Quantisation

We repeat the bosonic arguments, except for the fact that we have now anti-commutation relations
between electron and positron creation-annihilation operators

dk 1 T (k, ) b(k, s)e +v (K s)d (k s)e _ :
{Pal(t,x), \WQ y)} =6(x—y)dup
{b(k,5),bT(k".s")} = (27)’ 2wi)6 (k—k )by, | B
{b(0k5). 0", )} = {81(k,5), b1 (K".5)} =0, A= % [ s 5) — d )t )|
E_ﬁi:wiz (270)3 (2w1)d (k—k')d,y. — (27)?
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{d(k,s),dk’. s} = {d'(k,s),d (k',s')} =0.

1 L L R
H = wyb'(k, s)b(k, s) +wed (k, s)d(k,s)| — 2 [ d®kwz6(0).
k k k

s=4 - wsw
We have a conserved charge and current
Py, =0 0=c|dkf
The two-point function or Feynman propagator is:
Sap (x1.%2) = OIT | (1)) (x2) | 0)
7[00 )] = 00" =3 ()T (3) — G — 1) () )




Introducing gauge fields

The canonical gauge field is the electromagnetic field. The first one that was understood as
a gauge field. For some time this symmetry sounded like a luxury. In fact the classical
theory can be formulated exclusively in terms of the E,B field that are manifestly gauge
invariant. This is not so in the quantum theory, where we need to use the vector and scalar
potentials. There are new, non-local observables. They are responsible for the Bohm-
Aharonov effect and the quantisation of electric charge (if there is a single monopole in the
Universe, (Dirac)).

What we have learned is that all fundamental interactions known to us are mediated by
suitable generalisations of the EM field. They are gauge theories. In fact it seems as though
Nature abhors global symmetries. It appears that all the known global symmetries are just
low-energy accidents. All symmetries in the UV should be local.

We do not know why this should be so. String Theory is the only theory where this fact
finds an explanation. Unfortunately there is no evidence for it at this moment...




E&M in Quantum Mechanics

Classical EM
V-E=0
N - =
VxE=- g w0 OFem =0 AT=(g.A)
ot MH Mww | or Fuy = 0uAy — OvA,
VxB= Wm Classical EM in relativistic form

Coupling to QM requires the gauge potentials and a non-trivial transformation of the wave
function, this gives subtle consequences to gauge symmetry
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W |- (V—ieA 07
i > (V—ieA) +eq

WY(t,x) —> e XY (1 x)
0

(t,x) = @(t,x) + %m?xy A(t,x) — A(t,x) + Ve(t,x)
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Non-local observables

=

This is the Aharonov-Bohm effect. The phase factor, and its non-abelian
generalisation are known as “Wilson loops” or holonomies of the gauge field.
Note that classically there would be no effect. The Lorentz force equation only
involves E,B hence the electrons would not see the solenoid at all!

du"
m— =el*Vu,
dt




Magnetic monopoles:

V.E=0 Dirac and charge quantisation
V-B=0
B LR
QxHHIWw E—iB ¢ (E—iB)
0 For angle = 90 E and B get exchanged
VxB=—E
ot
e
The symmetry extend to matter if we have magnetic sources: P
p—ipn— " (p—ipn), i—ijm — € (= ijm).
Consider a magnetic pole:
I s
V.-B=gd(x). Br=-——"75 By, =Bg =0
86 (x) " Ax x|2 ¢ 0
1 g 6
Ap = — 2 tan— Ay =Ag=0
" dxlx] 2 rT 0

The Dirac string can be changed by gauge transformations, in doing QM it has to be
unobservable. Then we can do a “A-B” like argument (Dirac did it 20 years earlier). We should
not forget the fact that there is a factor of he

%8 = eg =2an

4182 — 4281 = 27tn.
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Electromagnetic Fields and Photons

Ignoring sources, the E&M field is a “free field” E=-Vg— m|>
ot The electric field is the
1 PV PR B=VxA. momentum p and the
LMaxwell = Imﬂzw ) Am —-B v vector potential the

“coordinate” q

OuF™Y =0 0=0,0"A" =0, (0,A) = 0, 0" A

i \

. As usual, we look for plan ion
To be able to invert, we need to fix the gauge:  J,A" =0 | | or plane wave solutions

Residual gauge transformation used to fully
£ A_w A vml._w_?_;.w.x fix the gauge
Y

\atm.: A—AQPV —0 eu(k, \) = €, (k, \) + K, x(k), k* =0
k? =k k* = (k") —k° =0

Now, as usual we expand the field in oscillator and apply CCR. After fully fixing the gauge there are only two physical
polarisations. Gauge invariance seems more a redundancy rather than a symmetry in the description of the theory

[k, 1), 3 (k' A")] = (22)(2[K])5 (k — k')

N f ~ —ilk|t+ik-x
W(1.%) % S T:Aw A)a(k, e

A—t1 If we keep all four polarisation by partial gauge fixing,

then we get negative probabilities (Gupta-Bleuler, BRST)

+ eu(k 1) m:wé&zlﬁ .
o —-n




Coupling matter

We imitate the coupling in the Schrodinger equation, this is what used to be called minimal
coupling. We make derivatives covariant with respect to space-time dependent changes of phases
in the wave-function

Ly — TP?LE%J&LG Dy Tamgﬁ@ = P .

