From Nanotechnology to Space: The Physics and Chemistry of Carbon Nanotubes

Marco Buongiorno Nardelli NC State University and Oak Ridge National Laboratory

Nanotubes: what are they?

Carbon and dimensionality

From 2D to 1D

"Armchair"

"Zig-zag"

What is a nanotube?

	Properties	<i>(I,m)</i> relation	
Geometric	radius	$R = \frac{\sqrt{3}d\sqrt{l^2 + m^2 + lm}}{2\pi}$	
	chiral angle	$\theta = \arcsin \frac{\sqrt{3}m}{3\sqrt{l^2 + m^2 + lm}}$	
Electronic metal		mod(l-m) = 3	
	semi-conductor	$mod(l-m) \neq 3$	

Can be produced by: Carbon-arc discharge, Laser ablation or catalytic growth

Single- and multi-walled

<u>Nano = 10⁻⁹ meters</u> <u>1 single human hair = 10⁻⁵ meters</u>

Commercial sources

- 60\$-150\$/gram for SWNTs
- 100\$/gram for MWNTs
- >1000\$ for arrays or composites
 - http://www.nano-c.com/
 - http://buckyusa.com/
 - http://www.nano-lab.com/
 -many more...

Commercial sources

	Single Wall Carbon Nanotubes				
	MSDS in PDF				
Catalog No.	D1L110-J	D1L110-A	D1L110-P	D1.5L1-5-S	
Method	arc discharge	arc discharge	arc discharge	CVD	
Diameter	1-1.5 nm	1-1.5 nm	1-1.5 nm	~1.5 nm	
Length	>10 µm	>10 µm	>10 µm	1-5 µm	
Specifications	SWNT: >40%	SWNT: >50%	SWNT: >90%	Purity:>95%	
	Ni:<25% Y: <5%	Fe: 40-50%	16. 1070	EDX analysis	
Price	\$225/g	\$1,000/g	\$2,500/g	\$200/g	
SEM images Click to enlarge	Single wall nanotubes	Single wall nanotubes	Single wall nanotubes	CVD Single wall nanotubes	
TEM images Click to enlarge	SWNT	SWNT	SWNT	CVD SWNT	
Raman Spectra					

• Challenge: modeling a physical phenomenon from a broad range of perspectives, from the atomistic to the macroscopic end

- Ab initio methods: calculate materials properties from first principles, solving the quantum-mechanical Schrödinger (or Dirac) equation numerically
- Pros:
 - Give information on both the electronic and structural/mechanical behavior
 - Can handle processes that involve bond breaking/formation, or electronic rearrangement (e.g. chemical reactions).
 - Methods offer ways to systematically improve on the results, making it easy to assess their quality.
 - Can (in principle) obtain essentially exact properties without any input but the atoms conforming the system.
- Cons:
 - Can handle only relatively small systems, about O(10²) atoms.
 - Can only study fast processes, usually O(10) ps.
 - Numerically expensive!

- Semi-empirical methods: use simplified versions of equations from *ab initio* methods, e.g. only treat valence electrons explicitly; include parameters fitted to experimental data.
- Pros:
 - Can also handle processes that involve bond breaking/formation, or electronic rearrangement.
 - Can handle larger and more complex systems than *ab initio* methods, often of O(10³) atoms.
 - Can be used to study processes on longer timescales than can be studied with *ab initio* methods, of about O(10) ns.
- Cons:
 - Difficult to assess the quality of the results.
 - Need input from experiments or ab initio calculations and large parameter sets.

- Atomistic methods: use empirical or *ab initio* derived force fields, together with semi-classical statistical mechanics (SM), to determine thermodynamic (MC, MD) and transport (MD) properties of systems. SM solved 'exactly'.
- Pros:
 - Can be used to determine the microscopic structure of more complex systems, O(10⁴⁻⁶) atoms.
 - Can study dynamical processes on longer timescales, up to O(1) ⊠s
- Cons:
 - Results depend on the quality of the force field used to represent the system.
 - Many physical processes happen on length- and time-scales inaccessible by these methods, e.g. diffusion in solids, many chemical reactions, protein folding, micellization.

