Electronic properties of monolayer and bilayer graphene Vladimir Falko (Lancaster)

A.Geim and K.Novoselov Nature Mat. 6, 183 (2007) I & II. Electrons in monolayer graphene.

III. Electrons in bilayer graphene, Landau levels and the quantum Hall effect in monolayers and bilayers.

Bilayer graphene

Band structure of bilayer graphene and Berry's phase 2π , effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Bilayer [Bernal (AB) stacking]

Bilayer [Bernal (AB) stacking]

In the vicinity of each of K points

$$\begin{array}{cccc} (\text{B to A}) \text{ and } (\widetilde{B} \text{ to } \widetilde{A}) & A & \widetilde{B} & \widetilde{A} & B \\ & \text{hopping} & & \\ & \text{given by} & H = \begin{pmatrix} & & \nu \pi^+ \\ & \nu \pi & & \\ & \nu \pi^+ & & \\ & \nu \pi & & & \\ & \nu \pi & & & \\ \end{array} \begin{array}{c} A & \widetilde{B} & \widetilde{A} & B \\ & \widetilde{B} \\ & \widetilde{A} \\ & B \end{array} \right)$$

Bilayer [Bernal (AB) stacking]

In the vicinity of each of K points

Bilayer
Hamiltonian H =
$$\begin{pmatrix} A & \widetilde{B} & \widetilde{A} & B \\ 0 & 0 & v\pi^{+} \\ 0 & 0 & v\pi & 0 \\ 0 & v\pi^{+} & 0 & \gamma_{1} \\ v\pi & 0 & \gamma_{1} & 0 \end{pmatrix} \begin{pmatrix} A \\ \widetilde{B} \\ \widetilde{A} \\ B \end{pmatrix}$$

$$\hat{H}_2 = \frac{-1}{2m} \begin{pmatrix} 0 & (\pi^+)^2 \\ \pi^2 & 0 \end{pmatrix} = \frac{-p^2}{2m} \vec{n} \cdot \vec{\sigma}$$

 $\vec{p} = (p\cos\theta, p\sin\theta)$ $\pi = p_x + ip_y = pe^{i\theta}$ $\pi^+ = p_x - ip_y = pe^{-i\theta}$ $\vec{n}(\vec{p}) = (\cos 2\theta, \sin 2\theta)$

$$\boldsymbol{\psi}_{\vec{p}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm e^{-i2\vartheta} \end{pmatrix} = \begin{pmatrix} \varphi_A \\ \varphi_{\widetilde{B}} \end{pmatrix}$$

$$\psi \to e^{2 \times 2\pi \frac{i}{2}\sigma_3} \psi = e^{i2\pi} \psi$$

Berry phase 2π

$$\hat{H}_2 = -\frac{v^2}{\gamma_1} \begin{pmatrix} 0 & (\pi^{\dagger})^2 \\ \pi^2 & 0 \end{pmatrix} + \xi v_3 \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix}$$

weak magnetic field $\lambda_B^{-1} \sim p < mv_3$

strong magnetic field $\lambda_B^{-1} \sim p >> mv_3$

Berry phase:

$$2\pi = 3\pi - \pi$$

$$0 < \varepsilon < \frac{\gamma_{1}}{2} \left(\frac{v_{3}}{v}\right)^{2}$$

$$N < N_{L} \sim 10^{11} cm^{-2}$$

$$\frac{\gamma_{1}}{2} \left(\frac{v_{3}}{v}\right)^{2} < \varepsilon < \gamma_{1}$$

$$N_{L} < N < 8N^{*}$$

$$N^{*} = \frac{\gamma_{1}^{2}}{4\pi\hbar^{2}v^{2}} \sim 4 \times 10^{12} cm^{-2}$$

$$N_{L} = 2 \left(\frac{v_{3}}{v}\right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2}$$
Lifshitz transition

Bilayer graphene

Monolayer graphene

Band structure of bilayer graphene and Berry's phase 2π , effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

2D Landau levels

semiconductor QW / heterostructure (GaAs/AlGaAs)

$$\vec{p} = -i\hbar\nabla - \frac{e}{c}\vec{A}, \quad rot\vec{A} = B\vec{l}_z$$

$$\pi = p_x + ip_y; \quad \pi^+ = p_x - ip_y$$

$$\pi\varphi_0 = 0$$

$$\varphi_{n+1} = \frac{\lambda_B}{\sqrt{n+1}}\pi^+\varphi_n$$

$$H = \frac{\vec{p}^2}{2m} = \frac{\pi \pi^+ + \pi^+ \pi}{4m} \Longrightarrow (n + \frac{1}{2})\hbar\omega_c \longleftarrow \text{ energies / wave functions}$$

