Searching for Dark matter

Direct detection

- Elastic scattering of WIMPs off nucleons in a large detector
- Xenon, CDMS, Dama/Libra

Indirect detection

- WIMPs annihilation in galaxy, observe decay products
- e, p, γ: Pamela, Fermi, Hess
- Neutrinos: IceCube,Km3Net

Collider searches

- Indirect + Direct searches : Tevatron, LHC, ILC

Cosmology-(astro)particle-colliders

AMS, Egret, PAMELA, Fermi, Hess... CDMS, Xenon, DAMA, Kims...

Direct detection

- Elastic scattering of WIMPs off nuclei in a large detector
- Measure nuclear recoil energy, E_R
- Best way to prove that WIMPs form DM
- Small transfer momentum typically 100MeV
 - $-E_R=q^2/2m_N$ q: transfer momentum
 - $E_R = \mu^2 v^2 (1 \cos \theta) / m_N$
 - $-\mu = m_{\chi}m_{N}/(m_{\chi} + m_{N})$: reduced mass
 - 100GeV WIMP, v=220km/s → E_R <27keV

Direct detection

- Two types of scattering
 - Coherent scattering on A nucleons in nucleus, for spin independent interactions
 - Dominant for heavy nuclei
 - Spin dependent int only one unpaired nucleon
 - Dominant for light nuclei

Steps to compute nucleus recoil energy

- Wimp-quark/gluon scattering: depend on particle physics model, compute from Feynman diagrams
- Relate WIMP-quark to WIMP-nucleon quark coefficients in nucleons – determined from first principle + experiments
- WIMP-nucleon → WIMP nucleus : form factor
- Take into account velocity distribution of WIMP
- Recoil energy for WIMP scattering on nucleus
- Experimental results are presented in sigma WIMPproton vs DM mass: easy comparison between exp.

WIMP- Nucleon amplitude

- For any WIMP, need effective Lagrangian for WIMP-nucleon amplitude *at small momentum*,
- Generic form for a Majorana fermion

$$\mathcal{L}_{F} = \underbrace{\lambda_{N}\overline{\psi}_{\chi}\psi_{\chi}\overline{\psi}_{N}\psi_{N} + i\kappa_{1}\overline{\psi}_{\chi}\psi_{\chi}\overline{\psi}_{N}\gamma_{5}\psi_{N} + i\kappa_{2}\overline{\psi}_{\chi}\gamma_{5}\psi_{\chi}\overline{\psi}_{N}\psi_{N} + \kappa_{3}\overline{\psi}_{\chi}\gamma_{5}\psi_{\chi}\overline{\psi}_{N}\gamma_{5}\psi_{N}}_{+ \kappa_{4}\overline{\psi}_{\chi}\gamma_{\mu}\gamma_{5}\psi_{\chi}\overline{\psi}_{N}\gamma^{\mu}\psi_{N} + \underbrace{\xi_{N}\overline{\psi}_{\chi}\gamma_{\mu}\gamma_{5}\psi_{\chi}\overline{\psi}_{N}\gamma^{\mu}\gamma_{5}\psi_{N}}_{+ \kappa_{4}\overline{\psi}_{N}\gamma_{5}\psi_{N}}_{+ \kappa_{4}\overline{\psi}_{N}}_{+ \kappa_{$$

- For Majorana fermion only 2 operators survive at small q²
- First need to compute the WIMP quark amplitudes
 - Computed from Feynman diagrams+ Fierz
 - depends on details of particle physics model
- Effective Lagrangian for WIMP-quark scattering has same generic form as WIMP nucleon

Direct detection

- Typical diagrams
- Higgs exchange often dominates

For Dirac fermions Z exchange contributes to SI and SD

Spin independent interactions

The case of Majorana fermion

$$\mathcal{L}^{SI} = \lambda_N \overline{\psi}_{\chi} \psi_{\chi} \overline{\psi}_{N} \psi_{N}$$

