
Lecture 1
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-determining the doping charge
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Cutting graphene into ribbons for device applications: atomic, electronic and 
chemical structure of (cut) edges.
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Motivation

micromechanical 
cleavage

graphite

graphene

Graphene: material for tomorrow electronic
- Large mobility

- Nano-ribbons or  bi-layers can be semiconducting 

- Lithography can  be used to prepare devices



Motivation
graphene: peculiar electronic structure
π  bands = conic at the K and K’ points of Brillouin Zone 

Dirac cones: linearized bands 
(relativistic massless particles)

Fermi energy (ε F) in the undoped caseK
K’

K’
K

K’

K

π ∗

π

   velocity Fermi      =±=+ FF vkv�Kkε



Outline
• Counting the number of layer in a graphene flake

– Graphene Raman spectra as a function of the number of layers
– Theoretical explanation

• Non adiabatic vibrations in doped graphene, i.e.how to measure the 
charge doping with Raman
– Graphene as one-atom-thick capacitor plate
– Raman in graphene as a function of the doping
– Adiabatic Born-Oppenheimer theory (static perturbation)
– Non-adiabatic theory (dynamic perturbation)

• Raman in layered metals: huge non-adiabatic effects and role of the 
electron lifetime 

Efficient methods for the characterization?

Raman vibrational spectroscopy



How many layer in a flake? with a TEM
[Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, 

Geim PRL 97, 187401 (2006)]



Part 1

How to measure how many layers of graphene 
there are in a flake 



How many layer in a flake? with Raman
[Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, 

Geim PRL 97, 187401 (2006)]

G

2D

2D peak



G peak: zone center G-E2g phonon

2D peak: 2 phonons with momentum q and –q (q between M and K)

G

2D

What are the G and 2D peaks?



2D single layer, one single peak:

2 phonons Raman:

The phonon momentum q is determined by the double resonance condition: 

E(b)-E(a)=E(c)-E(a)=εL
intermediate virtual states b and c become real

electron

hole

light light

phonon
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2D bilayer: four peaks

Two possible explanations: 
• splitting of the phonon branches due to interlayer coupling: 
excluded by our DFT calculations
• splitting of the electronic bands: confirmed by our DFT 
calculations



2D bilayer: splitting from the electronic bands

positions of the 4 peaks (cm-1)

shape of the 2D peak probes the electronic structure 
not the vibrational structure



Part 2

Non adiabatic vibrations in doped graphene

How to measure the charge doping with Raman



Outline

•Failure of the adiabatic approximation in phonons, requirements

•Non-adiabatic effects with DFT in absence of electron relaxation:
-result for doped graphene
-interpretation of the violation



Adiabatic approximation for phonons

•Dynamical matrix computed from forces resulting 
from the static displacement of the atoms from 
equilibrium:

-by a frozen phonon calculation
-or by time-independent perturbation theory

•Standard approximation used in first-principles 
calculations for phonons both in insulators and in 
metals

•Justified in insulators if  gapE<<ω�



Adiabatic approximation for phonons 

Engelsberg, Schrieffer  Phys. Rev. (1963), Ipatova, Subashiev Sov. Phys. JETP (1974)

•Can fail in metals for phonon with momentum q if:

Fermi/ vq ω<<

Electron Fermi velocity
in the direction of q

ωτ /1>>m

Electron momentum 
relaxation time

Energy
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non adiabatic

Fermi/ vω

•Relaxation of electrons is slower than 
the ionic motion

•Broadening of electronic bands 
smaller than phonon energy



Adiabatic approximation for phonons 

Engelsberg, Schrieffer  Phys. Rev. (1963), Ipatova, Subashiev Sov. Phys. JETP (1974)

•Can fail in metals for phonon with momentum q if:

•Easy in a clean metal at low temp.
(in absence of very strong electron-
phonon coupling) 

•Difficult in a 3D metal (in Raman 
minimum q limited by light penetration 
depth)

•Easy in a layered metals  (graphene) 
vFermi perp. to the plane is low (zero)

