QFT and the EWV Standard Model

Just the tip of the iceberg...




Never underestimate the pleasure people get
when they listen to something they already know

E. Fermi

Apologies




» Why Quantum Field Theory?

» Quantisation

» Kinematical symmetries

» Global symmetries

» Local symmetries

» Discrete symmetries

» Broken symmetries

» Scale symmetries, renormalisation

» Standard Model symmetries

» Amusing examples throughout time permitting
All this in
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Do we really need it!

The Schrodinger equation, plus many body physics
constructions are very successful in atomic, molecular
and solid state physics. The theory of bands, electrical
conductivity, atomic bonding, orbitals... are adequately
explained in this scheme
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Einstein and Heisenberg complicate our lives

Useful basic formulae. A reminder. Just this
once, we reintroduce h and ¢

E = +Vpc +mec ~+(me + L +.) When the uncertainly in momentum

2m is bigger than mc, the uncertainty in

5 energy is larger than mc?2, hence

5 there is enough energy to produce

another particle of the same type. In

N - h Compton wavelength Wm_mﬁiQ mass and energy are

mc interchangeable. Hence we cannot

localise a particle below its Compton

me p = mv wavelength. If we do, we will not find

Vi-v /e Vi=v /e a single particle, but rather a fairly

complicated quantum state with no
well-defined number of particles.
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(Az) > ! va Particle production by physical
2 \me processes should be a central part of
the theory.

a ;,
‘
\\ r




Klein paradoxes...

Another way to see the same problem is to consider
a particle in a potential barrier in the simplest
relativistic generalisation of the Schrodinger
equation, the Klein-Gordon equation
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Three cases to consider

HE—m>V, 2) E—m <V 3) Vo > 2m Vo—2m< E—m<V

In the third case we have the strange situation that we have transmitted wave
with negative kinetic energy
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In the equation that bears his name, Dirac also found the problem with
negative energy states. In his case however he found a rather ingenious way
to solve the problem. Since he was describing electrons, he decided to
simply fill all the negative energy states, this way Pauli’s principle would
guarantee stability. His equation also predicted the existence of anti-
particles, although at the beginning he was reluctant to accept it. With the
Dirac sea we have a simple way to understand anti-electrons = positrons
(more later)

Wllantiparticle (hole)

% We still have a multi-particle theory after all
#* This does not work for bosons...

** We should give up the wave equation approach

.... Dirac seas

An energetic photon
can make a hole. The
absence of a negative
energy state with
negative charge
manifests itself as a
particle of positive
energy and positive
charge:

the positron
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Beating a dead horse...

If we still insist against all odds, and decide to violate locality, but to
eliminate once and for all the negative energy states by choosing
our free Hamiltonian as follows:
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OO_um: we have violated causality! For any t>0 and any |x|,
this wave function does not vanish!...




*The world is Quantum
*Particle Wave Duality
*Special Relativity

*Microscopic Causality

Relativistic causality

Microscopic causality, Locality in Special Relativity

imposes important constraints into what are
observables. The light-cone decrees the causal
structure of space-time. Physical measurements
should be compatible with it

LQFT




From classical to quantum fields

In scattering experiments we observe asymptotic free particles characterised by their energy-
momentum charge and other quantum numbers. Consider just E,p. In the NR-case we describe
the one-particle states by kets carrying a unitary rep. of the rotation group.
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To deal with multi-particle states it is convenient to introduce creation and annihilation
operators, this leads to the Fock space of states, built out of the vacuum by acting with creation
operators:

p) = da'(p)|0), a(p)[0) =0 (0[05 = 1
[a(p).a’(p")] = 8(p—p'). [a(p).a(p”)] = [a'(p),a"(p")] = 0.

We need relativistic invariance, hence we need to find ways to count states in an invariant way. This
is necessary also when we deal with decay rates and cross sections. We need to count final states in
a way consistent with Lorentz invariance. We can easily construct such an invariant phase space
volume:
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2m)8 (p* —m*) 6 (p°) f(p) to integrate over p0, we use a nice identity:
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...continued

Now proceed by imitation of the NR case, with the non-trivial result
that we have a unitary representation of the Lorentz group
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Let us construct some observable in this theory. It will be an operator depending
on space time, and satisfying some simple conditions:
We have obtained

% Hermiticity p(x)" = (x). from first principles
3 Microcausily 9.60)]1=0.  (x=y) <0 the Kiein.Gordon
#¢ Translational invariance mmwé&@vmltwé =¢(x—a) field. There are more
. N { straightforward ways,
¢ Lorentz invariance Q\A\CSVQVQ\A\C =p(A™ x). but the procedure
+¢* Linearit dp 1 ¥ shows how to

/ ¢(x) = Q. 2 ) mm [f(p.x)e(p) +g(p.x)e" (p)]. implement the basis

principles of the
theory, Lorentz
%w 1 Tl.mztc.xo“@._.mmmal.w.xo“:w& invariance, locality
(2m)3 Nm P X and positivity of the
spectrum

o(x) =

+ve energy -ve energy




Some important properties
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The construction is free of paradoxes. It satisfies the KG
equation because the +ve and -ve energy plane waves
satisfy it. Of course with a free field we do not go very
far..