Connection between the scales:

"Upscaling"

Using results from a lower-scale calculation to obtain parameters for a higher-scale method. This is relatively easy to do; *deductive* approach. Examples:

- Calculation of phenomenological coefficients (e.g. elastic tensors, viscosities, diffusivities) from atomistic simulations for later use in a continuum model.
- Fitting of force-fields using *ab initio* results for later use in atomistic simulations.
- Deriving potential energy surface for a chemical reaction, to be used in atomistic MD simulations
- Deriving coarse-grained potentials for 'blobs of matter' from atomistic simulation, to be used in meso-scale simulations

Connection between the scales:

"Downscaling"

Using higher-scale information (often experimental) to build parameters for lower-scale methods. This is more difficult, due to the nonuniqueness problem. For example, the results from a meso-scale simulation do not contain atomistic detail, but it would be desirable to be able to use such results to return to the atomistic simulation level. *Inductive* approach. Examples:

- Fitting of two-electron integrals in semiempirical electronic structure methods to experimental data (ionization energies, electron affinities, etc.)
- Fitting of empirical force fields to reproduce experimental thermodynamic properties, e.g. second virial coefficients, saturated liquid density and vapor pressure

Strength of nanotubes

Nanotubes as nanoscale cables

Nanotubes as nanoscale cables

(Homma et al, APL, 2002)

Nanotubes in space

The Space Elevator

Bradley C. Edwards, Ph.D.: Funded by NIAC

<u>Concept:</u> A cable with one end attached to Earth and the other 100,000 km up in space that can be ascended by mechanical means.

Benefits:

- Reduction of launch costs to <1% of rockets
- Expandable to larger and distributed (Mars) system
- Capable of launching large, fragile payloads
- · Large capacity per launch and over time

Basic system consists of:

- Cable carbon nanotube composite
- Anchor ocean going platform (Sealaunch)
- Counterweight deployment satellite and climbers
- Power system laser power beaming (*Compower*)
- Climbers off-the-shelf components
- Cable deployment requires 7 Shuttles and >200 climbers

Specifications:

- Cable 100,000 km (3X longest trans-oceanic cable), 30 cm wide, microns thick
- Cable capacity 20,000 kg
- Destinations LEO, GEO, other planets
- Schedule operational in 15 to 30 years
- Cost ~\$40B for construction

Required development:

- Mass production of long carbon nanotubes
- Carbon nanotube composites

Figure 1: Artists conception of the space elevator developed in our NIAC Phase I work..

Strength of nanotubes

⁽Ruoff, PRL, 2000)

Strength of nanotubes

Nanotubes break by first forming a <u>bond rotation</u> 5-7-7-5 defect.

Longitudinal strain Transverse strain

Very strong material!!!

Buongiorno Nardelli, Yakobson, Bernholc PRL 81, 4656 (1998)

Plastic deformations and electronic devices

For low strain values and high temperatures the (5775) defect behaves as a *dislocation loop* made up of two *edge dislocations*: (57) and (75). The two dislocations can migrate on the nanotube wall through a sequence of bond rotations \Rightarrow *PLASTIC BEHAVIOR*

The plastic transformations lead metalsemiconductor junctions

➡ <u>devices are possible</u>

Plastic deformations and electronic devices

For low strain values and high temperatures the (5775) defect behaves as a *dislocation loop* made up of two *edge dislocations*: (57) and (75). The two dislocations can migrate on the nanotube wall through a sequence of bond rotations \Rightarrow *PLASTIC BEHAVIOR*

The plastic transformations lead metalsemiconductor junctions ➡ <u>devices are possible</u>

Breakage of nanotubes

Additional bond rotations lead to larger defects and cleavage.

Experimentally tubes are seen to break at around 5% strain, in agreement with our predictions (Smalley APL, 1999; Ruoff PRL, 1999)

Topological strain transformations

Original symmetry

(10, 10)

(10, 9)

(10, 10)

Topological defects induce a change in the chirality (or index) of a nanotube. The plastic flow of a dislocation leaves behind a region of the tube with changed indices.

Changed symmetry

This fact has very important implications for the electronic behavior of the nanotube under strain

Original symmetry

Mechanically-induced heterojunctions

Strain induced plasticity

HR-TEM image of a Stone-Wales defect

(lijima et al. Nat. Nanotech., 2007)

Strain induced defects

HR-TEM image of pentagons (blue) and higher order rings (red) defect

(lijima et al. Nat. Nanotech., 2007)

Nanotubes super-plasticity

In situ tensile elongation of individual nanotubes

(Dresselhaus' group, Nature, 2006)

Nanotubes super-plasticity

M. Buongiorno Nardelli - IOP VAST 2009

Carbon nanotubes in the Tour

Floyd Landis en route to winning the Tour de France 2006 (before being stripped of the title for failing a drug test – not a nanotube test!)