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Chapter 1
Why Do We Need Quantum Field Theory
After All?

Quantum field theory is the basic tool to understand the physics of the elementary
constituents of matter (see [1-15] for an incomplete list of textbooks in the subject).
It is both a very powerful and a very precise framework: using it we can describe
physical processes in a range of energies going from the few millions electrovolts
typical of nuclear physics to the thousands of billions of the Large Hadron Collider
(LHC). And all this with astonishing precision.

In this first chapter our aim is to explain why quantum mechanics is not enough
and how quantum field theory is forced upon us by special relativity. We will review
a number of riddles that appear in the attempt to extend the results of quantum
mechanics to systems where relativistic effects cannot be ignored. Their resolution
requires giving up the quantum mechanical description of a single particle to allow
for the creation and annihilation of particles. As we will see, quantum fields provide
the right tool to handle this.

1.1 Relativistic Quantum Mechanics

In spite of the impressive success of quantum mechanics in describing atomic physics,
it was immediately clear after its formulation that its relativistic extension was not free
of difficulties. These problems were clear already to Schrodinger, whose first guess
for a wave equation of a free relativistic particle was the Klein-Gordon equation'

82
(W —V2+m2) Y(t,x) = 0. (1.1)

This equation follows directly from the relativistic “mass-shell” identity E> = p? +

m? using the correspondence principle

1" We use natural units » = ¢ = 1. A summary of the units and conventions used in the book can

be found in Appendix A.
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E—i—,

ot
p— —iV. (1.2)
Plane wave solutions to the wave equation (1.1) are readily obtained

w(t’ X) — e—ipux/" _ e¢iEp[+ip~X (13)

with

Ep = \/p> +m2. (1.4)

In order to have a complete basis of functions, we must include both signs in the
exponent. The probability density is read from the time component of the conserved
current

u= 5 (9700~ 8.979), 15

Since j® = E, we find that it is not positive definite.
A complete, properly normalized, continuous basis of solutions of the Klein—
Gordon equation (1.1) labelled by the momentum p is given by

|
@m)2,/2E,

1 . .
fop(t,x) = —————e Bl =iPX, (1.6)

@)} J2E,

e—lEpt+1p<x’

fp(t’ X) =

Defining the inner product

Wilya) =i / x (Wid0wn — aovivn).
the states (1.6) form an orthonormal basis

(fplfpr) =8 —P),
(foplf-p) = =8 —P), (1.7)
(fplf=p) = 0. (1.8)
The wave functions f,(z, x) describe states with momentum p and energy E, =

V/p? + m2. On the other hand, the wave functions f_ p»(t, X) not only have negative
scalar product but they correspond to negative energy states

0
igf,p(t,x) = —\/p*+m?f_p(1,X). (1.9)
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Fig.1.1 Spectrum of the Energy
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Therefore the energy spectrum of the theory satisfies |E| > m and is unbounded
from below (see Fig. 1.1). Although in the case of a free theory the absence of a
ground state is not necessarily a fatal problem, once the theory is coupled to the
electromagnetic field this is the source of all kinds of disasters, since nothing can
prevent the decay of any state by the emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation
can be heuristically tackled in the case of spin—% particles, described by the Dirac
equation

(—iﬂ%+a-V—m) Y(t,x) =0, (1.10)

where o and 8 are 4 x 4 matrices

A ()

with o; the Pauli matrices (see Appendix A) and the wave function ¥ (¢, x) has four
components: it is a Dirac spinor, an object that will be studied in more detail in
Chap. 3. The wave equation (1.10) can be thought of as a kind of “square root” of
the Klein—Gordon equation (1.1), since the latter can be obtained as

9 s
(—1,35+a~V—m) (—zﬁa—i—a-v—m)lﬂ(t,x)
82 2 2
z(ﬁ_v +m?) v, ). (1.12)

