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Lecture 2
Quantum Nano-Electromechanics

Outline

* Quantum coherence of electrons
* Quantum coherence of mechanical displacements
* Mechanically induced quantum interferrence of electrons
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Quantum Coherence of Electrons

7
F,M . FpSx =

Classical approach Heisenberg principle in quantum
approach

Formalization of Heisenberg’s principle:

{A} operators for physical variables

{Wa} elgenfunctions — guantum states
. pr

w,(F)=Ce *  quantum state with definite momentum

2(F) = Z a,, (F) In this state the momentum experiences
p quantum fluctuations
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Stationary Quantum States

~ P . h?
Hamiltonian of a single electron: H=—+U (r); P=——
2m | OF

Stationary quantum states: Hlﬂa = EaWa
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Second Quantization

« Spatial quantization & discrete quantum numbers

* Due to quantum tunneling the number of electrons in the body experiences
guantum fluctuations and is not an integer

» One therefore needs a description that treats the particle number N as a
guantum variable

Wave function for system of N electrons: YN (ot} (I’)

Creation and annihilation operators

({ n }) = WN+1({F;] }) N - Zﬁa = Za;aa :a;’aﬂ:L = 5a,ﬁ fermions

U {F }) = l//N_l({fn }) H =Y e, a;,aﬂ]_ =0, , bosons




Lecture 2: Quantum Nano-Electromechanics 6/24

Field Operators

l/7+(f)=zal%(f); n(r) =y (M (r)

H = jd*”(r H (r)y/(F)

Density Matrix

Louville — von Neumann

. A .00 4 -
A= Sp{pA}, Ihap =[H ,,0] equation
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Zero-Point Oscillations

Consider a classical particle which oscillates in a quadratic potential well. Its equilibrium
position, X=0, corresponds to the potential minimum E=min{U(x)}.
A quantum particle can not be localized in space. Some “residual oscillations" are left
even in the ground states. Such oscillations are called zero point oscillations.
A
U(x) | Classical motion:
\ 4 d’x  ou k
\ / M—=———=-kKx w=,[|—
\ / dt OX m
|U (x)=U, +%kx2 E. //4— Ground state Quantum motion:
. p~h/x= E(X)=h"/2mx* +kx*/2
Xo X
Amplitude of zero-point oscillations: E(x) =min{E(X)}

X, =/ M@

Classical vs quantum description: the choice is determined by the parameter X, /d

where d is a typical length scale for the problem. “Quantum” when X,/d ~1
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Quantum Nanoelectromechanics of
Shuttle Systems

2h
~ OXZ=Z2X, =, [——
oOXop=h 0 Yo

8/24

If |R(x+6%)—R(x)| >> R(x) then quantum fluctuations of the

grain significantly affect nanoelectromechanics.
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Conditions for Quantum Shuttling

X = /L %51 A —Tunneling length
° 2M o y)

1. Fullerene based SET Xo ~ 0.1 =) Quasiclassical shuttle

A vibrations.
awo=1THz 7 -

2. Suspended CNT | ~_ . [gjz
STM L

[t} 0.2 04 0.6 0.8 1 1.2

- e
AR T— L [um]

w =10° - 10° Hz for SWNT with L =1um

A

9
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Quantum Harmonic Oscillator

Ep=ho(n +E |

Ledder operators

o= /Ma’()@r ' f)j aln>=+n|n-1>
2h Mo a'|n>=+Jn+1l|n+1>

9t = M . I, P Probability densities |y, (x)|? for the
N\ 21 Mo P R = / (a+a*) boundeigenstates, beginning with the
2M o ground state (n = 0) at the bottom and

bei h (a* _ a) increasing in energy toward the top.
M w The horizontal axis shows the position
x,and brighter colors represent higher

H = ha)(a+a 11/ 2) [a, a+] -1 probability densities.

Eigenstate of oscillator is a ideal gas of elementary excitations — vibrons,
which are a bose patrticles.
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Quantum Shuttle Instability

—

—{ho

ek
d=—
2k
Shift in oscillator position

caused by charging it by a
single electron charge.

eV

Quantum vibrations, generated by tunneling
electrons, remain undamped and accumulate
in a coherent “condensate” of phonons,
which is classical shuttle oscillations.

