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Transport in Granular         
Normal Metals Materials

Coauthors in several works:  I.S. Beloborodov, A. Tschersich, A.V. Lopatin. 
Recent review: I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, 
Rev. Mod. Phys. (2007)  Hall resistivity: M.Yu. Kharitonov, K.E., PRL 2007, 
PRB 2008

Typical structure of a granular metal: d=50-200A

Coupling between the grains 
can vary: possibility of both 
macroscopically metallic and 
insulating states.  

K.B. Efetov 
  

Nanoscience with numerous 
applications!
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Experimental puzzles:

1. Strong coupling between the grains

Tln0 ασσ +=

2. Weak coupling between the grains

)/exp( Tba −=σ

The dimensionality of the array does not seem to play 
any important role for both 1) and 2)! 

Metal-Insulator transition?

If so, what is the reason for such a behavior?
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Some experimental curves (after A. Gerber et al, PRL (1997))

The weak coupling limit (insulator)
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or

117.0=α

R.W. Simon et al, 
Phys. Rev. B (1987)

Strong coupling 
limit. Metal?
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High resistivity sample again.

Both 1) and 2) are typical for 
many experiments!

Why?

It is always so!

How to describe the granular metals?

Coulomb interaction plays a crucial role!

-e +e CeEc 2/2=
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cE -charging energy  

Other energies in the system:
1)( −= Vνδ -mean level spacing in a grain

δg -tunneling energy between the grains

 g-tunneling conductance

The Hamiltonian

ijt         -tunneling amplitude 
from grain to grain,        
-capacitance matrix 

ijC
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Methods of calculation:
1. Bosonization
2. Perturbation theory in the limit              
(strong coupling between the grains).

1≥g

Bosonization  
Study of Coulomb interaction via bosonization is well 
known in superconductors where  ))(2exp()( τφτ ii =∆
        is the phase.)(τφ

One can reduce the electron Hamiltonian to an 
effective phase Hamiltonian effH

))](2cos([ jiijj
ij

iijeff JBH φφρρ −−= ∑
ii i φρ ∂∂−= /Where                           (eigenvalues are integers)

(Efetov (1980))

How can one “bosonize” a normal metal?
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Scheme of the bosonization:

1. Hubbard-Stratonovich transformation

2. Gauge transformation

However, one should satisfy the fermionic boundary condition:

This is possible in the limit δ≥T Integration over the phases )(
~ τφi

      are integers 
(winding numbers)

ik
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Final action:

cS      is the charging energy

tS     describes the tunneling 
between the grains 

where

This form is analogous to the Ambegaokar, Eckern and Schon 
(1982) action written to describe quantum dissipation. 

However, it is applicable only for ),max( δδ gT ≥

No quantum dissipation and no dephasing at T=0!

0D limit for a 
single grain!



10

The phase functional can be studied without difficulties 
in the limits              and 1≥g 1≤g

1≥g One can use renormalization group integrating over 
fast variations of φ

Result:

RG Equation:

Valid as long as 1≥g

1≤g Expansion in g.

)/exp(2 0 TB−= σσResult:

cEB ∝           -is the energy of the 
lowest excitation

daTge −= 22 )(σ

At                  one has  cET ≥ 0σσ =
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Perturbation theory in the limit             (applicable for any low 
T): 

1≥g

Relevant diagrams:

a) Classical conductivity

b-c) The “bosonic” contribution

d-e) Altshuler-Aronov contribution

Result:

Altshuler-Aronov corrections, the 
same as in a homogeneous metal.
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Both          and           can be important (weak localization 
corrections are assumed to be killed by a magnetic field, 
which is of an experimental relevance). 

1δσ 2δσ

Density of states

2D

3D
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Hall resistivity

1. Classical picture of the Hall resistivity of the 
granular material. 

( ) 122 )(
−−= daTgeR

R-longitudinal resistivity:                                                    
information about intergrain tunneling

Q. What kind of information can one extract from the Hall 
resistivity?

A. Carrier density inside the grains (no dependence on 
the tunneling!)



14

Most important formula:
22
xyxx

xy
HR

σσ
σ
+

=

2
ijxx t∝σ

Results of an explicit calculation:
4
ijxy t∝σ

        does not depend on      !HR ijt

The contribution to         comes 
from the diffuson D with non-zero 
space harmonics (in contrast to      !)

xyσ

xxσ
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Classical Hall resistivity: Ann
ecn

H
RH == *,

*
)0(

A-numerical coefficient, depending on the geometry of the 
grains (A=1 for cubic grains,                   for spherical grains)4/π=A

2) Effect of the Coulomb interaction:                         
Again, logarithmic in temperature corrections    HRδ





=

T

Eg

g

c

R

R cT

T

d

H

H ln
4)0( π

δ

in the region cTT EgTg ≤≤δ



16

)/exp( Ta−

Insulating regime, 1≤Tg

Activation law: clear explanation in terms of 
electron hopping from grain to grain.

How to explain                         law?      

Beloborodov et al (2005): elastic and inelastic co-tunneling through  
many grains and random fluctuation of the Fermi energy in the 
grains due to charged impurities               Efros and Shklovskii 
mechanism   
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Are underdoped or optimally doped high-         cuprates 
granular? 

cT
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Results of the fitting

For                       :  42 CuOSrLa yy−

d=2.3 at y=0.08 and 
     d=1.08 at y=0.15

For                             : δ+− 622 CuOLaSrBi xx

d=4.5 at x=0.84 and 
d=3.57 at x=0.76
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Nature, 415, 414 (2002) 
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Conclusions:

1. Bosonization and diagrammatic schemes are developed to 
study granular metals. 

2. A crossover from the logarithmic to the exponential 
dependence of the conductivity on temperatures is found 
at not very low temperatures.

3. Hall resistivity gives information about the carrier density 
inside the grains and has also logarithmic in temperature 
corrections.

4. Logarithmic dependence of the conductivity observed in 
many granular materials is explained.

5. High         superconducting cuprates may be granular, too.cT
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