Regional School on Physics at the Nanoscale: Theoretical and computational aspects 14-25 December 2009, Hanoi, Vietnam

Directors:

B. Altshuler
M. Kiselev
V. Kravtsov
N.V. Lien
S. Scandolo

Local organizer:

N.H. Quang

Topics:

- > Introduction to Nanophysics
- > Physics of Carbon Nanotubes
- > Physics of graphene and graphene nanoribbons
- > Mesosocopic systems
- > Quantum dots
- > Nanowires, Nanoclusters and
- Nanostructures on surfaces
- > Computational approaches based on:
 - . Density Functional Theory
 - . Molecular dynamics

The Abdus Salam International Centre for Theoretical Physics (under UNESCO / IAEA), Trieste, Italy

ICTP's mission:

To foster the growth of advanced studies and research in physics and mathematics, *especially among researchers from developing countries*

Programs:

- Conferences / Schools throughout the year
- Associates (our faculty "in the field")
- Visitors (junior, STEP, TRIL, etc)
- Diploma Course

Recent ICTP Schools on theoretical nano / materials science

65 participants:

Bangladesh India Indonesia Lao People's Democratic Republic Malaysia Nepal **New Zealand** Pakistan People's Republic of China Philippines Sri Lanka Thailand Vietnam **Republic of Korea**

Small is different

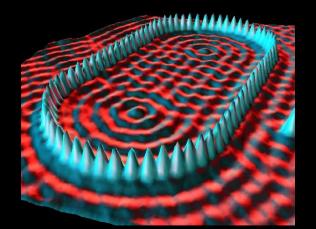
G

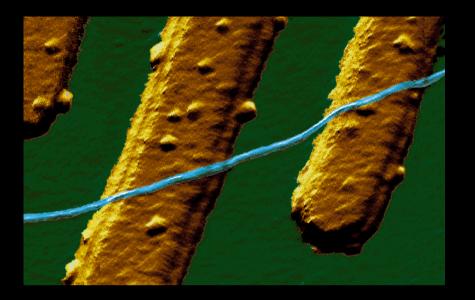
New science

Example: CdS nanoparticles of different size have different colors

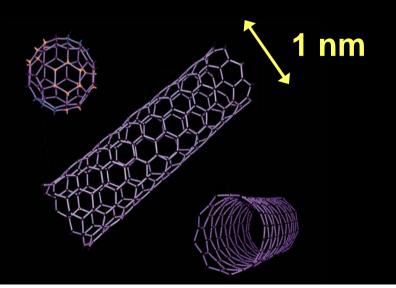
New technologies

Example: Ability to deposit objects on surfaces with nanoscale precision

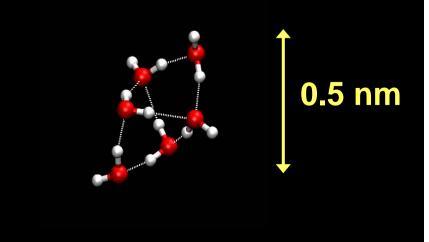




Is Ohm's law still valid in carbon nanotubes?



Does a water nanodrop behave like liquid water?



Regional School on Physics at the Nanoscale: Theoretical and computational aspects 14-25 December 2009, Hanoi, Vietnam

Directors:

B. Altshuler
M. Kiselev
V. Kravtsov
N.V. Lien
S. Scandolo

Local organizer:

N.H. Quang

Topics:

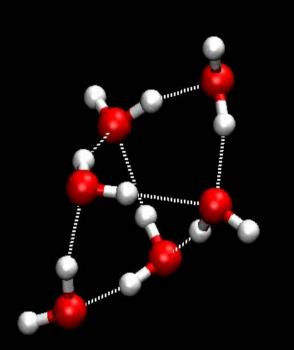
- > Introduction to Nanophysics
- > Physics of Carbon Nanotubes
- > Physics of graphene and graphene nanoribbons
- > Mesosocopic systems
- > Quantum dots
- > Nanowires, Nanoclusters and
- Nanostructures on surfaces
- > Computational approaches based on:
 - . Density Functional Theory
 - . Molecular dynamics

