stability, chemical structure and Clar's aromatic sextets in graphene hydrogenated edges

T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, <u>F. Mauri</u> *IMPMC, Université Pierre et Marie Curie-Paris 6, CNRS* Phys. Rev. Lett. 101, 096402 (2008)

outline

- •why graphene and its edges are important?
- •stability of edges as a function of H₂ partial pressure
- •edge electronic structure
- •Clar's sextets an empirical tool to predic stability and electronic structure of edges
- •visualisation of Clar's sexted in geometry and STM images

giant polycyclic hydrocarbons

graphene a very giant polycyclic hydrocarbon

10 μ m wide single layer flake

graphene ribbons vs nanotubes in active devices

•semiconducting nanotubes:

-difficult to position in a massively integrated chips
-gap depends on chirality and diameter (to be controlled)
-very high mobility

•graphene ribbons:

-lithography for massively integrated chips
-gap depends on ribbon geometry controlled by lithography
-very high mobility requires no defects on the edges

graphene material for post-MOS electronics if we are able to cut it nicely

today best cuts

Chemical route (solution-dispersion and sonication): ribbons with lateral width <10nm with regular edges [X. Li et al., Science 319, 1229 (2008); X. Wang et al., PRL 100, 206803 (2008)]

Thermally activated nanoparticle etching in H₂ atmosphere [S. Datta et al. Nano Lett. 8, 1912 (2008); L. Ci et al. Nano Res. 1, 116 (2008)]

prototype edges discussed in literature

•armchair monohydrogenated edge:

-are these the correct prototypes?-which regular edges are expected in experiments?-how can we recognize experimentally such edges?

structure and stability of polycyclic hydrocarbon from DFT first principles calculations PBE vs. B3LYP

Energy differences (in eV)

Molecule	PBE	B3LYP/6-31G*	Exp.
Naphthacene 1	0.40	0.44	0.40
Benz[a]anthracene 2	0.08	0.08	0.26
Chrysene 3	0.00	0.00	0.00
Benzo[c]phenanthrene 4	0.24	0.26	0.29
Triphenylene 5	0.03	0.03	0.02

structure and stability of hydrogenated edges from DFT first principles calculations

ribbon calculations with PBE-GGA functional, plane-waves and pseudopotentials, Quantum-espresso package

ribbon c energy bulk graphene
$$H_2$$

energy bulk graphene H_2
energy bulk graphene H_2
energy bulk graphene H_2
energy hulk graphene H_2
energy hulk graphene H_2
hydrogen per unit length = $\rho_H = N_H/(2L)$ C atoms H atoms ribbon H atoms ribbon

For a given molecular hydrogen chemical potential μ_{H_2} , the most stable edge minimizes the free energy:

$$G_{H_2} = \mathcal{E}_{H_2} - \rho_H \mu_{H_2}/2$$

our theoretical database (26 structures)

	$\rho_H(\text{\AA}^{-1})$	$\mathcal{E}_{H_2}(\mathrm{eV/\AA})$		$\rho_H(\text{\AA}^{-1})$	$\mathcal{E}_{H_2}(\mathrm{eV}/\mathrm{\AA})$
$z(57)_{00}$ [†]	0.000	0.9650	a(56) ₀ *	0.000	1.4723
Z0 *	0.000	1.1452	a00 °	0.000	1.0078
Z100 *	0.136	0.7854	a(56) ₁ [†]	0.235	0.7030
Z200 *	0.271	0.7260	a1100 °	0.235	0.4946
Z110 *	0.271	0.4306	a10 *	0.235	0.6273
$z(57)_{11}$ [†]	0.407	0.3337	a11 °	0.469	0.0321
Z1 *	0.407	0.0809	a(56)2 °	0.469	0.4114
Z ₂₁₁₁₁₁ *	0.474	0.0463	a21 *	0.704	0.2092
Z21111 *	0.488	0.0397	a2211 °	0.704	-0.0163
Z ₂₁₁₁ †	0.508	0.0257	a22 °	0.939	-0.0710
z_{211} °	0.542	0.0119			
z(600) ₁₁₁₁ °	0.542	0.0459			
Z21 †	0.610	0.0382			
Z221 *	0.678	0.1007			
z_2 *	0.813	0.2224			
$z(57)_{22}$ [†]	0.813	0.2171			
† Non magn	netic,	metallic edg	es, non a	romatic	
* Magnetic, metallic edges, non aromatic					
• Non magn	netic, non-	metallic edg	es, a	romatic	

the most stable hydrogenated edges

the most stable hydrogenated edges

•At standard conditions: 300K, P_{H_2} > 10x10⁻²⁰ bar (in air P_{H_2} = 5x10⁻⁷ bar) the stable edges are:

•Monohydrogenated magnetic zigzag stable only in ultra vacuum

•At high hydrogen pressure (μ_{H_2} ~0) the free energy is negative: graphene spontaneously breaks to from ribbons as observed in [X Li et al. Science 319, 1229 (2008)]

edge electronic-structure

most stables edges

other armchair edges

other zigzag edges

edge electronic-structure

most stables edges

the most stable edges at normal conditions $(a_{11}, z_{211}, a_{22})$:

•do not have edge states (electron states localized at the edge) in agreement with the observation of a gap in gated ribbons in [PRL. 100, 206803 (2008)].

