terms of the Pauli matrices as
e 1
T = 50k k=1,2,3, (B.11)

whereas finite transformations in the connected component of the identity are
Dy(of) = e, (B.12)

The second representation of SU(2) that we mention here is the three-
dimensional adjoint (or spin 1) representation which can be written as

Dy (o) = ™", (B.13)
with the generators given by
0 0 0 0 0 —1 0 10
Ji=fo o 1|, =00 0|, P=|-1 0 0]. (B.14)
0 -1 0 1 0 0 0 0 0

The J* (k = 1,2,3) generate rotations around the x, y and z axis respectively.

SU@3)
This group has eight generators and two basic three-dimensional irreducible
representations, the fundamental and antifundamental denoted respectively by 3
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and 3. In QCD these representations are associated with the transformation of
quarks and antiquarks under the color gauge symmetry SU(3). The elements of
these representations can be written as

Diy(ef) = 4, Dy(a) = e PN (k=1,...,8), (B.15)

where 4, are the eight hermitian Gell-Mann matrices

010 0 —i 0 1 0 0
=1 00|, hL=|i 0 0], =[0 -1 0],

000 0 0 0 0 0 0

00 1 00 —i 000
Z4=|0 0 0], As=[00 0], Z=[00 1] (g

100 i 0 0 010

00 0 s00
=0 0 —i|, A=[0 S 0

| 2

0 i O 0O 0 NG

Hence the generators of the representations 3 and 3 are given by
1 = 1
T*(3) =5 T5(3) = —Eﬂn,{. (B.17)

The rank of SU(3) is 2, its Cartan subalgebra being generated by T° and T8.

Given a representation D(g) of a group G, it is easy to see that the set of
operators obtained by complex conjugation D(g)" are also a representation of the
same group. In the case of a Lie group this is reflected in the fact that the
generators —(7%)" satisfy the Lie algebra relations (B.4) with the same structure
constants. In fact, irreducible representations of a Lie algebra can be classified in
three types, real, complex and pseudoreal, depending on whether —(7%)" is or is
not related to the original generators 74 by a similarity transformation:

e Real representations: a representation is said to be real if there is a symmetric
matrix S which acts as intertwiner between the generators and their complex
conjugates, namely

(1%)" = —s1s7!, §T =5. (B.18)

This is the case of the adjoint representation of SU(2) generated by the matrices
(B.14). In this example all the generators are real matrices and the intertwiner is
just the identity.

e Pseudoreal representations: are the ones for which an antisymmetric matrix
S exists with the property

(%) = —sTs7!,  §T == (B.19)
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As an example we can mention the spin-% representation of SU(2) generated by
%oi. The intertwiner is S = —io».

e Complex representations: finally, a representation is complex if the generators and
their complex conjugates are not related by a similarity transformation. This is for
instance the case of the two three-dimensional representations 3 and 3 of SU(3).

B.3 Invariants

There are a number of invariants that can be constructed associated with an
irreducible representation R of a Lie group G and that can be used to label such a
representation. Let T4 be the generators in a certain representation R of the Lie
algebra g. Using the antisymmetry of f48C it can be proved that the matrix

jiflG TﬁTﬁ commutes with every generator Tﬁ. Therefore, according to Schur’s
lemma, it has to be proportional to the identity.' This defines the Casimir invariant
C>(R) as

dimG

> TaTi = G(R)L (B.20)
A=1

A second invariant T (R) associated with a representation R can also be defined by
the identity

Tr TaTh = Ty (R)5*2. (B.21)

Taking the trace in Eq. (B.20) and combining the result with (B.21) we find that
both invariants are related by

C>(R)dimR = T5(R)dim G, (B.22)

with dim R the dimension of the representation R.