2m

WY(t,x) — e 0P x) o .

The rigid phase rotation invariance of the Dirac Lagrangian for electrons is transformed into local
phase rotations, a physically more satisfactory concept. This defines the coupling of the electron to
the E&M field:

1 . i _
Loen == FurF ™ +F(p—m)y,  Loip = —eAuTry
P —> e Ey Ay — Ay +0ue(x).
This is QED, the best tested theory in the history of e 7
science, an example is the gyromagnetic ratio of the g? |
electron,
g/2 =1.00115965218085(76) . eh .
A=guy——5,  gu=2(1+ay)
a = 137.035999070(98) u T




Group Theory reminder

For the SM all group we will need are:

G:  UQ1),SU2), SU(3)

T .T])=if T
G
geG g=e (T T ) =T (R)6

— SU(3) x SU(2) x U(1)

detg=1=trT“ =0 (for SU(2), SU(3) not for U(l) of course)
U(l) is of course the simplest, just phase multiplication, i.e.as in QED

SU(2): angular momentum, isospin, and also weak isospin

G.é“ N..ﬁ _ N.mawowé.. 1

[T°.T%] =47+
NJH — ~|_| .NJN Ngw
N (T+.77] = 13

1 o o 1
T¢= -0 inlh tre—-— — = b=1,2,3

MQ For spin 2 tr 5 5 wm a

000 00—1 010
J'=foo 1], =000 | FP=[=100 For spin |

0-10 100 000

For SU(3) the generators are the eight Gell-Mann 3x3 traceless hermitean matrices chosen to satisfy:

H @
2 Zgab, —1.....8
S;w w% :a,b e

SU(3) of color, an exact gauge symmetry, also flavor SU(3), which is global (see later)




More about SU(3)

S

There are very few representations we will need
for color SU(3): K K

w
ol
Qo

quarks
gluons

antiquarks

For flavor SU(3) more needed: mesons,
baryons

3. 3.8, 10, 10, 27...

K K

A remarkable fact about the SM and QCD in particular is

the fact that once we write the most general Lagrangian pseudo-scalar meson octet
compatible with color gauge symmetry, flavor appears as

an approximate global symmetry of the problem, although B+S

it was theorised earlier. Q=L+ ——,

2
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Gauge theories and their quantisation

Imagine we have a theory with a global symmetry
b—=gy b —=dg' L= iy

Imitating electromagnetism:

0y — Dy = (9, +1eAST) o = (0 + ied, ) D, — gD,

We can read off the gauge field transformations

1 _ _
A, — W.Q@FQ H+©>tm 1

1
g~=1-+e¢ A, = A, + —D,e D,e+ielA,, €
ie

Dy, Dy| = ieTFj,,

F%, = 9,A% — 9,A% — ef*e Ab AC

Fu =T°F), — gF, g !

Nonabelian gauge fields have self-couplings unlike photons. This is
responsible for confinement, among other things




General Gauge Theory

General gauge theory Lagrangian:

L =~ FL Py + (Dug) D

— P [M(¢) +iysMr(d)]y —V(9).

We need to provide the
gauge group and the matter
representations for bosons
and fermions and off we go

Quantising a gauge theory is no joke. There are plenty of subtleties.VVe give you just a taste

We can define chromoelectric and magnetic fields as in QED

Fl = 0gA% — ;A% —ief AL AS = B¢ The canonical variables are
NUJ@.W. = m@.wmwmv ﬁ%s = @o\wm — st\wm .NP@U E¢

L a a 1 2 2 a a
L=E"GA" - mﬁw +B%) - 4; (D-E) Ag  implements a constraint

We can read off the Hamiltonian density




General Gauge Theory

| We can fix the gauge A 0=0 so
EH\%& |Amw+wwv+>mAU.mv@ that we only have time-
2 independent gauge transformations
in the Hamiltonian theory, but we
are missing one of the equations of
motion, Gauss’ law that has to be
implemented as a constraint.