Ab-initio simulations in the nanosciences: (1) Methods

Sandro Scandolo

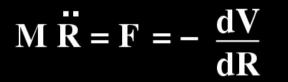
The Abdus Salam International Center for Theoretical Physics (ICTP) Trieste, Italy

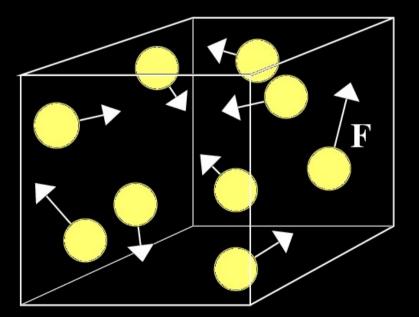
www.ictp.it



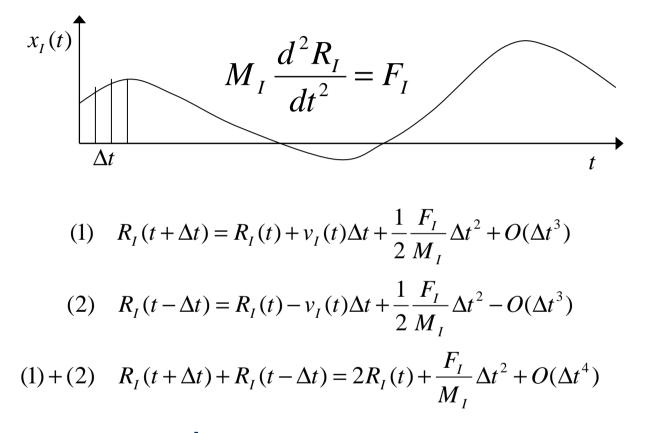
Regional School on Science at the Nanoscale, Hanoi December 2009

Molecular Dynamics





(with periodic boundary conditions)



Verlet's algorithm

$$R_I(t + \Delta t) = 2R_I(t) - R_I(t - \Delta t) + \frac{F_I}{M_I}\Delta t^2 + O(\Delta t^4)$$

Initialize: select starting atomic positions and velocities as close as possible to thermal equilibrium

Integrate: compute all forces and determine new positions using Verlet's algorithm

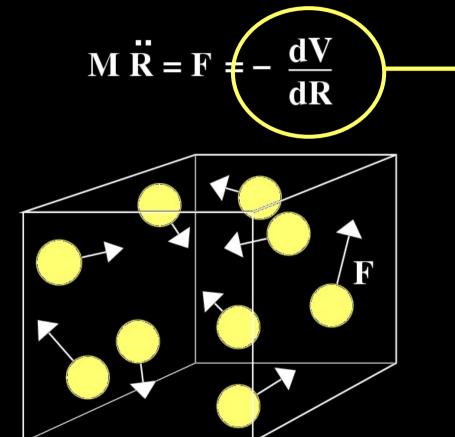
Equilibrate: let the system loose memory of the initial configurations, i.e. let it reach thermal equilibrium

Average: accumulate averages of observables of interest (A)

$$\langle A \rangle = \frac{1}{T} \int_{0}^{T} A(\vec{R}(t), \vec{P}(t)) dt \qquad \langle A \rangle = \frac{\int A(\vec{R}, \vec{P}) \exp(-\beta E) d\vec{R} d\vec{P}}{\int \exp(-\beta E) d\vec{R} d\vec{P}}$$

Average in Molecular Dynamics = Average in Statistical Mechanics

Molecular Dynamics



Sum of pair interactions?

How to treat chemical complexity?

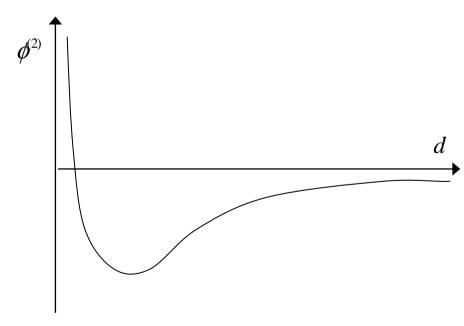
Where are the electrons?