These two invariants appear frequently in quantum field theory calculations
with nonabelian gauge fields. For example 7,(R) comes about as the coefficient of
the one-loop calculation of the beta-function for a Yang-Mills theory with gauge
group G. In the case of SU(N), for the fundamental representation, we find the
values

N? -1
2N

Cy(fund) = T>(fund) = %, (B.23)

' Schur’s lemma also applies to the representations of a Lie algebra: if a representation is
irreducible and there is a matrix of the same dimension as the representation that commutes with
all the generators then this element has to be proportional to the identity.
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whereas for the adjoint representation the results are
Cz(adj) = N, Tz(adj) =N. (B24)

A third invariant A(R) is specially important in the calculation of anomalies. As
discussed in Chap. 9, the chiral anomaly in gauge theories is proportional to the
group-theoretical factor Tr[Tg{T§, Tg}]. This leads us to define A(R) as

Tr[TR{TR. Tx }] = A(R)d"*€, (B.25)

where @48C is symmetric in its three indices and does not depend on the
representation. The cancellation of anomalies in a gauge theory with fermions
transformed in the representation R of the gauge group is guaranteed if the
corresponding invariant A(R) vanishes.

It is not difficult to prove that A(R) = 0 if the representation R is either real or
pseudoreal. Indeed, if this is the case, then there is a matrix S (Symmetric or
antisymmetric) that intertwins the generators Tj and their complex conjugates

(TR)" = —STaS~!. Then, using the hermiticity of the generators we can write
Tr [Tﬁ{T{i, TIQH —Tr [Tﬁ{Tﬁ, Tﬁ}_ = Tr[(Tﬁ)*{(Tﬁ)*, (Tg)*}]. (B.26)
Now, using (B.18) or (B.19) we have
Te[ (i) { ()", (70)" }| = = Te[sTas {sms 1 5T ]
a{ri T}, (B.27)

which proves that Tr[Tg{T%,Tg}] =0 and therefore A(R) =0 whenever the
representation is real or pseudoreal. Since the gauge anomaly in four dimensions is
proportional to A(R), anomalies appear only when the fermions transform in a
complex representation of the gauge group.

=—T

-

B.4 A Look at the Lorentz and Poincaré Groups

Finally, we close this Appendix with the review of some features of the Lorentz
group used at several places in this book. We avoid getting into detailed proofs.
They can be found in a number of textbooks (for example [6, 7]), as well as in
reference [6] of Chap. 11.

The Lorentz Group
The Lorentz group SO(1,3) is defined as the group of space-time
transformations that preserve the Minkowski metric, that is

X" = A*x" such that 5, A"sA"; =1, (B.28)
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From its very definition we find that A*, satisfies det A = £1 and

3
(A%)? =) (N)* =1, (B.29)
i=1
which follows from the 00 component of the second equation in (B.28). From

Eq. (B.29) we find (Aoo)2 > 1 and the Lorentz group can be split into the following
four disconnected components

. Bl: proper, orthochronous transformations with det A = 1, A% > 1.

o 2l improper, orthochronous transformations with det A = —1, A% > 1.

o 0l: improper, non-orthochronous transformations with det A = —1, AOO <-—1.
. Biz proper, non-orthochronous transformations with det A =1, A%< —1.

The term (non)-orthochronous refers to whether the Lorentz transformation
preserves or not the direction of time. Notice that the identity is included in QL and
therefore this is the only branch of the Lorentz group that forms a subgroup. The
other three branches are connected to the orthochronous, proper Lorentz subgroup
by parity and time reversal in the following way (see Chap. 11)

el Zel el el ol el (B.30)

We focus then on QL. We are going to see that transformations in this subgroup
can be written in terms of complex 2 X 2 matrices of unit determinant. We
consider a four-vector V* and construct the Hermitian matrix

<V0+V3 V'—in)

3
_ /0 i
V=V Vo= e gy

i=1

(B.31)

This defines a one-to-one correspondence between four-vectors and Hermitian
matrices, whose determinant gives the norm of the vector

detV =n,, V*V". (B.32)
Now, the determinant is preserved by any SL(2, C) transformation acting as
V — AVA', detA=1. (B.33)

Since the transformed matrix is also Hermitian, it defines a transformed four-
vector V'* with the same norm. This means that the linear map (B.33) has to act on
the components V# as a Lorentz transformation

VI V= AF(A)V (B.34)

That this Lorentz transformation belongs to QL can be seen as follows: the group
SL(2, C) is simply connected and the relation between SL(2,C) and Lorentz
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transformations continuous. Since it includes the identity, the Lorentz
transformation A", (A) has to lie in the connected component of the identity, i.e. QL.

