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Motivations

Metallic Carbon nanotubes:

-Highest current density (~109 A/cm2)

-Interconnects for tomorrow electronics but saturation of the 
current at high bias:

1 µm long tube

PRL 84, 2941 (2000)

VSD (Volts)

• What is the origin of the saturation?
• Can we improve the nanotube performances?
• Graphene at high bias: maximum current density? Graphene 

interconnects?

-Highest current density (~109 A/cm2)

-Interconnects for tomorrow electronics but saturation of the 
current at high bias:



OUTLINE

•metallic carbon nanotubes:

-transport measurements at high bias

-scattering processes (DFT vs. experiments)
-Boltzmann for phonons and electrons, hot phonons

-cooling hot-phonons to improve performances

•graphene: 

-transport measurements 

-Boltzmann for phonons and electrons

-analysis of scattering lengths 



metallic tubes on substrate
Experimental I/V of a nanotube transistor

Park et al., Nano Lett. 4, 517 (04)

V<0.2 V, ballistic regime
• resistance weakly depends on 

length in short tubes

• electron scattering length: 

300 nm – 1600 nm

due to defects and acoustic 
phonons

V>0.2 V, non-ballistic regime
• resistance depends on length
• electron scattering length: 

10-15 nm 

due to optical phonons ~ 0.2 eV



saturation current
Experimental I/V of a nanotube transistor

Park et al., Nano Lett. 4, 517 (04)
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If phonon emission instantaneous once the threshold is reached 
(long tubes) and elastic scattering negligible
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Graphene and nanotube 
electronic structure

• Fermi surface: circles around
K and K’=2K

• Optical phonon relevant for 
transport: Γ and K
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In nanotubes the electron and phonon states are well described by 

those of graphene with k.Ch = 2π  i, (i integer)

Metallic tubes: (m-n)=3 i, (I integer)

Semicond. tubes:(m-n) ≠  3 i, (i integer)



optical phonons of graphite/graphene
coupled with electrons

Γat phonon  E2g Kat phonon  A '
1



collision processes for transport

phonon
electron

electron
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electron

electron

phonon
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electron-phonon:

phonon-phonon (anharmonicity):

DFT calculations, validated with phonon measurements

defect

electron

electron

electron-defects (extrinsic):

extracted from experimental low-field conductivity
(negligible in nanotubes but not in graphene)



Phonon lifetime in graphite/graphene
[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]

experimental Raman  
spectrum of graphite •The Raman G line in graphite E2g phonon at 

Γ and is well fitted by a Lorenzian with 
FWHM=13cm-1

•The width is due to the finite lifetime
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From the Raman G peak line width we 
can measure EPC
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Graphene EPC at Γ

EPC2 

(eV/A)2

DFT 45.6
Raman line 

width
45.5

•Similar result from analysis of phonon 
dispersions near Γ (Kohn anomaly)



Phonon lifetimes in nanotubes

• The G peak splits in G+ and G-

• G- broad and downshifted in 
metallic tubes

The 2-fold degenerate E2g mode 
of graphite splits in metallic tubes: 
• G+ transverse mode, perp. to the tube 

axes, not coupled to electrons 
• G- longitudinal mode, parall. to the tube 

axes, coupled to electrons

Raman spectrum of tubes

Raman  spectrum of graphite



By using the refolded EPC of graphite:

Raman G peak linewidth in nanotubes
 [Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]
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phonons-phonons (anharmonicity) 
interaction from DFT

[Bonini, Lazzeri, Marzari, Mauri, Phys. Rev. Lett. 99, 176802 (2007)]
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Time resolved terahertz spectroscopy [PRL 95, 187403 
(05)] on graphite: ps7~anharmonicτ



Scattering times for nanotubes with 
a diameter of 2 nm 

• bottleneck: relaxation from optical to acoustic phonon
• heating of optical phonons is expected
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We use the scattering times in Boltzmann 
semiclassical transport theory 
for both electrons and phonons
 [Lazzeri, Mauri, Phys. Rev. B 165419 (2006)]

• We compute the IV curve of metallic 
nanotube transistors with:

– cold phonons: supposing that optical phonons 
are thermalized at room temperature 

– hot phonons: allowing for the possibility that 
optical phonons are heated by the electrons



results (300 nm long nanotube)

• under transport optical phonons are very hot
• other phonons (non coupled to electrons) are cold: 

tube not in thermal equilibrium!
• we can boost performances with a heat sink



a heat sink: isotopic disorder 12Cx
13C1-x

 [Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• isotopic disorder scatters phonons but not electrons
• is the disorder-decay-time shorter than τ th (3-5 ps)? 
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a heat sink: isotopic disorder 12Cx
13C1-x

 [Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• is the disorder-decay-time shorter than τ th (3-5 ps)? 

yes

with x=0.5

thiso ττ =< ps3ps9.0~

thiso ττ =< ps5ps2~

K-A’1

Γ-E2g



a heat sink: isotopic disorder 12Cx
13C1-x

 [Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• improvement in the performances (decrease of 
differential resistivity)

with x=0.5

experiment



PART 2

GRAPHENE



Vg=0

Vg=-24

• differential resistance increases by current never fully saturates
• current 350µA/350nm ~ 1 µA/nm. In nanotubes 20µA/(π 2nm) ~ 

3µA/nm
• we define a pseudo-sat current, Isat, as the current when 

dI/dV=1/(14kΩ)

350 nm

130
0 nm

graphene at high bias in high mobility samples 
(~104cm2V-1s-1)

 [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]



graphene at high bias

 [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•if phonon emission instantaneous once the threshold is reached 
and elastic scattering negligible
•this model overestimates the current in graphene

full saturation model



Boltzmann theory for electrons and phonons
 [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•intrinsic parameters: electron-phonon and phonon-phonon 
(anharmonic) scattering length from DFT (and GW) calculations 
validated on experimental phonon measurements.
•extrinsic parameters: elastic scattering length  modeled as in 
[Hwang, Das Sarma, PRB 77, 195412 (2008)]. Free parameters 
(density of charged and neutral defects) fitted to reproduce the 
low-bias experimental conductivity. Two models (C and Cδ) 
equally good at low bias.



Boltzmann theory for electrons and phonons
 [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

V4p=2V

Boltzmann

•Boltzmann reproduces partial 
saturation seen in expt.
•phonon remain cold (no hot phonon 
as in tubes)
•electron distribution different from full 
saturation

Vg=+-24V



Scattering lengths in graphene
 [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•saturation starts for the value of V4pt for which  lΩ = lel

•saturation is complete if the phonon emission is instantaneous, 

lΩ >> lph , and the elastic scattering is negligible, lel >> lΩ . 

This is impossible in graphene since  lel<< lph

4pteV

L Ω= �

V4pt=1V



why is the elastic scattering more 
important in graphene than in tubes?
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because of pseudospin conservation 
[Ando et al., J. Phys. Soc. Jpn. 67, 2857 (1998)]:

in metallic nanotubes θ kk'=π
  



Conclusions

•full saturation is possible, since lel ~ 1000 nm >> lph ~ 100 nm

•at high bias, since τ epc << τ anharmonic, phonons become hot and 
increase the resistance

•isotopic disorder reduces the hot phonons and the resistance

•no full saturation, since lel ~ 100 nm  << < lph ~ 600 nm 

•no hot phonons since τ epc > τ anharmonic

• current per lateral length 1µA/nm

• higher currents are possible by reducing lel or by increasing Vg 

metallic carbon 
nanotubes

graphene



Anharmonic vs. expt.
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