An analysis of Eq. (1.10) along the lines of the one presented for the
Klein—Gordon equation leads again to the existence of negative energy states and
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Fig.1.2 Creation of a Energy
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a spectrum unbounded from below as in Fig. 1.1. Dirac, however, solved the insta-
bility problem by pointing out that now the particles are fermions and therefore they
are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be
occupied by at most one particle, so the states with E = m can be made stable if we
assume that all the negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum
where all negative energy states are occupied, the so-called Dirac sea, it also leads
directly to the conclusion that a single-particle interpretation of the Dirac equation
is not possible. Indeed, a photon with enough energy (E > 2m) can excite one of the
electrons filling the negative energy states, leaving behind a “hole” in the Dirac sea
(see Fig. 1.2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape to the conclusion that interactions
will produce particle-antiparticle pairs out of the vacuum.

1.2 The Klein Paradox

In spite of the success of the heuristic interpretation of negative energy states in the
Dirac equation this is not the end of the story. In 1929 Oskar Klein stumbled into
an apparent paradox when trying to describe the scattering of a relativistic electron
by a square potential using Dirac’s wave equation [16] (for pedagogical reviews
see [17-19]). In order to capture the essence of the problem without entering into
unnecessary complication we will study Klein’s paradox in the context of the Klein—
Gordon equation.

Let us consider a square potential with height Vy > 0 of the type showed in
Fig. 1.3. A solution to the wave equation in regions I and II is given by

Tﬁ](t,x) — e—iEt+ip|x 4 Re—iEt—ippc7

Yir(t, x) = Te ' EIFiPY (1.13)

where the mass-shell condition implies
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Fig.1.3 Illustration of the V(x)
Klein paradox
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pr=VE2—m?, pr=(E - Vp)? —m?. (1.14)

The constants R and 7 are computed by matching the two solutions across the
boundary x = 0. The conditions 7 (¢, 0) = ¥y (¢, 0) and 0,7 (¢, 0) = 0, ¥y1(2, 0)
imply that

2 —
14! R_Pl P2

T=—", R= )
p1+p2 p1+p2

(1.15)

At first sight one would expect a behavior similar to the one encountered in the
nonrelativistic case. If the kinetic energy is bigger than Vj both a transmitted and
reflected wave are expected, whereas when the kinetic energy is smaller than Vj
one only expects to find a reflected wave, the transmitted wave being exponentially
damped within a distance of a Compton wavelength inside the barrier.

This is indeed what happens if E —m > Vj. In this case both p; and p; are real
and we have a partly reflected, and a partly transmitted wave. In the same way, if
Vo —2m < E — m < Vp then p; is imaginary and there is total reflection.

However, in the case when V > 2m and the energy is in the range 0 < E —m <
Vo — 2m a completely different situation arises. In this case one finds that both p;
and pj are real and therefore the incoming wave function is partially reflected and
partially transmitted across the barrier. This is a shocking result, since it implies that
there is a nonvanishing probability of finding the particle at any point across the
barrier with negative kinetic energy (E — m — Vy < 0)! This weird result is known
as Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insis-
tence in giving a single-particle interpretation to the relativistic wave function. In
fact, a multiparticle analysis of the paradox [17] shows that what happens when
0 < E —m < Vp — 2m is that the reflection of the incoming particle by the barrier
is accompanied by the creation of particle-antiparticle pairs out of the energy of the
barrier (notice that the condition implies that Vi > 2m, the threshold for the creation
of a particle-antiparticle pair).
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This particle creation can be understood by noticing that the sudden potential step
in Fig. 1.3 localizes the incoming particle with mass m in distances smaller than its
Compton wavelength A = 1/m. This can be seen by replacing the square potential
by another one where the potential varies smoothly from 0 to Vp > 2m in distance
scales larger than 1 /m. This case was worked out by Sauter shortly after Klein pointed
out the paradox [20]. He considered a situation where the regions with V = 0 and
V = Vp are connected by a region of length d with a linear potential V (x) = Vpx/d.
When d > 1/m he found that the transmission coefficient is exponentially small.?

