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Lecture 2

Quantum Nano-Electromechanics

• Quantum coherence of electrons

• Quantum coherence of mechanical displacements

• Mechanically induced quantum interferrence of electrons

Outline



Formalization of Heisenberg’s principle:

operators for physical variables

eigenfunctions – quantum states

quantum state with definite momentum

In this state the momentum experiences

quantum fluctuations 

Quantum Coherence of Electrons
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Stationary Quantum States

Hamiltonian of a single electron:
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Stationary quantum states: Ĥ E   
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Second Quantization

• Spatial quantization discrete quantum numbers

• Due to quantum tunneling the number of electrons in the body experiences

quantum fluctuations and is not an integer

• One therefore needs a description that treats the particle number N as a 

quantum variable

Wave function for system of N electrons:

Creation and annihilation operators
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Field  Operators
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Density Matrix
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Louville – von Neumann

equation



Zero-Point Oscillations
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Consider a classical particle which oscillates in a quadratic potential well. Its equilibrium 

position, X=0, corresponds to the potential minimum E=min{U(x)}.

A quantum particle can not be localized in space. Some “residual oscillations" are left 

even in the ground states. Such oscillations are called zero point oscillations.

Classical motion:

Quantum motion:

Classical vs quantum description: the choice is determined by the parameter 

where d is a typical length scale for the problem. “Quantum” when       
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Amplitude of zero-point oscillations:

0x m 
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Quantum Nanoelectromechanics of 

Shuttle Systems 

If                                        then quantum fluctuations of the 

grain significantly affect nanoelectromechanics.
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Conditions for Quantum Shuttling
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Quantum Harmonic Oscillator

Probability densities |ψn(x)|2 for the

boundeigenstates, beginning with the 

ground state (n = 0) at the bottom and 

increasing in energy toward the top. 

The horizontal axis shows the position

x,and brighter colors represent higher

probability densities.

2
2 2ˆ 1
ˆ

2 2

p
H M x

M
  ˆ

d
p i

dx
  

1 1
2

2 41
| exp

2 ! 2
nn

M M x M
n H x

n

  



     
                  

1

2
nE n

 
  

 


Ledder operators
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Eigenstate of oscillator is a ideal gas of elementary excitations – vibrons, 

which are a bose particles. 
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Quantum Shuttle Instability
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Quantum vibrations, generated by tunneling 

electrons, remain  undamped and accumulate 

in a coherent “condensate” of phonons, 

which  is classical shuttle oscillations.
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Shift in oscillator position 

caused by charging it by a 

single electron charge.

References: 

(1) D. Fedorets et al. Phys. Rev. Lett. 92, 166801 (2004)

(2) D. Fedorets, Phys. Rev. B 68, 033106 (2003)

(3) T. Novotny et al. Phys. Rev. Lett. 90 256801 (2003)

Phase space trajectory of 

shuttling. From Ref. (3)
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Try new principles for sensing the 

quantum displacements!

How to Detect Nanomechanical 

Vibrations in the Quantum Limit?

Consider the transport of electrons through a suspended, vibrating carbon 

nanotube beam in a transverse magnetic field H. What will the effect of H be 

on the conductance?

Shekhter R.I. et al. PRL 97(15): Art.No.156801 (2006).
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Aharonov-Bohm Effect
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The particle wave, incidenting the device from the left splits at the left end of the device. 

In accordance with the superposition principle the wave function at the right end will be 

given by:

The probability for the particle transition through the device is given by:
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In the classical regime the SWNT fluctuations u(x,t) follow well defined trajectories.

In the quantum regime the SWNT zero-point fluctuations (not drawn to scale) smear out 

the position of the tube.

Classical and Quantum Vibrations
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Quantum Nanomechanical 

Interferometer 

Classical interferometer

Quantum nanomechanical

interferometer
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Electronic Propagation Through Swinging 
Polaronic States
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Coupling to the Fundamental Bending Mode 
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Only one vibration mode is taken into account

CNT is considered as a complex scatterer for electrons tunneling 

from one metallic lead to the other.
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Tunneling through  Virtual Electronic States on CNT

• Strong longitudinal quantization of electrons on CNT

• No resonance tunneling though the quantized levels

(only virtual localization of electrons on CNT is possible)

Effective Hamiltonian
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Calculation of the Electrical Current
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Vibron-Assisted Tunneling through 

Suspended Nanowire

• Tunneling through vibrating nanowire is 

performed in both elastic and inelastic

channels.

• Due to Pauli-principle, some of the 

inelastic channels are excluded.

• Resonant  tunneling at small energies of 

electrons is reduced.

• Current reduction becomes independent

of both temperature and bias voltage.
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Vibrational system is in equilibrium

For a 1 μm long  SWNT at T = 30 mK and H ≈ 20 - 40 T  a relative 

conductance change is of about 1-3%, which corresponds to a magneto-

current of 0.1-0.3 pA.

Linear Conductance
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Quantum Nanomechanical 

Magnetoresistor
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R.I. Shekhter et al., PRL 97, 156801 (2006)



Magnetic Field Dependent Offset Current
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