Landau levels and the QHE

$$H_{1}\psi = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} \begin{pmatrix} \varphi_{0} \\ 0 \end{pmatrix} = 0 \qquad H_{2}\psi = \frac{-1}{2m} \begin{pmatrix} 0 & \pi^{+2} \\ \pi^{2} & 0 \end{pmatrix} \begin{pmatrix} \varphi_{0,1} \\ 0 \end{pmatrix} = 0$$
$$\begin{pmatrix} \varphi_{0} \\ 0 \end{pmatrix}, \begin{pmatrix} \varphi_{1} \\ 0 \end{pmatrix}$$
$$\mathcal{E} = 0$$

also, two-fold real spin degeneracy

$$\hat{H}_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix}$$

$$\stackrel{h}{\longrightarrow} \quad I_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix}$$

$$\stackrel{h}{\longrightarrow} \quad I_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix}$$

$$\stackrel{h}{\longrightarrow} \quad I_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix}$$

$$\stackrel{h}{\longrightarrow} \quad I_{3} = -\frac{v^{2}}{v} - 0.1$$

$$\stackrel{h}{\longrightarrow} \quad I_{3} = 0.1$$

$$\stackrel{h}{\longrightarrow} \quad I_{3} = 0.01$$

$$\stackrel{h}{\longrightarrow} \quad I_{3} = 0.0257$$

$$\stackrel{h}{\longrightarrow} \quad I_{3} = 0.0257$$

Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene

K.Novoselov, E.McCann, S.Morozov, VF, M.Katsnelson, U.Zeitler, D.Jiang, F.Schedin, A.Geim Nature Physics 2, 177 (2006)

QHE in graphene synthesised on SiC

QHE resistance quantisation with accuracy of 3 parts per billion.

A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, <u>V. Fal'ko</u>, S. Kubatkin, *Towards Towards Quantum Resistance Standard Based on Epitaxial Graphene*, arXiv:0909.1220 – to appear in Nature Nanotechnology

Monolayer graphene

Band structure of bilayer graphene, Berry's phase 2π , effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

Interlayer asymmetry gap in bilayer graphene

$$\hat{H}_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix} + \begin{pmatrix} \xi \Delta & 0 \\ 0 & -\xi \Delta \end{pmatrix}$$
 inter-layer asymmetry gap (can be controlled using electrostatic gate)

McCann, VF - PRL 96, 086805 (2006) McCann - PRB 74, 161403 (2006)

0.005 e⁻ 0.0350 e⁻ 0.0125 e⁻ 0.2 Binding Energy (eV) в C 0.0 -0.2 -0.4 -0.6--0.8--1.0--1.2-0.1Å -1.4 Momentum

T. Ohta *et al* – Science 313, 951 ('06) (Rotenberg's group at Berkeley NL)

Interlayer asymmetry gap

b $1/R_{_{\Box}}$ [µS] T = 50 mK 80 tg 160 Ŧ 40 nm Au 10 V_{tg} (V) 6.5 nm Ti 50 nm Au 50 nm Au $R_{\scriptscriptstyle \square}$ (M Ω) 15 nm SiO₂ 10 nm Ti 10 nm Ti I_{bias} graphene 0 285 nm SiO₂ V_{bg} p-doped Si 50 40 30 20 0.1-10 0 $V_{bq}(V)$ а 0.01 1 μm 50 \leftrightarrow 40 V_{tg} (V) 30 0 20 10 0 $V_{\rm bg}\left({\sf V}\right)$ 100 nA С 500 T = 50 mK п opgate 250 8 µm V ((NA) -250 12 µm E -500 -300 300 -600 600 -900 0 90 1.5 µm $V_{\rm bias}$ (μV)

Gate-controlled interlayer asymmetry gap (transport measurements)

Oostinga, Heersche, Liu, Morpurgo, and Vandersypen, Nature Physics (2007)

How robust is the degeneracy of $\mathcal{E}_0 = \mathcal{E}_1 = 0$ Landau level in bilayer graphene?

Direct inter-layer $A\tilde{B}$ hops (warping term, Lifshitz trans.)

 $\mathcal{E}_0 = \mathcal{E}_1$

 $|\mathcal{E}_1|$

Inter-layer asymmetry (substrate, gate)

$$-\varepsilon_{0} \models \delta \hbar \omega_{c}$$
$$\delta \sim \frac{\gamma_{1}\gamma_{4}}{\gamma_{0}^{2}} \sim 10^{-2(3)}$$

$$\mid \mathcal{E}_1 - \mathcal{E}_0 \mid = \Delta$$

McCann, VF - PRL 96, 086805 (2006)