Matrix element squared

$$|A_N^{SI}|^2 = 64 \left(\lambda_N M_\chi M_N\right)^2$$

Summing over photons and neutrons

$$|A_A^{SI}|^2 = 64 M_{\chi}^2 M_A^2 (\lambda_p Z + \lambda_n (A - Z))^2$$

 Cross section for scattering on point like nucleons

$$\sigma_0^{SI} = \frac{4\mu_{\chi}^2}{\pi} (\lambda_p Z + \lambda_n (A - Z))^2$$
 $\mu_{\chi} = m_{\tilde{\chi}} M_A / (m_{\tilde{\chi}} + M_A).$

WIMP-quark to WIMP-nucleon

- Coefficients relate WIMP-quark operators to WIMP nucleon operators
 - Scalar, vector, pseudovector, tensor
 - Extracted from experiments
 - Source of theoretical uncertainties
- Example, scalar coefficients, contribution of q to nucleon mass (heavy quark contribution expressed in terms of gluonic content) $\langle N|m_q\overline{\psi}_q\psi_q|N\rangle = f_q^N M_N$

$$\lambda_{N,p} = \sum_{q=1,6} f_q^N \lambda_{q,p}$$
 $f_Q^N = \frac{2}{27} \left(1 - \sum_{q \le 3} f_q^N \right)$

• Scalar coefficients extracted from ratios of light quark masses, pionnucleon sigma term and σ_0 (size of SU(3) breaking effect)

$$\sigma_{\pi N} = m_l \langle p | ar{u}u + ar{d}d | p
angle
onumber \ \sigma_0 = m_l \langle p | ar{u}u + ar{d}d - 2ar{s}s | p
angle$$

• Large uncertainty in s-quark contribution

$\sigma_{\pi N} = 55 - 73$	3 MeV	and	$\sigma_0 = 3$	$35 \pm$	5 MeV
----------------------------	-------	-----	----------------	----------	-------

Nucleon	f_{Tu}	f_{Td}	f _{Ts} [24]	$f_{T_{s}}[25]$	f_{Ts} [20, 26]
n	0.023	0.034	0.08	0.14	0.46
p	0.019	0.041	0.08	0.14	0.46

- 2011: Lattice calculations give new estimates of those coefficients get s-quark content lower than previously thought (~0.02)
- The value of the quark coefficient a large impact on the scattering rate
 varying coefficients within the range above can in the MSSM lead
 to almost order of magnitude change in cross section
 - Bottino et al hep-ph/0010203, Ellis et al hep-ph/0502001

WIMP-nucleon to WIMP-nucleus

- To get rate as a function of the recoil energy must take into account nuclear form factor + velocity distribution
- Ignoring form factor effect expect isotropic scattering in CMS frame - - in lab frame for velocity v get constant distribution over recoil energy in interval 0<E<Emax

$$E_{max}(v) = 2\left(\frac{v^2 \mu_{\chi}^2}{M_A}\right)$$

For fixed v, recoil energy distribution

$$\frac{d\sigma_A^{SI}}{dE} = \sigma_0^{SI} \frac{\Theta(E_{max}(v) - E)F_A^2(q)}{E_{max}(v)} \qquad q = \sqrt{2EM_A}.$$

• $F_A(q)$: form factor (Woods-Saxon form factor)

$$F_A(q) = \int e^{-iqx} \rho_A(x) d^3x$$
 $\rho_A(r) = \frac{c_{norm}}{1 + exp((r - R_A)/a)}$

$$R_A = 1.23A^{\frac{1}{3}} - 0.6 \text{fm}$$
 a=0.52 fm (extracted from muon scattering data)

- DM have velocity distribution f(v)
- Integrating over incoming velocities -> distribution of number of events over the recoil energy

$$\frac{dN^{SI}}{dE} = \frac{2M_{det}t}{\pi} \frac{\rho_0}{M_{\chi}} F_A^2(q) \left(\lambda_p Z + \lambda_n (A - Z)\right)^2 I(E)$$