Weak evidence experiments in hcp metals because of condition on q 
Grant, Schultz, Hufner, Pelzl Phys. Status. Solidi (1973),Ponosov, Bolotin, Sov. Phys. 
Solid State (1985),Ponosov, Bolotin, Thomsen, Cardona Phys. Stat. Sol. (1998)

Failure proportional to density of states at the Fermi energy:  we need to dope graphene

Fermi/ vq ω<<

Electron Fermi velocity
in the direction of q

ωτ /1>>m

Electron momentum 
relaxation time



Graphene capacitor

micromechanical 
cleavage

graphite

graphene

10 µm wide
single layer flake
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Vibrational Raman

2DG

Ferrari,Meyer,Scardaci,Casirgahi,Lazzeri,
Mauri,Piscanec,Jiang,Novoselov,Roth,Geim.
Phys. Rev. Lett. 97, 187401 (2006).

G peak = E2g phonon at Γ =
inplane antiparallel displacement  of the 2 atoms 



Graphene: Raman G-peak as a 
function of σ (Vg) 

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, Nature Materials 6, 198 (2007)

similar results in:  Yan, Zhang, Kim, Pinczuk, PRL 98, 166802 (2007)



DFT ab-initio calculations: 

-PBE functional, pseudopotentials, PW basis 

-New implementation for non-adiabatic calculations 
in Quantum-espresso gnu package

-Non-adiabatic and adiabatic DFT calculations 
considering an infinite electron relaxation time:

τ m>>1/ω  



DFT phonon calculation 
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

•phonon from forces resulting from the 
static displacement of the atoms from 
equilibrium (by time-independent 
perturbation theory)

ADIABATIC
•the phonon is a dynamic periodic 
perturbation oscillating at finite 
frequency (~1580 cm-1):
phonon by time-dependent perturbation 
theory with periodic perturbation

NON-ADIABATIC



Interpreting the results



Shaking the Dirac cones 

unperturbed (u=0) perturbed (finite u)perturbed (finite u)

real space reciprocal space

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, Nature Materials 6, 198 (2007)

-from the DFT electron-phonon coupling matrix-elements, in presence of a
 E2g lattice distortion of amplitude u 
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Shaking a filled Martini glass 

Adiabatic Non adiabatic

…shaken, not stirred (J. Bond)



Shaking a filled Dirac cone 

Adiabatic or non-adiabatic?

From transport measurements and
fs-spectroscopy:

Electron momentum relaxation time:

τ m =100-300 fs

Phonon period:

T= 21 fs

2π τ m>>T

the electrons do not have time to 
relax to the adiabatic ground state:
non-adiabatic electron dynamics

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, Nature Materials 6, 198 (2007)



Shaking a filled Dirac cone 
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Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, Nature Materials 6, 198 (2007)



Interpreting the results

perturbation-theory point of view



Perturbation theory 
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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Perturbation theory 
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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For an optical zone-center phonon (q->0)

static case, adiabatic
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(Fermi-surface variation)



Perturbation theory 
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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For an optical zone-center phonon (q->0)

static case, adiabatic
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Perturbation theory: non adiabatic
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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Perturbation theory: non adiabatic
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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Perturbation theory: non adiabatic
M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)
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Conclusions part 1 and 2
Measuring the number of layer

• 2D Raman peak is very sensitive to the number of layer in a flake 
• The shape of the 2D peak is an image of the electronic band splitting

Measuring the charge doping in a graphene monolayer

• Graphene: stiffening of the zone-center phonon with electron and hole doping
• Adiabatic calculation fails, dynamic calculation reproduces the stiffening
• The adiabatic phonon energy has two contributions: 

– the distortion of the electronic bands, associated with the phonon 
displacement,

– the consequent rearrangement of the Fermi surface

• In graphene these two contributions cancel out exactly

• In general, if τ m>> 1/ω   the correct zone-center phonon treatment should not 
include the adiabatic Fermi-surface rearrangement

• The τ m>> 1/ω   condition occurs in many metals

• The effect occurs for phonons with                             Observable in layer compounds
Fermi/ vq ω�<<



Part 3

Raman spectra of layered metals

huge non adiabatic effects and

role of electron relaxation



Larger non adiabatic effects? 