The correspondence between QL and SL(2, C) is in fact two-to-one. This is
obvious if we take into account that A and —A define the same Lorentz
transformation. This is why SL(2, C) is said to be the double covering of the
proper, orthochronous Lorentz group.

The relation between the Lorentz group and SL(2, C) is very important for the
definition of spinors. An undotted spinor is a two-component complex object &,
(with @ = 1,2) that under the Lorentz group transforms as

X — A(A)Y, &, — ALE,. (B.35)

Since the spinor £, is a complex objects, its conjugate does not transform with the
matrix A but with its complex conjugate A*. Such objects are called dotted spinor.

More precisely, they are two-component complex quantities 7, (with a = 1,2) that
under 531 transforms with the complex conjugate representation, namely

s ANAN, iy — (A7), (B.36)

Spinors with upper undotted and dotted indices are defined as objects

transforming in the representations (A7)™' and (A')™' respectively. In fact,
these representations are equivalent to A and A*, as can be seen from the identity

(A" =gAe™! where &= <_01 (1)>, (B.37)

valid for any A € SL(2,C). This means that indices can be raised and lowered by
contraction with &%, gab , &b and g,

Bearing in mind the previous discussion and comparing with (B.33), we see that
the matrix V associated with a Lorentz four-vector has an undotted and a dotted
index, V ;. To connect with the SU(2)xSU(2) label of the representations of the
Lorentz group introduced in Chap. 3, we notice that undotted spinors correspond to

Weyl spinors in the representation (% , 0). The element of SL(2, C) associated with
a Lorentz transformation characterized by a rotation Om and a boost f =
(B, B*, B*) can be read from (3.14) to be

A = ¢ iln=if)o, (B.38)

From the same equation we see that a spinor u_ in the representation (0,3)

transforms with (AT)_1 and therefore has an upper dotted spinor index. Thus, in the
chiral representation of the y-matrices, a Dirac spinor can be decomposed in dotted

and undotted components as
v = (5 ) (B.39)
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Since all other representations of the Lorentz group can be obtained by
decomposing products of the two fundamental representations (%,0) and (0,%),
any quantity transforming in a irreducible representation of the Lorentz group can

be written as a mixed tensor

@ (B.40)

ay...anby...by?
where all undotted and dotted indices have to be symmetric among themselves.”
They transform as

¢ Cu( A* d * d
o = A AL (AT, (AT, D

aj...apby...by 1

(B.41)

Cre.Cpdy..dy?

that in the language of SU(2) representations corresponds to (sy,s2) = (5,%).

For some technical issues, such as the proof of the CPT theorem outlined in
Sect. 11.6, it is necessary to study the complexification of the Lorentz group. This
is defined again as in (B.28) but with A*, complex. The only condition that follows
from this equation now is that det A = £1. Therefore, unlike its real analog, the
complexified Lorentz group has two connected components £ (C) labelled by the
sign of the determinant.

Since now coordinates and four-vectors are complex as well, the matrix (B.31)
associated to V*# is not Hermitian. This means that

V— AVB', A BeSL(2,C), (B.42)
defines a complex Lorentz transformation
VE — V= A", (A,B)V". (B.43)

Undotted and dotted spinors transform under £,(C) with the matrices A and
B belonging to the two factors of SL(2, C)xSL(2, C). For a general tensor (B.40)
the transformation is
@ = A ALB M By B, (B.44)
Using the same continuity arguments as for the real Lorentz group, we conclude
that the correspondence (A,B) — A(A,B) defines a two-to-one isomorphism
between SL(2, C)xSL(2, C) and the proper complex Lorentz group £, (C). The
elements (A,B) and (—A,—B) correspond to the same complex Lorentz
transformation. An important thing achieved by the complexification of the
Lorentz group is that now the space-time inversion 27 : x* — —x* lies in the
connected component of the identity £, (C). This transformation acts on tensors
by multiplying it by —1 for each dotted spinor,