 ρ_0 : DM density near Earth

- M_{det}: detector mass
- T: exposure time

$$I(E) = \int_{v_{min}(E)}^{\infty} \frac{f(v)}{v} dv$$
$$v_{min}(E) = \left(\frac{EM_A}{2\mu_{\chi}^2}\right)^{1/2}$$

WIMP-nucleon to WIMP-nucleus

• Rates (SI and SD) depends on nuclear form factors and velocity distribution of WIMPs + local density

DM velocity distribution

$$I(E) = \int_{v_{min}(E)}^{\infty} \frac{f(v)}{v} dv$$

 $v_{min}(E) = \left(\frac{EM_A}{2\mu_{\chi}^2}\right)^{1/2}$

Spin dependent

Effective Lagrangian for Majorana fermion

$$\mathcal{L}^{SD} = \xi_N \overline{\psi}_{\chi} \gamma_5 \gamma_{\mu} \psi_{\chi} \overline{\psi}_N \gamma_5 \gamma^{\mu} \psi_N$$
$$|A_N^{SD}|^2 = 192 (\xi_N S_N M_{\chi} M_N)^2$$

- Sum spin currents produced by p and n separately
- ψ_0 component vanish \rightarrow 3dim vector current proportional to angular momentum

•
$$S_n = S_n = 1/2$$
 $\vec{J}_N^A = S_N^A \vec{J}_A / |J_A|$

Non trivial summation over spins

$$\begin{split} & \sum_{s_{\chi},s_{\chi}'} \sum_{s_{A},s_{A}'} \sum_{1 \leq k,l \leq 3} < s_{\chi} |J_{\chi}^{k}| s_{\chi}' > < s_{\chi}' |J_{\chi}^{l}| s_{\chi} > < s_{A} |J_{A}^{k}| s_{A}' > < s_{A}' |J_{A}^{l}| s_{A} > \\ & = \sum_{1 \leq k,l \leq 3} tr(J_{\chi}^{k} J_{\chi}^{l}) tr(J_{A}^{k} J_{A}^{l}) = (2J_{\chi} + 1) J_{\chi}(J_{\chi} + 1) \cdot (2J_{A} + 1) J_{A}(J_{A} + 1)/3 \end{split}$$

• After average over initial polar, $(2J\chi+1)(2J_A+1)$ cancels out

WIMP-nucleus amplitude squared

$$|A^{SD}|^2 = 256 \frac{J_A + 1}{J_A} \left(\xi_p S_p^A + \xi_n S_n^A \right)^2 M_\chi^2 M_A^2$$

Cross section at rest for point-like nucleus

$$\sigma_0^{SD} = \frac{\mu_\chi^2}{\pi} \frac{J_A + 1}{J_A} \left(\xi_p S_p^A + \xi_n S_n^A \right)^2$$

• S_N^A are obtained from nuclear calculations or from simple nuclear model ~0.5 for nuclei with odd nb of p or n ~0

for even nuclei

Nucleus	$\left\langle S_{\mathrm{p}}\right\rangle _{\mathrm{OGM}}$	$\langle S_{\rm n} \rangle_{ m OGM}$	$\langle S_{ m p} angle$	$\langle S_{\mathbf{n}} \rangle$
¹⁹ F	0.46	0.0	0.415	-0.047
			0.368	-0.001
²⁷ A1	0.25	0.0	-0.343	0.030
²⁹ Si	0.0	0.15	-0.002	0.13
⁷³ Ge	0.0	0.23	0.011	0.491
			0.030	0.378
⁹³ Nb	0.36	0.0	0.46	0.08
¹³¹ Xe	0.0	-0.166	-0.041	-0.236