Tﬁwﬁuﬁ Ovy @w@f ov_ — @%ﬁ %@@%AN - u\v

(D-E)* =0 Cannot be _Bv_mim:ﬂmn_ at the operator level. It generates
gauge transformations

Q). A7) = i(D)* U =expli [ Pze () (D-B)Y).  UHU —H

Gauss’ law becomes a condition on the physical states:

Each gauge configuration sits in an orbit and we
U (€)|phys) = |phys) need choose only one element, this is done by

“fixing” the gauge for the t-independent gauge transf.
D - E |phys) =0

WE HAVE 2-DIM G PHYSICAL DEGREES OF FREEDOM




Some remarks

+*®* Gauge symmetry is more a redundant description of the d.o.f.

R/ . . .
%* Gauss’ law implements gauge invariance under gauge t. connected

to the identity. Consider finite-E configurations

g(x) =€) 5 1 x| — o0

a(x) — 0 x| = o0 2

There are others, and Gauss’ law cannot impose invariance
g(x):S° = G, g(oo) =1 m3(G) = Z the integers
g: 8t —uU(1), g(x) = 4

a(2m) = a(0)+2mxn

ha) dgx) = 2
sl
1
24712

- h@ B & Tr ﬁ A%L@.%v A%L@.%v A%L@.%v g You cannot comb a sphere

©
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A surprise: CP violation

% Gauge invariance only requires that under non-trivial transformations, a phase is
generated. This is a vacuum angle! In fact it violates CP.

** It can be measured by looking for an edm of the neutron. So far no result:

+* The strong CP problem, axions, invisible axions, axion cosmology, dark matter...

g1 € G/Go the generator

% (g1)|physy = '’ |phys).

1 4. rpa puva Q%WZ 4. pa puva
S =~ | dSFL P = X d e F F
~ 1 ~
Fi, = Mm:,\q»ﬁqya Fy " = 4E* - B

%N A 2

5(_ e <

32n2 T Sl
1
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Computational tools

** There are two general procedures to obtain
computational rules in QFT: The canonical formalism and
the Path Integral formulation.

** You may recall that one used the Interaction
Representation, Wick’s theorem,  T-products, Gaussian
integrations...

+*®* In the end we get a collection of well-defined rules that
allow us to compute the probability amplitude associates to
a given scattering process, out of which we can evaluate the
decay width, differential and total cross section and many
other quantities that can be observed for instance in
collider experiments. The next few pages provide simply a
reminder

34




Incoming fermion:

Incoming antifermion:

Outgoing fermion:

Outgoing antifermion:

Incoming photon:

Outgoing photon:

i
= _—
Ax —m+ N.mv\wQ
= IN.::.,\
p*+ie
= IN.S\MQBQ&#@@ (p1+p2+p3)

Ug A—uv hv

va(p;s)

QED Feynman rules

Integrate over loop momenta

d'p

(27)*

A minus sign has to be included for
every fermion loop and for every
positron line that goes from the initial
to the final state. W.ith some extra
effort we can derive the Feynman rules
for QCD-like theories. They appear in
the next page. The quark and anti-
quark factors are similar to the
electron positron ones, except that we
need to include color quantum
numbers. The real difference comes
with the gluon or non-abelian vector
bosons interactions, the are quite
involved and contain a large amount of
interesting physics perturbatively and

specially non-perturbatively. Q

J
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Standard Model Feynman rules

Although the rules seem to be
A i v N those for OﬂU‘ :oﬂ._nm that we
p-mtic) g, could always include in the group
i theory factors t™a-{ij} chiral
Q000000 v-b = e projectors and make the group not
simple but semi-simple as in the
case of the SM: SU(3)xSU(2)xU(1).
moa = gyl If we work in nice renormalizable
gauges, the only difference is that we
have to include the Feynman rules
for the couplings of the scalar
sector. Something we will do later.

1

a,j —p——— f.j] =

B.J

g \&R Tit\ Aﬁﬁw — ﬁwvwmﬁacﬁmmos#

1

o,c A,d
|~.%w Tawm\.n&m AS:QJJQ _ 3:>3<Qv

+ ﬁanaﬁmmoi

With this simple trick the hard part,
which is the coupling of the W,Z, and
photons can be read simply from the
rules in the LHS

H




One example:Thomson Scattering

We work in the NR approximation for
simplicity but keeping explicitly the

Q\Qﬁmv +m|€i¢ — Q\vam\v +m|€\“q\v dependence on the photon
polarisations. Ve can guess that the
answer has to be a pure number times
the classical electron radius

