Ab-initio Molecular Dynamics in the Nanosciences (1) Applications

Sandro Scandolo

The Abdus Salam International Center for Theoretical Physics (ICTP) Trieste, Italy

www.ictp.it

Regional School on Science at the Nanoscale, Hanoi December 2009

Outline:

1. Car-Parrinello Molecular Dynamics

2. Two case studies:

Self-assembled monolayers on Gold surfaces (understanding metal/organic interfaces)

Infrared absorption of water nanoclusters (understanding the greenhouse effect)

Ab-initio molecular dynamics

"Ab-initio" molecular dynamics = Classical molecular dynamics in the potential energy surface generated by the electrons in their quantum ground state

$$
M_I \frac{d^2 R_I}{dt^2} = F_I = -\frac{dE(\lbrace R \rbrace)}{dR_I}
$$

$$
E(\lbrace R \rbrace) = \langle \psi_0 | H_e(\lbrace R \rbrace) | \psi_0 \rangle
$$

If we expand wavefunctions in a basis set

$$
\psi = \sum_{i} c_{i} \varphi_{i}
$$

$$
\langle \psi | H_{e} | \psi \rangle = \sum_{i,j} c_{i} c_{j}^{*} \langle \varphi_{i} | H_{e} | \varphi_{j} \rangle
$$

finding the ground state is equivalent to minimizing a quadratic form in the {c}'s (variational principle). So, standard minimization schemes can be used, e.g. steepest descent:

$$
\dot{\psi} = -\frac{\delta}{\delta \psi} \langle \psi | H_e | \psi \rangle = -H_e \psi
$$

Born-Oppenheimer **–**versus- Car-Parrinello AIMD

FIG. 24. Schematic illustration of how an orbital will eventually lag behind a moving ion during a simulation with $\mu \dot{\psi} = -[H - \lambda] \psi$, as discussed in the text. Convention the same as in Fig. 23.

Born-Oppenheimer | Car-Parrinello

FIG. 23. Schematic illustration of how an orbital will oscillate around a moving ion during a simulation with $\mu \ddot{\psi} = -[H - \lambda] \psi$, as discussed in the text. Velocities and accelerations are designed as open and filled arrows, respectively.

Figure 4. (a) Comparison of the x-component of the force acting on one atom of a model system obtained from Car-Parrinello (solid line) and well-converged Born-Oppenheimer (dots) molecular dynamics. (b) Enlarged view of the difference between Car-Parrinello and Born-Oppenheimer forces; for further details see text. Adapted from Ref. 467 .

Two case studies:

Structure of thiols S-(CH₂) $_{\sf n}$ -CH $_3$ on Gold surfaces (understanding metal/organic interfaces)

Infrared absorption by water nanoclusters (understanding the greenhouse effect) Self Assembled Monolayers (SAMs) of thiols on gold are prototypical metal-organic junctions of ubiquitous application in nanoscience

Why are they attractive?

- ease of preparation
- tunability of surface properties via modification of molecular structure and functions
- use of SAMs as building blocks, e.g.,
	- for ``docking'' additional layers to a surface

Weiss Group Pennsylvania State Univ.

Applications of SAMs in

- molecular electronic devices
- biosensors

SAMs on gold

- nanolithography
- functionalized surface coatings

(Ulman, Chem. Rev. **96**, 1533 (1996), Schreiber, Prog. Surf. Sci. **65**, 151 (2000)).

Example: molecular devices

- single molecules as basic units of devices
- conductance depends on HOMO-LUMO gap
- thiols widely used because sulfurs bind strongly to the gold electrodes
- however, conductance depends strongly on exp. conditions

A

SAMs are challenging from a theoretical point of view due to competition of interactions with different energy / length scales

Structure of SAMs of thiols on Au(111) are controlled by:

- Au-S chemical bond
- van der Waals interaction between chains

What is the structure of the Au/Thiolate interface?

Discrepancy between DFT theory and experiments. Is this discrepancy due to a failure of DFT or something else?

Methanethiols (-SCH $_{3}$) on Au(111)

The metal-organic interaction is not well understood and even the structure of this very simple SAM is under dispute.

Exps: Photoelectron diffraction (Kondoh, PRL,2003), X-Ray Standing Wave (Roper, Chem.Phys.Lett.,2004)

⇒ **on-top site**

on-top

Theory: DFT structural optimization, static structures

> **bridge site** ⇒ (on-top: $+0.3$ eV higher)

We have studied these systems by means of ab-initio molecular dynamics to explore the configuration space and investigate disorder at the interface

Self-Assembly of n-Alkyl Thiols as Disulfides on Au(111)

P. Fenter,* A. Eberhardt, P. Eisenberger

A grazing incidence x-ray diffraction study of CH₃(CH₂)_aSH self-assembled on the (111) surface of gold revealed a disulfide head group structure, which provides a context in which to understand the structure and self-assembly process of this widely studied system. The structure consists of a nearly hexagonal two-dimensional arrangement of the hydrocarbon chains with a dimerization of the sulfur head groups (accommodated through a gauche bond), resulting in a S-S spacing of 2.2 angstroms. These results demonstrate the importance of internal molecular degrees of freedom in the templating of "soft" organic mate

Fenter's model after 14 years:

- -Doubling of unit cell confirmed
- No evidence for sulfur dimerization

Is dimerization mediated by Au adatoms, as in -SCH₃?