Axial vector quark coefficients

- Axial vector current counts the total spin of quarks and antiquarks in nucleon
- Operators for A-V interactions in nucleon related to those in quarks

$$\xi_{N,s} = \sum_{q=u,d,s} \Delta q^N \xi_{q,s} \qquad 2s_{\mu} \Delta q^N = \langle N | \overline{\psi}_q \gamma_{\mu} \gamma_5 \psi_q | N \rangle$$

• Δq^N extracted from lepton-proton scattering , in particular strange contribution to spin of nucleon (measured first by EMC) much larger than expected in naïve quark model

$$\Delta_u^p = 0.842 \pm 0.012, \quad \Delta_d^p = -0.427 \pm 0.013, \quad \Delta_s^p = -0.085 \pm 0.018$$

$$\Delta_u^n = \Delta_d^p, \quad \Delta_d^n = \Delta_u^p, \quad \Delta_s^n = \Delta_s^p$$

Dirac fermion

Fermions

$$\mathcal{L}_{F} = \lambda_{N,e} \bar{\psi}_{\chi} \psi_{\chi} \bar{\psi}_{N} \psi_{N} + \lambda_{N,o} \bar{\psi}_{\chi} \gamma_{\mu} \psi_{\chi} \bar{\psi}_{N} \gamma^{\mu} \psi_{N}$$

$$+ \xi_{N,e} \bar{\psi}_{\chi} \gamma_{5} \gamma_{\mu} \psi_{\chi} \bar{\psi}_{N} \gamma_{5} \gamma^{\mu} \psi_{N} - \frac{1}{2} \xi_{N,o} \bar{\psi}_{\chi} \sigma_{\mu\nu} \psi_{\chi} \bar{\psi}_{N} \sigma^{\mu\nu} \psi_{N}$$

$$\lambda_{N} = \frac{\lambda_{N,e} \pm \lambda_{N,o}}{2} \quad \text{and} \quad \xi_{N} = \frac{\xi_{N,e} \pm \xi_{N,o}}{2}$$

- Vector current $\overline{\psi}_q \gamma_\mu \psi_q$ is responsible for the difference between χN and χN interactions. It counts the number of quarks minus antiquarks in the nucleon (valence quarks)
 - no uncertainties.

$$\lambda_{N,p} = \sum_{q=u,d} f_{V_q}^N \lambda_{q,p}$$
 $f_{V_u}^p = 2, f_{V_d}^p = 1, f_{V_u}^n = 1, f_{V_d}^n = 2$

Scalar and vector DM

- Complex scalar
 - Only spin independent interactions

$$\mathcal{L}_{S} = 2\lambda_{N,e} M_{\chi} \phi_{\chi} \phi_{\chi}^{*} \bar{\psi}_{N} \psi_{N} + i\lambda_{N,o} (\partial_{\mu} \phi_{\chi} \phi_{\chi}^{*} - \phi_{\chi} \partial_{\mu} \phi_{\chi}^{*}) \bar{\psi}_{N} \gamma_{\mu} \psi_{N}$$

Complex vector (SI and SD)

$$\mathcal{L}_{V} = 2\lambda_{N,e} M_{\chi} A_{\chi,\mu} A_{\chi}^{\mu} \overline{\psi}_{N} \psi_{N} + \lambda_{N,o} i (A_{\chi}^{*\alpha} \partial_{\mu} A_{\chi,\alpha} - A_{\chi}^{\alpha} \partial_{\mu} A_{\chi\alpha}^{*}) \overline{\psi}_{N} \gamma_{\mu} \psi_{N}$$

$$+ \sqrt{6} \xi_{N,e} (\partial_{\alpha} A_{\chi\beta}^{*} A_{\chi\gamma} - A_{\chi\beta}^{*} \partial_{\alpha} A_{\chi\gamma}) \epsilon^{\alpha\beta\gamma\mu} \overline{\psi}_{N} \gamma_{5} \gamma_{\mu} \psi_{N}$$

$$+ i \frac{\sqrt{3}}{2} \xi_{N,o} (A_{\chi\mu} A_{\chi\nu}^{*} - A_{\chi\mu}^{*} A_{\chi\nu}) \cdot \overline{\psi}_{N} \sigma_{\mu\nu} \psi_{N}$$