+
2 N2 NG E+.w\+§m
= (ie)mp" ¢ (k) L u(p.)
- P—K +me
(i) ) L )
ENHSWHE\N _U_Q_W_v_mv\_u_—ﬂ\_ K me &\Hl&n_'NAQ.@vm
-0 = (2 (p+Kk)? —m? ~ 2m,|K|, (p—Kk)? —m? ~ —2m.|K/|

W —m)u(k,s) =0,

ak,s)yMu(k,s) = 2k"




Thomson Scattering, continued

SISl =i+ @) 6@ | Y pi= D p) | idliss

final initial

| A
m_.mw_m.miaﬁ —_ <N_

n
2m)*8W | pr+p2— ). p) |dox
=1

do =

Square the amplitude, sum over final electron polarisations, and
sum over the initial ones. We will consider unpolarised incoming

Feoll = 4E1E|vi —va| = 4E\ E) m N M
= 4|Exp1 — E1p2| = RFQWN__E_ +5_E_v
A/\ (p1+p2)? —mims.

Ug A—mvwvmm A—muwv = Q\nTEVQ

photons and study how the outgoing photons can gain some .1
degree of polarisation e
do 3 o |
o | 2\ N — —orle(k)-¢/(K')
lidlos 2 = k)& (k')* d2 8n
70 = Gammp A= ?asv T )-e (k)
mh 37T N 1 | 1 \Q\A\. NN
Or=r—m =374 5 e(k,a) /()| =2 0= 1 ) £k e ()
e a=1.2
1 ~
= |1 - Tk @)

We want to monitor the polarisation of the outgoing
photons even when the incoming ones are not polarised
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How we can get polarised light

Thomson and CMB Polarisation

—L
=

Y Y

An isotropic incoming distribution of A incoming light with a quadrupole
light does not generate polarisation perturbation generates net polarisation

Stokes parameters:
@~ 3 Ja0@@nflewa-epoletea-el] L [ asdio sii| oo oa0)?]
I "o
U(u) ~ MU %&be&\ vaAFav.m\__NI_mAFaV.m./_N_ _ IM%&EAWV.\%“BT_&@\vwlﬁm.m/. i
a=12
S
V() ~ > TENS_W__;EQV..,:_F_mAfv.@i - TE_NV\A_M;_%_N.PF_F__w.mi =0/, v o
a=1,2




Quadrupole distribution

Finally we reach the punch line. No circular polarisation is generated by
Thomson scattering, and we can write the combination:

/

Q) £iU(h) ~ — [ dQ(6',¢")f(6',¢';0) sin* 6’ e+ ¥

5 -
ﬂNHNAQ\“Q\V =3 ﬁmwswm\meé

One of the obvious generators of quadrupole anisotropies are
gravitational waves. Inflation predicts primordial gravitation waves, the
measurement of polarisation in the CMB offers an amazing window to
obtain this information. The simple computation of Thomson scattering
has unexpected consequences
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Noether’s Theorem

Quantum mechanical realisation of Symmetries (Wigner’s theorem).
In a QM theory physical symmetries are maps among states that
preserve probability amplitudes (their modulus). They can be unitary
or anti-unitary

ey — ey, B> — 18"
_AQ_\wv_ — _AQ\_\w\V_ AQN\Q_Q\\WV = AQ_\WV unitary
AQ\Q_Q\\wv — AQ_NWV* anti-unitary T-reversal, CPT

For continuous symmetries we have Noether’s celebrated theorem: If
under infinitesimal transformations, AND WITHOUT USING THE Slo| = \&g& L(p,0,0)
EQUATIONS OF MOTION you can show that:

8. L = 0 K"

then there is a conserved current in the theory




Noether’s Theorem

In formulas:
0.L moM\
0. = m@
30,9) MOt g %0
0. 0.Y 0.
= 0, 5 o[ ==)]|s
Aaaz Qv _% A%%i ¢
= 0,K".
0¥
o T = = 5. — K"
Onlt =0 50ud) 0

With a conserved charge that generates the symmetry:

0= % &xJ°(1,x) % = | dPx0pJ0(1,x) = — | PPxdJ(1,x) =0,

. Space-time translations -- Energy-Momentum
0 $ — Ngf ©_ ‘ Lorentz transformation-- Angular momentum and CM motion
Phase rotation -- abelian and non-abelian charges




Useful examples

Massive Dirac fermions:

d&. —> Q.,E\. U € U(N) Nthe number of fermions
L =1y —m |
U =exp(ia“T"), (19T =717
=TI Y =0 0 = [ Tiu;

[0°H]=0. % (a)=e"?

When U is the identity, we have fermion number, or charge

In the m=0 we have more symmetry: CHIRAL SYMMETRY, rotate L,R fermions independently

L =i Pvr; + 1jr PUR,

v —=U 9 U(N) xU(N)
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