The approach:

- + Ab-initio (DFT) molecular dynamics
- + Grazing incidence X-ray diffraction

Results from ab-initio MD:

- 1) Adatoms and vacancies should be present at the surface in similar concentrations, as found for short thiols
- 2) Chains are more localized because of the hindered S-Au motion imposed by the longer chains
- 3) Sulfur atoms should be located in either the bridge or S-Au-S (adatom) configurations in roughly equal proportions

Ab-initio results are used to construct tentative models that are then refined by best fit to GIXRD data

A. Cossaro et al., Science 321, 943 (2008)

Results of best fit to GIXRD:

Surface is not planar 1.3 adatoms per c(4x2) cell 2.8 vacancies per c(4x2) cell

Average structure consists of …-Au-S-Au-… zigzag chains aligned along the cell short axis

A. Cossaro et al., Science 321, 943 (2008)

Low-coverage methane-thiol SAMs on Au(111) show similar behaviour: formation of S-Au-S motifs

P. Maksymovich et al., PRL 97, 146103 (2006)

p-mercaptobenzoic molecules on gold nanoparticles form similar staple motifs, as recently found by X-ray diffraction

P. D. Jadzinsky et al., Science 318, 430 (2007)

Two case studies:

Structure of thiols S-(CH₂) $_{\sf n}$ -CH $_3$ on Gold surfaces (understanding metal/organic interfaces)

Infrared absorption by water nanoclusters (understanding the greenhouse effect)

Far-IR water vapor absorption

NB: Isolated water molecule does not absorb in the far-IR

Vapor absorption must be due to

- **1) collisional broadening or**
- **2) water nanodroplets (mostly dimers)**

Collisional broadening does not have the correct temperature dependence

Absorption shape of water nanodroplets would have to be different than bulk forms

Water vapor absorption is different from ice and liquid water

Ab-initio molecular dynamics at 200 K

"Fluid" dynamics even at 200 K [J. Rodriguez et al., JCP 110, 9039

Jumps between different locally stable conformations (ring, book, cage)

Ring conformation predominant due to entropic effects

Total dipole moment

Far-IR absorption by water nanoclusters

Water dimer absorption is indeed different from ice and liquid water

[&]quot;Atmospheric" **nanoscience (?)**

Water dimer absorption agrees qualitatively with vapor

Water dimers could be responsible for vapor absorption if their concentration was higher than currently estimated

Conclusions

Can I simulate everything I want?

NO:

The system must be no bigger than one-two hundred atoms

Events must happen in a few picoseconds

You're interested in ground state properties

Van der Waals (dispersion) forces are not important

You have a decent computational facility (say, a few PC processors)

College on Computational Nanoscience ICTP, 17-28 May 2010

Electronic properties (fundamentals of electronic-structure, many-body effects, magnetism, and nanomaterials) **Richard Martin, Risto Nieminen, Stefano Baroni, Stefan Bluegel, Giulia Galli** Chemistry (catalysis and electrochemistry, how catalytic properties are affected by size) **Matthias Scheffler, Gianfranco Pacchioni, Hannu Hakkinen** Optical properties (solar energy and photovoltaics, plasmonics and photonics) **Elisa Molinari, Ralph Gebauer, Steven Johnson** Mechanical properties (multi-scale modelling, mesoscopic models, nanotribology and friction) **Erio Tosatti, Peter Gumbsch** Electronic and thermal transport (nanoelectronics and thermoelectric materials) **Francesco Mauri, Antti-Pekka Jauho** Control and assembly (self-assembly, models for growth, nano-architectures) **David Tomanek, Sharon Glotzer** Biological and biomimetic materials, and inorganic/organic interfaces **Michele Vendruscolo, Klaus Schuelten**

2 "hands-on" tutorials (SIESTA and Quantum-Espresso)

Keynote experimentalists: **Latha Venkataraman, Flemming Besenbacher, Michael Strano, Francesco Stellacci**

Thanks to:

M.-S. Lee F. Baletto (now at King's College London) D. Kanhere (Puna Univ., India)

R. Mazzarello R. Rousseau (now at PNL)

- **A. CossaroA. Verdini TASC, Trieste L. Floreano A. Morgante**
- **L. Casalis Elettra, Trieste G. ScolesA. Kohlmeyer U. Pennsylvania M. Klein V. Derenzi R. Biagi U. Modena D. Marchetto**
- **U. Del Pennino**