World Wide Wimp searches

Direct Detection Techniques

Direct detection -results

SI

• For easy comparison between experiments – extract σ_{yp}

$$\sigma_{\mathrm{p}}^{\mathrm{SI}} = \lim_{m_{\chi} \to \infty} \sigma \left\{ m_{\mathrm{N}} = m_{\mathrm{p}}, m_{\chi} \right\}$$

- Assume velocity distribution
- Limits are improving every year
 - Best limits Xenon (2012)
 - DAMA confirm their annual modulation signal

Direct Detection

- DAMA : signal in annual modulation compatible with light DM (8.9 σ)
- Recently CoGent, CDMS, CRESST also reported some signals compatible with 'light' DM
- Some of the favoured regions are excluded by Xenon10, Xenon100, CDMS
 - theoretical uncertainties

Akerib et al, CDMS, 1010.4290

DM proton scattering cross section : experimental results

Spin dependent

Also KIMS 1204.2646

Coupp: 1204.3094

Indirect detection

- Annihilation of pairs of DM particles into SM: decay products observed
- Searches for DM in 4 channels
 - Antiprotons and
 - Positrons from galactic halo/center
 - Photons from galactic halo/ center
 - Neutrinos from Sun
- Rate for production of e⁺,p,γ
 - Dependence on the DM distribution (ρ) not well known in center of galaxy
- Typical annihilation cross section at freeze-out

$$V=0.001 {\rm c}$$

$$Q(x,{\rm E})=\frac{<\sigma v>}{2}\left(\frac{\rho({\rm x})}{m_\chi}\right)^2\frac{dN}{dE}$$

$$<\sigma v>=3\times10^{-26}\mathrm{cm}^3/\mathrm{sec}$$

dN/DE

- Spectrum depends
 - mass of DM
 - primary annihilation channels

Propagation of cosmic rays

- For Charged particle spectrum detected different than spectrum at the source
- Charged cosmic rays are deflected by irregularities in the galactic magnetic field
 - For strong magnetic turbulence, MC simulations show that effect similar to space diffusion
- Energy losses due to interactions with interstellar medium
- Convection driven by galactic wind
- Reacceleration due to interstellar shock wave

Antiprotons and positrons from DM annihilation in halo

M. Cirelli, Pascos2009

$$\frac{\partial N}{\partial t} - \nabla \cdot [K(\mathbf{x}, E) \nabla N] - \frac{\partial}{\partial E} [b(E) N] = q(\mathbf{x}, E)$$
diffusion Energy losses Source

Indirect detection

For charged particles: solve propagation equation

$$\frac{\partial N}{\partial t} - \nabla \cdot [K(\mathbf{x}, E) \nabla N] - \frac{\partial}{\partial E} [b(E) N] = q(\mathbf{x}, E)$$

- Theoretical computation of spectrum of secondary charged particle and from DM annihilation
 - GALPROP Strong and Moskalenko
 - T. Delahaye, P. Salati et al
- Background spectrum
 - Astro sources: supernova explosions, interaction between cosmic ray nuclei in interstellar medium

Indirect DM searches

Payload for Anti Matter Exploration and Light nuclei Astrophysics

PAMELA - results

O. Adriani, 0810.4994

O. Adriani 0810.4995

DM indirect detection

- Results on total electron positron spectrum
 - Higher energies than PAMELA
 - Excess over background
- Fit Pamela, Fermi, Hess with e.g. heavy DM (2TeV) annihilating into taus
- Careful investigation of secondary spectrum
- Astro sources (pulsars) give similar signal