% Notice that if the quantity were antisymmetric in a pair of dotted or undotted antisymmetric
indices these can be eliminated using either &4, or ¢,;. For example, if ®g... = —®Dp,... we can
write Qgp... = & ®... where O... = LD
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PT D — (-1)"® (B.45)

ay...apby...by, ay...apby..by*

The Poincaré Group
The Poincaré group P is the Lorentz group supplemented by space-time
translations

P:xt — A x" +a. (B.46)

The group has ten generators: six of the Lorentz group, _# ,,, plus the four of space-

N
time translation, P*. In addition to (3.5) its Lie algebra contains the commutators

[Py, P,] =0, [/#WPU] = i Py — i, Py (B.47)

Each element of the Poincaré group is labelled by a Lorentz transformation and a
four-vector. The restriction of the Lorentz transformations to the proper subgroup
531 ~ SL(2,C) defines the proper Poincaré subgroup P, .

The unitary irreducible representations of the Poincaré group are labelled by
two Casimir operators. The first one is constructed from the generator of
translations as

M? = P,P". (B.48)
The second one is defined by
W2 = W, WH, (B.49)

where W* is the Pauli-Lubanski vector
1 -
WH = Eg""‘”JWPi. (B.50)

The representations are classified according to the sign of M in the following three
classes:

e Timelike or massive representations (M*> > 0). The representation acts on a
linear space whose basis we take to be eigenstates of the translation operator P*
with eigenvalue p*. Since p,p" = M? > 0, we can choose a reference frame
where the eigenvalue takes the form p* = (M,0). Then, the Pauli-Lubariski
vector acting on these states has the form W* = (0, MJ), with J the generator of
spatial rotations. The rotation group generated by J defines the little group, i.e.
the group preserving the form of the eigenvalue p*. The Casimir operator is
easily computed to be

W2 = —M?*s(s + 1), (B.51)

where s is the spin that takes positive integer or half-integer values. Notice that
the second Casimir operator W2 is a Lorentz scalar and therefore its value is
independent of the particular system of coordinates used.
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Light-like or massless representations (M*> = 0). We work again in a basis of
eigenstates of P¥. Since the eigenvalues satisfy p#p, = 0 the wise choice of
reference frame is one where p* = (M, 0,0, M). It takes a little bit of algebra to
check that the transformations preserving this vector are generated by J3, K| +
Jo» and K; — J;. Working out their commutation relations we find that they
generate the two-dimensional euclidean group ISO(2) of rotations and
translations in a plane. Its unitary finite dimensional representations are one-
dimensional and labelled by the eigenvalue of J3, the helicity, that takes values
A=0,£1/2,... If we want the representation to preserve CPT, we need to
include together the positive and negative eigenvalues of J;. Therefore, the
representation associated with a massless particle contains the helicities 4 and
—/. This is the reason why photons or other massless particles come only in two
helicity states.

Space-like or tachyonic representations (M?> < 0). There are no known
particles transforming under this class of representations. Therefore we will
not elaborate on them.

Unitary irreducible representations of the Poincaré group are determined by the

eigenvalue of P> and the irreducible representation of the corresponding little
group [i.e., SO(3) ~ SU(2) for massive and ISO(2) for massless representations].
What we usually call a particle is a state that transforms in one of these irreducible
representations, which comes labelled by its mass and spin/helicity.
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Baryons, 82, 86, 87, 89, 91, 203
BCS theory of superconductivity
Berezin rules, 45
Beta decay, 81, 84, 98
Beta function, 150, 151-153, 155,
169, 170, 204
¢* theory, 246
QCD, 152
QED, 152, 257-259
Bhabha scattering, 112, 117
Bianchi identities, 48, 51, 76
Bloch wave function, 71
Boosts, 33-34, 36, 106, 108, 285
Brout-Englert-Higgs mechanism, 99, 141, 143,
193, 196, 201, 206