Fermi/ vq ω�<<

Intercalated graphite, MgB2: layer metals with large DOS(EFermi)
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•The violation increases with DOS(EFermi) 

•                             to observe with Raman we need a layer metal



DFT theory (with τ m =  ∞) vs. expt.
 Saitta, Lazzeri, Calandra, Mauri, PRL 100, 226401 (2008)

huge nonadiabatic effects 
(311 cm-1 in KC8 )

intercalated graphite: G peak



DFT theory (with τ m =  ∞) vs. expt.
 Saitta, Lazzeri, Calandra, Mauri, PRL 100, 226401 (2008)

huge nonadiabatic effects 
(311 cm-1 in KC8 )

intercalated graphite: G peak hcp metals (ω  in cm-1)
ω A ω NA ω exp

Mg 122 123 122.5

Ti 139 151 141

nonadiabatic effects 10% in 
Ti, but measured ω  is 
adiabatic, since: Fermi/ vq ω>>



DFT theory (with τ m =  ∞) vs. expt.
 Saitta, Lazzeri, Calandra, Mauri, PRL 100, 226401 (2008)

huge nonadiabatic effects 
(311 cm-1 in KC8 )

intercalated graphite: G peak hcp metals (ω  in cm-1)
ω A ω NA ω exp

Mg 122 123 122.5

Ti 139 151 141

nonadiabatic effects 10% in 
Ti, but measured ω  is 
adiabatic, since: Fermi/ vq ω>>

ω A ω NA ω exp

MgB2 538 761 600

MgB2 (ω  in cm-1)

expt. between adiabatic and 
non adiabatic, since: ωτ /1~m



Theory with finite electron relaxation time, τm
Saitta, Lazzeri, Calandra, Mauri, PRL 100, 226401 (2008)
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Theory with finite electron relaxation time, τm
Saitta, Lazzeri, Calandra, Mauri, PRL 100, 226401 (2008)
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•We estimate σ imposing 
ω σ=ω exp 

•We compute the linewidth γ σ 
with this σ

G peak FWHM
theory vs. experiment
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Infinite mass limit
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With negligible electron relaxation, i.e. for:
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Infinite mass limit
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With negligible electron relaxation, i.e. for:

However for

In the infinite mass limit the adiabatic frequency is recovered



Conclusions

•Failure of the adiabatic approximation in phonons if:

•First non-adiabatic DFT calculations of phonons 

•At q=0, the violation can be huge (10%-30%) in both normal and 
layered metals, but only in layered metals Raman measures q=0

•Non adiabatic effects are crucial to reproduce the experimental 
Raman spectra of all layered metals

•From the experimental Raman frequency and linewidth is 
possible to extract the electron relaxation time

Fermi/ vq ω<<ωτ /1>>m



Metal         momentum-relaxation-time (fs)         phonon-period/(2π ) (fs) [from ν Debye]
                          77K             273K                
Li*                      73                  8.8                                     19
Na*                  170                32                                        51
K*                    180                41                                        76
Cu*                  210                27                                        24
Ag*                  200                40                                        36
Au*                  120                30                                        45
Mg*                   67                 11                                       24
Fe*                    32                   2.4                                    18
Zn                     24                   4.9                                    33
Cd                     24                   5.6                                   64
Hg                       7.1                                                        76
Al*                     65                   8                                      19
Ga                      8.4                 1.7                                   32
In                      17                    3.8                                   59
Tl                        9.1                 2.2                                   80
Sn                     11                   2.3                              45-29
Pb                       5.7                1.4                                   87
Bi                        0.72              0.23                                 64
Sb                       2.7                0.55                                 38

XX* =  2π τ m>T  at low temperature (non-adiabatic effect expected)

Momentum relaxation time in metals
from Ashcroft and Mermin
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