1.3 From Wave Functions to Quantum Fields

The creation of particles is impossible to avoid whenever one tries to localize a
particle of mass m within its Compton wavelength. Indeed, from the Heisenberg
uncertainty relation we find that if Ax ~ 1/m, the fluctuations in the momentum
will be of order Ap ~ m and fluctuations in the energy of order

AE ~m (1.16)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are
enough to allow for the creation of particles out of the vacuum. In the case of a spin—%
particle, the Dirac sea picture shows clearly how, when the energy fluctuations are
of order m, electrons from the Dirac sea can be excited to positive energy states, thus
creating electron—positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by rela-
tivistic invariance. In non-relativistic quantum mechanics observables are represented
by self-adjoint operator that in the Heisenberg picture depend on time. Therefore
measurements are localized in time but are global in space. The situation is radi-
cally different in the relativistic case. Since no signal can propagate faster than the
speed of light, measurements have to be localized both in time and space. Causality
demands then that two measurements carried out in causally-disconnected regions
of space-time cannot interfere with each other. In mathematical terms this means
that if O, and Og, are the observables associated with two measurements localized
in two causally-disconnected regions Ry, R> (see Fig.1.4), they satisfy

[Or,» Or,) =0, if(x; —x2)? <0, forall x; € R, x2€Ry.  (1.17)

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must
depend on the space—time position x*. Unlike the case in non-relativistic quantum
mechanics, here the position X is not an observable, but just a label, similarly to the
case of time in ordinary quantum mechanics. Causality is then imposed microscop-
ically by requiring

2 In Sect.13.1 we will see how, in the case of the Dirac field, this exponential behavior can be
associated with the creation of electron—positron pairs due to a constant electric field (Schwinger
effect).
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Fig.1.4 Two regions t
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disconnected . .

[O(x), 0(»)] =0, if (x—y)? <0. (1.18)

A smeared operator O over a space—time region R can then be defined as

Or = / d*x 0 (x) fr(x) (1.19)

where fg(x) is the characteristic function associated with R,

1 xeR

fr(x) = (1.20)

0 x¢R-

Equation (1.17) follows now from the microcausality condition (1.18).

Therefore, relativistic invariance forces the introduction of quantum fields. It is
only when we insist in keeping a single-particle interpretation that we crash against
causality violations. To illustrate the point, let us consider a single particle wave
function v (¢, x) that initially is localized in the position x = 0

¥ (0,x) = 5(x). (1.21)

Evolving this wave function using the Hamiltonian H = +/'—V?2 + m? we find that
the wave function can be written as

3
Y(t,x) = e VA s (x) = Ak iex-in/im? (1.22)

—— €

)3
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Fig.1.5 Complex contour C
for the computation of the
integral in Eq. (1.23)

Nk

Integrating over the angular variables, the wave function can be recast in the form

o
Y(t,X) = 4n_21|X| / kdke'kIxl =itk +m?, (1.23)
—00

The resulting integral can be evaluated using the complex integration contour C
shown in Fig. 1.5. The result is that, for any ¢ > 0, ¥ (¢, x) # O for any x. If we
insist in interpreting the wave function v (¢, X) as the probability density of finding
the particle at the location x at the time 7, the probability leaks out of the light cone,
thus violating causality.

The bottom line of the analysis of this chapter is clear: a fully relativistic quantum
theory must give up the idea of describing the system in terms of the wave function of a
single particle. As a matter of fact, relativistic quantum mechanics is, at best, a narrow
boundary area. It might be a useful tool to compute the first relativistic corrections
in certain quantum systems. However it runs into serious trouble as soon as one tries
to use it for a full-fledged relativistic description of the quantum phenomena. Next
we will see how quantum field theory provides the right framework to handle these
problems.
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