C
Cabibbo-Kobayashi-Maskawa matrix, 198,
221
Callan-Symanzik equation, 168, 169,
242, 243
in dimensional regularization, 244
solution
Canonical formalism see also Constrained
dynamics, 17
Canonical quantization
electromagnetic field, 55, 56
free Dirac field, 40, 42
free scalar field, 19, 20
Cartan subalgebra, 98, 279-281
Casimir effect, 22, 24
Casimir operator, 287
Causality, 6, 228
Center of mass frame, 106, 108
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C (cont.)
Charge conjugation, 73, 85, 209-216, 218,
219, 222
Chiral anomaly
see gauge anomaly
Chiral symmetry, 183, 187, 233, 255
Chirality, 41, 93, 233
matrix, 40, 278
vs. helicity, 41
CKM matrix see Cabbibo-Kobayashi-
Maskawa matrix
Classical electromagnetism
as a constrained system
CMB polarization, 122, 123, 125, 126
E- and B-mode, 125
Coleman theorem, 140
Coleman-Mandula theorem, 269
Collective coordinates, 77
Color (quantum number), 90, 281
and confinement, 91
color factor, 207
Commutation relations (canonical), 19
Compton scattering, 116
Constrained dynamics, 62
Correspondence principle, 1
Cosmological constant, 256
Counterterms, 162
for ¢* theory, 238, 240
for QED, 162
Covariant derivative
nonabelian gauge theory, 59
QED, 57
CP invariance, 221
CP violation, 219-221
CPT theorem, 209, 222, 223, 225-229, 286
Creation-annihilation operators
Klein-Gordon field, 15
Cross section
differential, 101
total, 102

D
Decay times, 82
Deep inelastic scattering, 86, 90
Differential cross section see Cross section
Dimensional regularization see also Quadratic
divergences, 232, 233, 244
Dimensional transmutation, 204
Dirac algebra, 39, 212, 213, 215
chiral representation, 39, 276, 285
Dirac charge quantization condition, 53

Index

Dirac equation, 3, 4, 39, 40, 42, 43
and discrete symmetries, 211-213
in 1 + 1 dimensions
Dirac sea, 4, 6, 178, 179, 264
Dirac spinors see Spinors
Dirac string, 52
Dirac-Schwinger-Zwanziger charge
quantization condition, 54
Discrete symmetries see Charge conjugation,
CP, CPT, Time reversal, Parity,
Symmetry
Dyons, 53

E
Effective charge, 150, 152, 161
Effective field theories, 172, 249-251, 253, 257
Electroweak theory, 92, 98, 193
Energy-momentum tensor, 129
n, n° mesons, 87, 89, 90
Euler-Lagrange equations, 18
External field, 180-182, 264, 267

F
Faddeev-Popov determinant, 65, 66, 68
Faddeev-Popov ghosts, 68
Fermi constant, G, 93, 199
Fermi’s golden rule, 82
Feynman diagrams, 111, 112, 116
Feynman gauge (¢ = 1), 111, 113
Feynman parameters, 240
Feynman rules
for ¢* theory, 237
for nonabelian gauge theories, 116
for QED, 113, 116
heuristic construction, 111
Field redefinitions, 110
Field strength tensor
abelian, 48, 276
dual, 276
nonabelian, 59
Fixed points (renormalization group), 153,
154, 170
in statistical mechanics, 166
infrared stable, 153
trivial, 153
ultraviolet stable, 153
Frames see Center of mass frame Laboratory
frame, Oblique frame
Free quantum field theory, 22
Fundamental interactions, 81
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G
y5-matrix see Chirality matrix
Gauge anomaly, 189, 233, 283
Gauge fixing see also Axial gauge, Feynman
gauge, 55, 64, 65, 67
Lorentz gauge, Temporal gauge
Gauge invariance, 47, 50
and quantization, 64—68
as redundancy see alsoTopology of gauge
transformations, 56, 62-64, 202
Gauge theories
abelian, 47-58
nonabelian, 58-60
vacuum structure see also Anomaly,
Instanton, QCD, QED, 68-74
Gauge transformation
of electromagnetic potential, 47, 49
of matter fields, 56, 59
of nonabelian field strength, 60
of nonabelian gauge fields, 59
of QED fields, 57
Gauss’ law
electrodynamics, 63
nonabelian gauge theories, 71, 143, 189
Gell-Mann matrices, 281
Gell-Mann-Nishijima formula, 83, 190, 195
Georgi’s toy universe, 207
Glashow-Iliopoulos-Maiani (GIM)
mechanism, 198
Glashow-Weinberg-Salam theory
see Electroweak theory
Gluon, 92
Goldstone’s theorem see also Nambu-
Goldstone modes, 135, 136, 141
Green’s functions see also Propagator
(Feynman), 109
One-particle-irreducible
Group representations, 277, 280
Group theory, 279-290, 297