We should design more powerful techniques leading to
similar properties by for more general theories where
interactions can take place.

There are two general approaches: the canonical-
formalism, and the Feynman path integral. We will briefly
introduce the first, just as a reminder.




Canonical quantisation

Remember: PHYSICS is where the ACTION is!
Proceed by analogy with ordinary QM
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Expanding in solutions to the KG equations and performing the canonical quantisation,
we recover the algebra of creation and annihilation operator we had before, but we get a

surprise @._,.,,V/,_,




Casimir effect

Writing the products of creation and ann. operators in NORMAL ORDERING i,e, annihilation operators to the right, we get
rid of the sum of the zero point energy of the infinite number of oscillators in the field. In infinite space we subtract it, or
simply normal order. When we do not have translational invariance, something interesting happens
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The force per unit area is the derivative of this quantity
with respect to d divided by the area of the plates. The

result is finite and attractive, the Casimir force! Which has \/>>\<<</>\/

been measured (of course for the electromagnetic field)
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Lorentz and Poincaré Groups

In trying to systematically construct viable QFTs it is useful to
understand the representations of the Lorentz (and Poincaré) groups.

The Hilbert space of states has to carry a unitary representation of
the Lorentz group, so that quantum amplitudes are consistent with
Unitarity and Relativistic Invariance. The fields themselves however,
transform under finite dimensional representations. They are much
easier to study. Just recall the usual rotation group SU(2). The
Lorentz group, also known as SO(3,1) preserves the Minkowski metric

ds =dt —dr —dy —dz =n dxr dx w,v=0,1,2,3
X =AY xY 3:<>t§ <m”30%
detA = +1 A) =) (o) =1

- MH“ proper, orthochronous transformations with detA =1, >oo > 1.
- gl improper, orthochronous transformations with detA = —1, >oo > 1.
VS improper, non-orthochronous transformations with detA = —1, >oo < —1.

- hw“ proper, non-orthochronous transformations with detA = 1, >o < —1.
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Lorentz and Poincaré Groups

Rotations and boosts generate Lorentz transformation,

R(e,q@) = e~'9¢ hence six parameter and six generators of infinitesimal
. transformations.  The algebra is easy to obtain and
B(u,)) = e~ *uM “di ica”
; diagonalise

/i, J;] = igijiti,

1 [VEJF] = igipJ
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The representations of each SU(2) are labelled by a single integer or half
integer “angular” momentum s=0, 1/2, |, 3/2, ... Under parity (s4,5-)
Representation | Type of field
(0,0) Scalar J — J J=J +3J
(1.0 Right-handed spinor M = -M
J — J Am ,S v = MU J
APWV Left-handed spinor (s.s) = (s.s)
(3. 3) Vector
(1,0) Selfdual antisymmetric 2-tensor
(0,1) Anti-selfdual antisymmetric 2-tensor \»Jw|
CERN )\ Y
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The simplest representations have fundamental physical
importance, they are called Weyl spinors. Clearly they are
representations of the connected component of SO(3,1), but
not of parity, since parity interchanges the representations
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Weyl spinors

Consider for simplicity this global
symmetry: fermion number

(k| Fk-0)us =0

0, ok _ 1 " P positive helicity, right handed antineutrinos
| k|
o-k 5
U K[ =—1 TT,J negative helicity, left handed, neutrinos
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Charge conjugation and Majorana masses

We know that under parity, the L,R Weyl spinors are exchanged. Another way to exchange
them is via complex conjugation, later to be related to charge conjugation

My,
Mpg

— e Po-Bo qum = 1 detM = ¢ M M
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. Vv = o transforms like

sng 0 =m0 00 vV o= oY transforms like

» We can express any theory
fully in terms of L or R
fermions.

» Charge conjugation and
parity exchange L and R

» A parity invariant theory
requires L,R spinors at the
same time

» We can construct a mass
for pure L spinors if we
ignore fermion number

pFermions are
anticommuting

omséoﬁ = §+Q+m Ut + — > Am%%waw .Iro.v

ept® u’ = utu? — vl ul

Most general Majorana mass, Takagi factorisation

Q& E U U ._.w.o.vv
I,.J=1,...N ., M =M complex

This is the most
general fermion
mass matrix!!! It
includes CKM, in
fact it is more

m 0 general
M=Ul o . o |V
0 m
m; are positive square roots of M M f @4
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Weyl + parity: Dirac
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Try v =4n
Try v~y y =4n n —4n n +4n 7
Tryy v vy =4die

We look for +ve and -ve energy solutions as usual
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