•in absence of edge states available for chemical bonding, they should be chemically inert and meta-stable outside their stability region

edge electronic-structure

most stables edges

metallic edges:

- •an edge state crosses the Fermi energy
- $\bullet z_1$ is metallic in the non-magnetic phase, but a gap is opened in finite ribbons by antiferromagnetic ordering

instability and reactivity of the monohydrogenated zigzag edge z₁

are prototypes of the z_1 ribbons

n < 5 stable, n = 5,6 very reactive, n > 6 unstable

• giant polycyclic hydrocarbons do not have z_1 edges:

Aromaticity and the Clar's sextet

-benzenoid aromatic ring (Clar's sextet) has two resonances:

- a structure with n benzenoid rings has 2ⁿ resonances

-stability increases with the number of resonances. The most stable isomers maximize the number of benzenoid rings

-a fully aromatic structure has only benzonoid rings (no isolated double bonds). Bulk graphene is fully aromatic:

Aromaticity and the Clar's sextet

-we define as "aromatic edges" those having a density of benzenoid rings of 1/3 compatible with that of the bulk.

Aromaticity and the Clar's sextet

-we define as "aromatic edges" those having a density of benzenoid rings of 1/3 compatible with that of the bulk.

two empirical rules (verified on 26 structures):

• for a given H density, the most stable edges are aromatic (if an aromatic structure exists at such density)

•all the non-aromatic edges are metallic/magnetic and viceversa

aromatic vs. non-aromatic edges

aromatic non-magnetic non-metallic aromatic non-magnetic non-metallic

-0.003 eV/Å

-0.229 eV/Å

aromatic non-magnetic non-metallic

aromatic non-magnetic non-metallic

aromatic non-magnetic non-metallic

non-aromatic magnetic

Clar's sextet in the geometry and STM images bulk graphene

supeposition of 3 benzonoid structures, all hexagons equivalent

c) DFT simulated STM images

occupied states U=-0.5V

empty states U=+0.5V

STM: electronic states in a window between $\varepsilon_{\rm F}$ and $\varepsilon_{\rm F}+eU$

$$I(x, y, z = d, U) \propto \sum_{\mu} |\Psi_{\mu}(x, y, z = d)|^{2} \left[f(\varepsilon_{\rm F} - \varepsilon_{\mu}) - f(\varepsilon_{\rm F} + eU - \varepsilon_{\mu}) \right]$$

$$d = 3 \,\text{\AA}$$

Clar's sextet in the STM images (theory)

CLASS 1

one dominating Clar's formula maximizing the number of rings

a₁₁ ribbons (width 2n+1 exagons)

z_{211} ribbons (width 2n+2 exagons non-aligned H₂ groups in two edges)

rings in occupied-state-images where Clar-sextets are present

Clar's sextet in the STM images (theory)

CLASS 2

two dominating Clar's formulae maximizing the number of rings

a₁₁ ribbons (width 2n+2 hexagons)

 z_{211} ribbons (width 2n+2 hexagons aligned H₂ groups on two edges)

 $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ reconstruction:

rings in empty-state-images where no Clar-sextets are present

Clar's sextet in the STM images (theory)

many dominating Clar's formulae maximizing the number of rings

a₁₁ ribbons (width 2n hexagons)

occupied states U=-0.5V empty states U=+0.5V

Clar's sextet in the STM images (experiment) CLASS 2

rings in empty-state-images

Experiment:

From Figure S3 of the supplementary informations on Nature Nanotechnology 3, 397 - 401 (2008) Our theoretical result:

Figure 7c of the manuscript, zigzag orientation

Clar's sextet in the STM images (experiment) <u>CLASS M</u>

Experiment:

Figure 4b of Phys. Rev. B 73, 125415 (2006) (rotated by 90°)

Our theoretical results:

Figure 8a and 8b of the manuscript

DFT Gap energy vs. CLASS

<u>CLASS 1</u> (one Clar's formula): intermediate energy gaps <u>CLASS 2</u> (two Clar's formulae): large energy gaps <u>CLASS M</u> (many Clar's formulae): small energy gaps

conclusions

•magnetic zigzag edge stable in ultra-vacuum: Z₁

•at standard conditions the stables edges are non-metallic and nonmagnetic: $a_{11} \rightarrow c_{211} \rightarrow c_{211} \rightarrow a_{22} \rightarrow c_{211} \rightarrow c_{211}$

Clar's formula allows us, also with other functional terminations:
-to guess, before calculations, the most stable structures
-to predict the metallic and/or magnetic character of the edges
-to predict: most stable edges are nonmetallic and nonmagnetic

•fully aromatic ribbons can be divided in 3 classes with similar electronic properties

•Clar's formula visible in STM images: -STM can be used to identify the class (structure + edge width)

Clar's sextet in the geometry and STM images bulk graphene

supeposition of 3 benzonoid structures, all hexagons equivalent

STM

area

Area (Å²)

5.2091 5.2372 5.2652 5.2932 5.3213 5.3493 5.3774 5.4054 5.4335 5.4615 5.4896 **DFT** simulated

occup. states empty states

-0.5 eV +0.5 eV

STM

Clar's sextet in the geometry and STM images a_{11} ribbon

one dominating Clar's formula maximizing the number of rings

Clar's sextet in the geometry and STM images z_{211} ribbon

one dominating Clar's formula maximizing the number of rings