H
Hadrons, 82
Hawking temperature, 268
Heaviside step function, 12
Heaviside-Lorentz units, 276
Heisenberg ferromagnet, 137
Helicity, 37, 56, 215, 219, 222, 271, 288
operator (Dirac spinor), 40
vs. chirality, 1
Hierarchy problem, 232, 236, 28, 255
Higgs boson, 196, 198-202, 232
couplings, 198, 199
mass, 196, 199, 200
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potential, 195, 201
searches, 200
Higgs mechanism see Brout-Englert-Higgs
mechanism
Holes in the Dirac sea as antiparticles, 4, 177,
180, 267
Homotopy group, 69, 70
’t Hooft symbols, 35, 36, 76, 78
Hypercharge
Strong, 84
Weak, 94-96, 190, 195, 196

I
Infrared divergence, 114, 236
Instanton, 30-32, 74-78, 187
number, 78
Interpolating field, 110
Invariant scattering amplitude, .#; ., 103
Irreducible representation, 278
Irrelevant operators, 167, 171, 247,
249, 20, 251
Isospin
Strong, 83, 89, 92, 187, 205
Weak, 93, 95

K
Kaons, 89, 90
and CP violation, 220
Klein paradox, 4-6
Klein-Gordon equation, 1-4, 37, 55,
264, 265
Kramers theorem , 218

L

Laboratory frame, 106

Aqcp, 205-208

Landau pole, 152, 202, 247

Left-handed spinor, 34, 35

Lepton number, 38, 130, 250

Leptons, 84, 86

Lie algebra representations
adjoint, 59, 284
complex, 284
fundamental, 282
pseudoreal, 284
real, 283

Lie algebras, 281-285
rank, 281

Lie groups, 280-290

Little group, 289

Longitudinal polarization
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L (cont.)
and the Brout-Englert-Higgs
mechanism, 143, 196, 201
Lorentz gauge, 55, 64, 67
Lorentz group
complexified, 288, 289
components, 286
generators, 33, 34, 40
representations, 33-35
LSZ reduction formula
see Reduction formula

M
Magnetic monopoles
Dirac monopole, 52
electric charge quantization, 53
’t Hooft-Polyakov monopole, 54
Majorana mass term see Mass term
Majorana spinors see Spinors
Marginal operators, 167, 171, 172, 247, 250
Mass independent subtraction scheme, 241,
243, 246, 247, 252
and decoupling of heavy particles, 257-260
and effective field theories, 253
Mass renormalization, 158, 232, 239,
247-249, 251-255
Mass term
Dirac, 39
Majorana, 38, 216
Masses in the standard model see Standard
model
Massive gauge fields see also Brout-
Englert-Higgs mechanism, 201, 202
Maxwell equations, 48, 51
Maxwell Lagrangian, 55
Mermin-Wagner theorem, 140
Mesons, 82
Microcausality see Causality
Minimal subtraction (MS, MS), 241
see also Mass independent subtraction
scheme
Mixing see also Cabibbo-Kobayashi-Maskawa
matrix, 89, 250

N
Nambu-Goldstone modes see also Pions, 135,
136, 138-141, 143, 196, 202, 248
Naturalness, 255-257
Negative energy states, 3, 4
Neutrinos, 37, 38, 85, 86, 94, 95
masses, 194, 196, 198, 221, 250, 251
sterile, 95, 191, 250