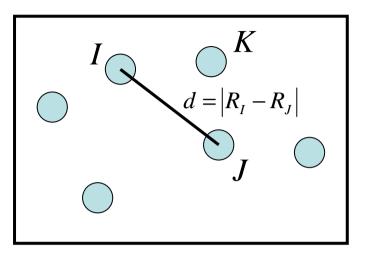
(with periodic boundary conditions)

$$M_{I} \frac{d^{2}R_{I}}{dt^{2}} = F_{I} = -\frac{dE(\{R\})}{dR_{I}}$$

A very simple choice:

$$E(\{R\}) = \frac{1}{2} \sum_{I,J} \phi^{(2)}(|R_I - R_J|)$$





But the interaction between two atoms is partially mediated by the presence of a third atom...

$$E(\{R\}) = \frac{1}{2} \sum_{I,J} \phi^{(2)}(I,J) + \frac{1}{6} \sum_{I,J,K} \phi^{(3)}(I,J,K) + \dots$$

Starting point: Pair potentials (Lennard-Jones, Born-Mayer, Coulomb, etc)

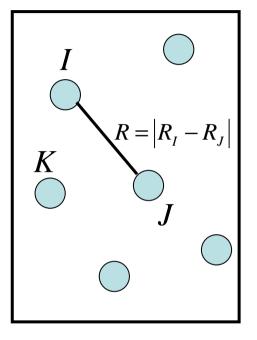
$$4\varepsilon \left[\left(\frac{R_0}{R}\right)^{12} - \left(\frac{R_0}{R}\right)^6 \right], \quad -\frac{Ze^2}{R} + \varepsilon e^{-\alpha R}, etc...$$

+ three-body corrections

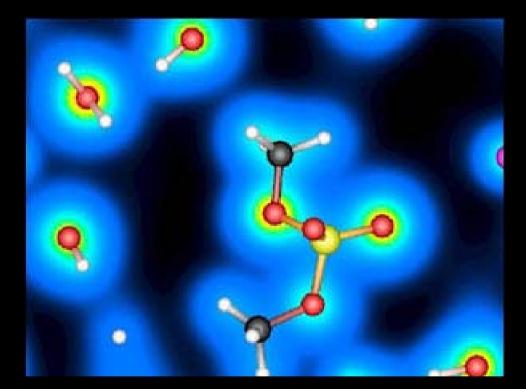
$$\phi^{(3)}(I, J, K) = V_0 \left[\cos \alpha + 1/3 \right] \qquad \alpha = I \hat{J} K$$

- + density dependent terms (embedded atom models)
- + atomic distorsion terms (includes polarization)
- + charge transfer terms

Parameters are determined from "empirical" data, such as experimental EOS, vibrations, phase diagrams, dynamical properties, etc.



Quantum simulations: The "standard model"



"Molecular dynamics" for atoms Ma = F = dE/dRSchroedinger equation for electrons $H\psi \in E\psi$ e-e-interactions: Density Functional Theory e-nuclei interactions: Pseudopotentials

"Ab-initio" molecular dynamics = Classical molecular dynamics in potential energy surface generated by th electrons in their quantum ground state

$$M_I \frac{d^2 R_I}{dt^2} = F_I = -\frac{dE(\{R\})}{dR_I}$$

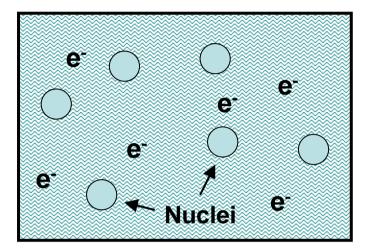
Electrons respond much faster than nuclei to external forces, because of their lighter mass, therefore:

Electrons are always in their instantaneous quantum mechanical ground state, for each given {R}.

$$E({R}) = \langle \psi_e | H_e({R}) | \psi_e \rangle$$

Consequence:

Every MD step requires the calculation of the QM ground state of the electrons



The electronic Hamiltonian H_e depends parametrically on the nuclear positions {R}

$$H_{e} = -\sum_{i=1,N_{e}} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{i=1,N_{e}}^{j=1,i-1} \frac{e^{2}}{|r_{i} - r_{j}|}$$
$$-\sum_{i=1,N_{e}}^{I=1,N} \frac{Z_{I}e^{2}}{|r_{i} - R_{I}|} + \sum_{I=1,N}^{J=1,I-1} \frac{Z_{I}Z_{J}e^{2}}{|R_{I} - R_{J}|}$$

$$H_{e} = -\sum_{i=1,N_{e}} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{i=1,N_{e}}^{j=1,i-1} \frac{e^{2}}{|r_{i} - r_{j}|}$$
$$- \sum_{i=1,N_{e}}^{I=1,N} \frac{Z_{I}e^{2}}{|r_{i} - R_{I}|} + \sum_{I=1,N}^{J=1,I-1} \frac{Z_{I}Z_{J}e^{2}}{|R_{I} - R_{J}|}$$

Electron-electron (many-body) interaction

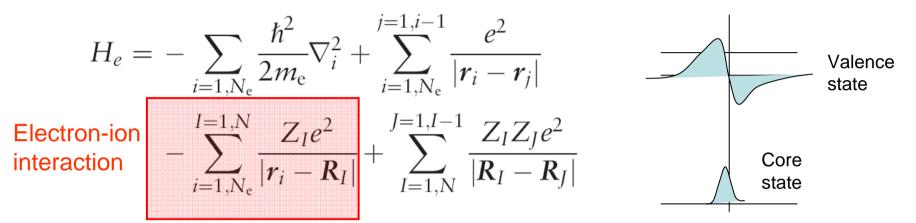
Density-functional theory [W. Kohn et al. 1964-1965] states that the e-e interaction can be written as a one-electron "effective" term:

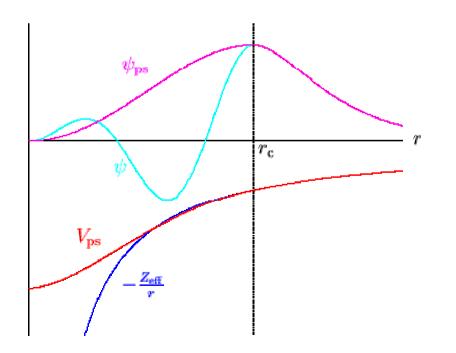
$$\sum_{j} \frac{e^{2}}{\left|\vec{r}_{i} - \vec{r}_{j}\right|} \equiv \int \frac{\rho_{e}(\vec{r}')}{\left|\vec{r}_{i} - \vec{r}'\right|} d\vec{r}' + V_{xc}(\rho_{e}(\vec{r}_{i}))$$

However, the exact functional form of V_{xc} is not (yet) known.

Current approximations to the exact V_{xc} go under different names (LDA, BLYP, BP, GGA, "hybrid", et al). While GGA and hybrid functionals provide slightly better results than other approximations, the choice of the V_{xc} is often made in such a way to improve agreement with exps ("ab fine"??).

The pseudopotential approximation





- + Core states are irrelevant
- + Valence states have nodes as a consequence of orthogonality with core states

The 1/r Coulomb potential can be replaced by a suitably constructed effective potential, or pseudopotential

$$M_{I} \frac{d^{2}R_{I}}{dt^{2}} = F_{I} = -\frac{dE(\{R\})}{dR_{I}} = -\frac{d\langle\psi_{0}|H_{e}(\{R\})|\psi_{0}\rangle}{dR_{I}}$$

How to keep electron in the ground state

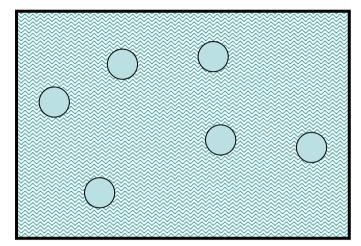
$$M_{I} \frac{d^{2}R_{I}}{dt^{2}} = F_{I} = -\frac{dE(\lbrace R \rbrace)}{dR_{I}}$$
$$E(\lbrace R \rbrace) = \langle \Psi_{0} | H_{e}(\lbrace R \rbrace) | \Psi_{0} \rangle$$

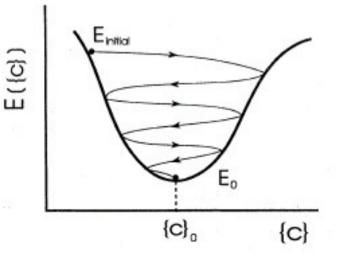
If we expand wavefunctions in a basis set