Fermi-LAT 0905.0025

Strumia, Papucci.. arXiv:0905.0480

DM in antiprotons - example

WW channel

Photons

Flux calculation

$$\Phi_{\gamma,\nu} = \frac{1}{8\pi} \left(\frac{\langle \sigma_{ann} v \rangle}{m_{\chi}^2} \right) \sum_{f.s.} \left(\frac{dN_{\gamma,\nu}}{dE} \right)_{f.s.} \int_{l.o.s.} \rho_s^2$$

- Photon production
 - In decay of SM particles
 - Monochromatic gamma rays $(\gamma\gamma,\gamma Z)$
 - Internal bremsstrahlung
- Integral over line of sight depends strongly on the galactic DM distribution

Dark matter profile

Dark matter profile

$$\rho_s(r) = \rho_{\odot} \left[\frac{r_{\odot}}{r} \right]^{\gamma} \left[\frac{1 + (r_{\odot}/a)^{\alpha}}{1 + (r/a)^{\alpha}} \right]^{\frac{\beta - \gamma}{\alpha}}$$

$$r_{\odot} = 8 \text{ kpc}$$

$$\rho_{\odot} = 0.3 \text{ GeV.cm}^{-3}$$

- N-body simluation
- Different halo profile rather similar except in center of galaxy

Halo model	α	β	γ	a (kpc)
Isothermal with core	2	2	0	4
NFW	1	3	1	20
Moore	1.5	3	1.5	28

Photons from dwarf galaxies

- Dwarf galaxies are dominated by DM – good probe
- Not as strong dependence on the density profile (profiles differ strongly only in Galactic center)
- Fermi has derived limits on photon flux and DM cross section for different channels
- Low masses probe the relic density favoured value

Impact of DM profile on rate

A SUSY example

Summary

- A number of direct and indirect detection offer good prospects to probe dark matter (probe σv and M_{DM})
- Photons and antiprotons sensitive to light DM with expected cross section
- Direct detection can probe both SI and SD interactions in protons and neutrons using different detectors
- Already constrain some favoured models
- Theoretical uncertainties are important
- •Hints of signals, not clear it is DM: DAMA, Pamela, Fermi gamma-ray line

Extra notes

•

Velocity distribution of DM

- Nuclear recoil energy measured depends on WIMP velocity distribution in rest frame of detector \rightarrow distribution in rest frame of galaxy + Earth velocity in this frame $v_0 = 220 \pm 20 km/s$
- Velocity of rotation in LSR
- Peculiar velocity of the Sun
- Earth velocity in Galactic frame: $v_1 = v_0 + v_{pec} + v_E$ (Earth in solar system)

$$\vec{v}_e = v_e \left(-\sin(2\pi t), \sin\gamma\cos(2\pi t), \cos\gamma\cos(2\pi t) \right)$$

 Velocity of DM particles on Earth=obtained from velocity of DM particles in Galactic Rest Frame

$$f(v) = \int \delta(v - |\vec{V}|) F_{GRF}(\vec{V} - \vec{v}_0 - \vec{v}_{pec} - \vec{v}_e) d^3 \vec{V}$$

• Mass Galaxy is fin $498km/s < v_{max} < 608km/s$ for which

- Several DM velocity distribution, they are correlated with DM density distribution
- Simplest: isothermal sphere model

$$F_{GRF}(\vec{V}) \sim exp(-|\vec{V}|^2/\Delta V^2)\Theta(v_{max}-|\vec{V}|)$$

Lead to

$$f(v) = c_{\text{norm}} \left[exp\left(-\frac{(v - v_1)^2}{\Delta V^2} \right) - exp\left(-\frac{min(v + v_1, v_{max})^2}{\Delta V^2} \right) \right]$$
$$\Delta V = v_0$$

- Note: Earth motion around Sun leads to 7% modulation effect of v_1 and to modulation of signal in DD experiments
- DM velocity distribution near the sun could be quite different