Noether’s theorem
in classical field theory, 127
in classical mechanics, 127
Nonabelian gauge theories
see Gauge theories
Nonrenormalizability
see Renormalizability
Normal order, 21
Notation, 277, 278

(0}
Oblique frame, 107, 108
On-shell condition, 12
One-particle states
Lorentz invariant normalization, 14
nonrelativistic, 12
One-particle-irreducible
One-particle-irreducible (1PI)
diagrams, 156-161
Green’s functions, 168

P
Parity, 35, 209-216, 218, 219,
222,284
intrinsic, 214
Partons, 204
Path integrals
for fermionic fields, 45
for gauge fields, 64, 66
Gaussian, 28
in quantum field theory, 27, 28
in quantum mechanics, 27
Pauli matrices, 276
Pauli-Lubanski vector, 287
Perturbation theory, 111, 147
Phase space factor, 105
¢* theory, 154, 236
beta function, 246
Feynman rules, 237
renormalization, 238, 241-243
Photon
helicity, 56
polarizations, 55, 56
Pions, 82
as Nambu-Goldstone
bosons, 140, 187
Planck mass, 231, 232
Poincaré group, 287, 288
Poisson brackets, 18
Propagator (Feynman)
Dirac field, 44, 158
Klein-Gordon field, 17

Index
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photon (full) see also Feynman
rules, 156, 157
Propagator (in quantum mechanics), 25
fixed-energy, 25
semiclassical, 29

Q
QCD, 91-93, 99, 131, 141, 153, 183-189,
204-208, 221
beta function, 152
QED, 57, 67, 267
beta function, 152
Feynman rules, 111, 113, 115
renormalization, 145, 16, 148, 155, 157,
159, 160-162
Quadratic divergences, 149, 232, 247
and dimensional regularization, 236, 248,

255
Quark model, 86
Quarks, 86

constituent mass, 203
current-algebra mass, 204
flavors, 86

heavy, 207

light, 205

sea, 204

valence, 204

R
Rapidity, 33, 36
Reduction formula, 109-110
Relativistic quantum mechanics, 1-4
Relevant operators, 171, 249
Renormalizability, 162
of the standard model, 195, 200
vs. nonrenormalizability
Renormalization see also d)4 theory, QCD,
QED, 114, 145, 146, 148, 154, 155,
157, 159, 160-163, 166-168,
170, 172
Renormalization conditions, 162, 168, 238
Renormalization group equations
see Callan-Symanzik equations
in quantum field theory, 167, 169, 170
in statistical mechanics see also
Fixed points (renormalization
group), 163, 166
Renormalized perturbation
theory, 161, 162, 238
Representations see Group representations,
Lorentz group, Poincare group
Retarded Klein-Gordon propagator
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Right-handed spinor, 34, 35

Running coupling constant, 170, 171, 242
¢* theory, 246
QCD, 204, 205
QED, 150, 152

Running mass

S
S-matrix
and correlation functions, 109
and cross sections, 100, 106-108
CPT transformation, 223
Scalar field theory, 15, 17
see also ¢* theory
Scale invariance, 154, 155, 175
broken by quantum effects, 154—155
in statistical mechanics, 166
Schrodinger equation, 25, 48-49
Schur’s lemma, 278
Schwinger effect, 264, 267-268
Self-energy
fermion, X, 157-159
in ¢>4 theory, 239
in a four-fermion theory photon
see Vacuum polarization
tensor, 252
Semiclassical approximation see also
Instanton
Slash notation, 276
SO4)
representations, 35
Spin-statistics theorem, 223
Spinor
Dirac, 38
dotted, 285
Majorana, 215-216
undotted, 287
Weyl, 34, 36
Spontaneous symmetry breaking see also
Abelian Higgs model,
Brout-Englert-Higgs mechanism,
Goldstone’s theorem, 127, 133, 138,
141-142, 144, 187
Standard model, 81-98, 219-221
anomaly cancellation
energy scales, 231-232
masses
naturalness, 255-256
see also Electroweak theory, QCD
Stokes parameters, 123—-125
Stress-energy tensor
see Energy-momentum tensor
Strong CP problem, 222