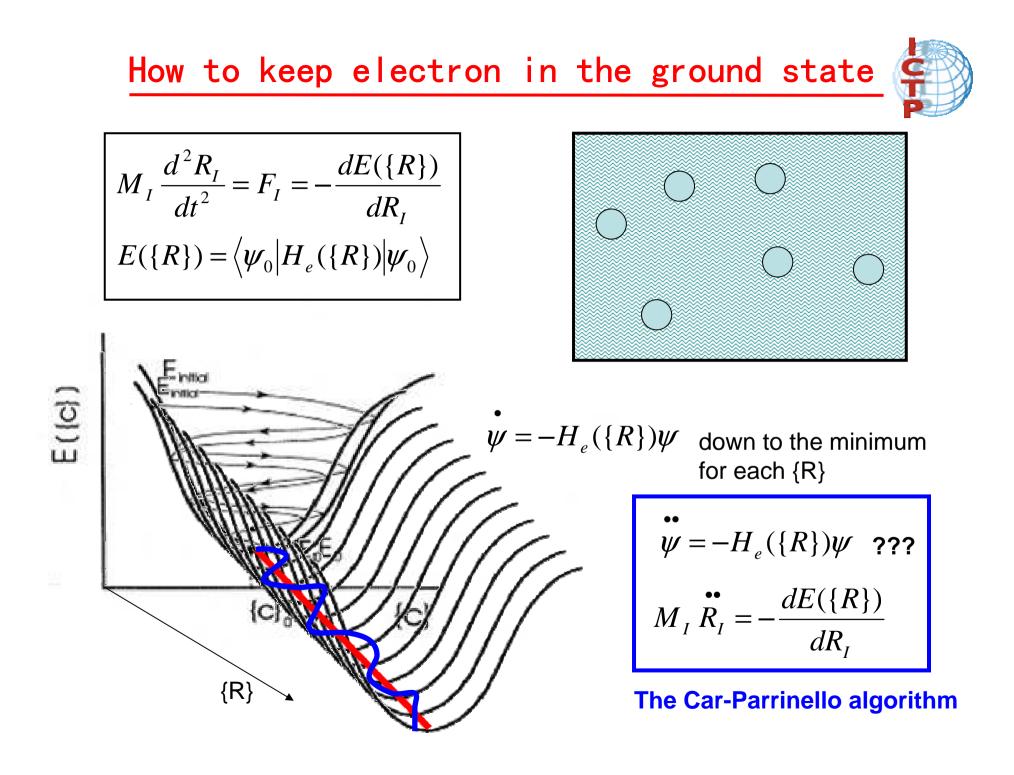
$$\Psi = \sum_{i} c_{i} \varphi_{i}$$
$$\left\langle \Psi \middle| H_{e} \middle| \Psi \right\rangle = \sum_{i,j} c_{i} c_{j}^{*} \left\langle \varphi_{i} \middle| H_{e} \middle| \varphi_{j} \right\rangle$$

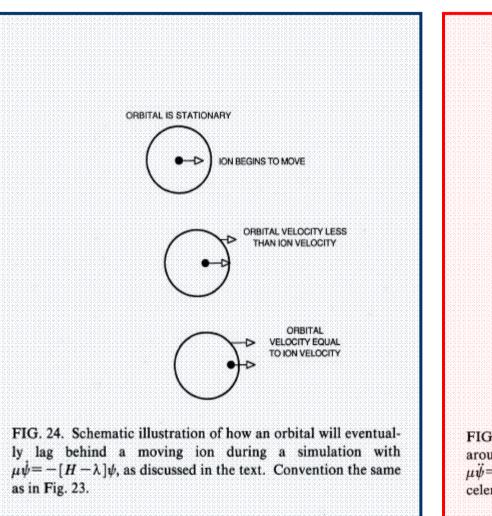
finding the ground state is equivalent to minimizing a quadratic form in the {c}'s (variational principle). So, standard minimization schemes can be used, e.g. steepest descent:

$$\dot{\psi} = -\frac{\delta}{\delta\psi} \langle \psi | H_e | \psi \rangle = -H_e \psi$$