7/<7/thr

Phase space trajectory of
shuttling. From Ref. (3)

References:

(1) D. Fedorets et al. Phys. Rev. Lett. 92, 166801 (2004)
(2) D. Fedorets, Phys. Rev. B 68, 033106 (2003)

(3) T. Novotny et al. Phys. Rev. Lett. 90 256801 (2003)




Lecture 2: Quantum Nano-Electromechanics 12/24

How to Detect Nanomechanical
Vibrations in the Quantum Limit?

Try new principles for sensing the
guantum displacements!

Consider the transport of electrons through a suspended, vibrating carbon
nanotube beam in a transverse magnetic field H. What will the effect of H be
on the conductance?

Shekhter R.l. et al. PRL 97(15): Art.N0.156801 (2006).
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Aharonov-Bohm Effect

The particle wave, incidenting the device from the left splits at the left end of the device.
In accordance with the superposition principle the wave function at the right end will be
given by:

y
. @ e v (0) =20 0) =, ,(0)> explicr}

a Ch b ai(x)——h.[ I'A
C
L
a, a1—27z—; CD_LSB Ecﬁﬁ :Lcé(fluxquantum)
27 1 g eh

The probability for the particle transition through the device is given by:

2
I TF=lw,, I 4| 1+cos 272 || tsin?| 222
_ >, o
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Classical and Quantum Vibrations

Ty X _** ~ u(X)

—~—
‘—
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In the quantum regime the SWNT zero-point fluctuations (not drawn to scale) smear out

the position of the tube.
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Quantum Nanomechanical

Interferometer
Classical interferometer / >
\
@2
Quantum nanomechanical \
interferometer /




Electronic Propagation Through Swinging
Polaronic States
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Coupling to the Fundamental Bending Mode

Only one vibration mode is taken into account

0(X) = XU, () (" +D)/\2 5 %, = (hz%oPEl )%

CNT is considered as a complex scatterer for electrons tunneling
from one metallic lead to the other.
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Tunneling through Virtual Electronic States on CNT

y Y
L,X B S

| E9Z0R0 00X OZOZOZ0R0a0:0Z0ZOZOZOZOZOZOZ0Z0Z0ZOX

H® | |

« Strong longitudinal quantization of electrons on CNT
« No resonance tunneling though the quantized levels
(only virtual localization of electrons on CNT is possible)

Effective Hamiltonian

ha ~, » 06" +6
H=)¢a' a +7b+b+(Teﬁe"D(b N arca,, +he)

a,o a,a

TT.
@ = gHLY, //20, Y, = J#/2M e, <L T, =" %_ﬂ
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Calculation of the Electrical Current

1=G,> > P(n) [(n E°E D | nt 1) [ x

n=0 l=—n

jdg[ f (5)(1_ f, (5—|ha)))— f, (‘9)(1_ f (g—lha)))]

G/ =S P(n)[(n|e®® ) ny P +
) 2 P[] )|

o o 2lha/
2> PO (N[ [n+1)f 1
n=0 I-1 exp('h%T) -1
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Vibron-Assisted Tunneling through
Suspended Nanowire

- —
« Tunneling through vibrating nanowire is
B U ee— performed in both elastic and inelastic
A B channels.

— } B » Due to Pauli-principle, some of the

- inelastic channels are excluded.

A — * Resonant tunneling at small energies of
— electrons is reduced.
—_—t

 Current reduction becomes independent
of both temperature and bias voltage.

Source Drain
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Linear Conductance

Vibrational system is in equilibrium

G () ; hao
— X eXPy—| — o —>>1
C-:'O CI)0

G 1o\ heo ho
—~1-= , —<<1
G, 6l®,) kT kT

® =4rgLx,H, @,=h/e

Foralpum long SWNTatT=30mK and H=20-40T arelative
conductance change is of about 1-3%, which corresponds to a magneto-
current of 0.1-0.3 pA.
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Magnetic fig)q

Magnetoresistor

Quantum Nanomechanical

R.I. Shekhter et al., PRL 97, 156801 (2006)
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Magnetic Field Dependent Offset Current

| =1,(V)—Al; Al NWKCDJZ

, eV |®,

2
eV >> ha)(gJ
CI)O

2
eV, = hw(gj
CI)0
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Model

H=> H +H, +H, + > T

O-:L,R G:LIR

Zga a,o aa

=fort )(;;AJ y 04U (y-u (2w () ()
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y'(F)=> aip,(F)

25