Born-Oppenheimer

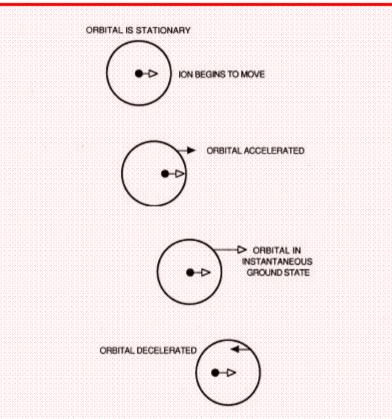


FIG. 23. Schematic illustration of how an orbital will oscillate around a moving ion during a simulation with $\mu \ddot{\psi} = -[H - \lambda]\psi$, as discussed in the text. Velocities and accelerations are designed as open and filled arrows, respectively.

Car-Parrinello

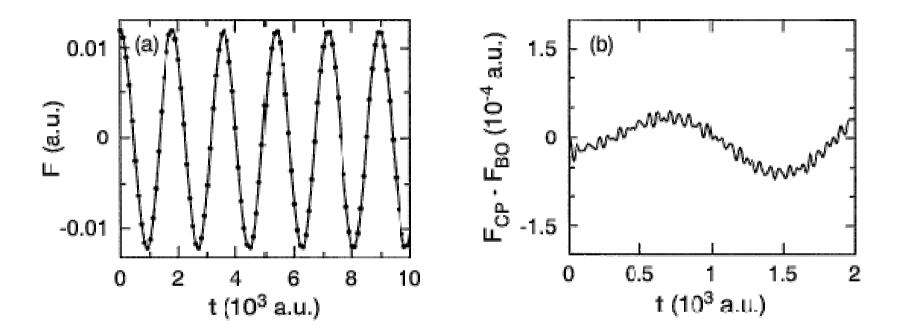


Figure 4. (a) Comparison of the x-component of the force acting on one atom of a model system obtained from Car–Parrinello (solid line) and well–converged Born–Oppenheimer (dots) molecular dynamics. (b) Enlarged view of the difference between Car–Parrinello and Born–Oppenheimer forces; for further details see text. Adapted from Ref. 467 .

BO MD

Exactly on BO surface, more **accurate** in principle.

 $\Delta t \sim \text{ionic time scales,}$ maximum time step possible.

Diagonalization or minimization, expensive per step.

Not stable against deviations from BO surface.

In practice needs thermostatting ions to prevent them heating up.

Quenching on BO *can interfere with Nose thermostat, constraints.*

Most applications in solids.

CP MD

Always slightly off BO surface, less accurate

 $\Delta t \ll$ ionic time scales, (much) shorter time steps.

Orthogonalization only, far less expensive per step.

Stable against deviations from BO surface.

Can in principle run fully in microcanonical ensemble.

Fully consistent with Nose thermostats, constraints.

Superior for liquids.

- R. Car and M. Parrinello, *Phys. Rev. Lett.* 55, 2471 (1985)
- M. Payne, M. Teter, D. Allan, T. Arias, J. Joannopoulos, *Rev. Mod. Phys.* 64, 1045 (1992).
- D. Marx, J. Hutter, "Ab Initio Molecular Dynamics: Theory and Implementation", in "*Modern Methods and Algorithms of Quantum Chemistry*" (p. 301-449), Editor: J. Grotendorst, (NIC, FZ Jülich 2000)
- <u>http://www.theochem.ruhr-uni-bochum.de/research/marx/cprev.en.html</u>
- R. Rousseau and S. Scandolo, "Car-Parrinello Molecular Dynamics", in "Encyclopedia of Condensed Matter Physics", edited by G. Bassani, G. Liedl, and P. Wyder, Elsevier, Amsterdam (2005)

Quantum ESPRESSO is an open-source suite of computer codes for electronic-structure calculations and materials modeling. It is based on density-functional theory, plane waves, and pseudopotentials.

Features include:

structural optimizations,	dielectric and Raman tensors
phonons	infrared spectra
elastic constants	NMR spectra
ab-initio molecular dynamics	etc

"First-principles codes for computational crystallography in the Quantum-ESPRESSO package" S. Scandolo et al., Z. Kristallogr. 220, 574 (2005)

www.quantum-espresso.org