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Micro MacroMeso

Nanoobjects

...
Nuclei
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Small
molecules
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Many atoms, electron, etc., are involved

Number of degrees of freedom is large

Nanoscale objects do not fully belong to 
the microcosm

Micro Few degrees of freedom

Macro # of the degrees of freedom tends to 
infinity

Meso Large but finite number

Nano meansNano means Big Big !?!?



Mesoscopic systemsMesoscopic systems

1.Too big to be analyzed individually

2. Two small to neglect sample-to-sample 
(ensemble) fluctuations



Lecture1. Lecture1. 
1.Introduction1.Introduction



>50 years of Anderson Localization

q.p.



>50 years of Anderson Localization

e



Localization of single-electron wave-functions:

extended

localized

Disorder

Ohmic
Conductance:

extended

localized



I was cited for work both. in the field of magnetism and in that of 
disordered systems, and I would like to describe here one development 
in each held which was specifically mentioned in that citation. The two 
theories I will discuss differed sharply in some ways. The theory of local 
moments in metals was, in a sense, easy: it was the condensation into a 
simple mathematical model of ideas which. were very much in the air at 
the time, and it had rapid and permanent acceptance because of its 
timeliness and its relative simplicity. What mathematical difficulty it 
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and 
even fewer saw its importance; among those who failed to fully 
understand it at first was certainly its author. It has yet to receive 
adequate mathematical treatment, and one has to resort to the indignity 
of numerical simulations to settle even the simplest questions about it . 
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Localized State
Anderson Insulator

Extended State
Anderson Metal

f = 3.04 GHz f = 7.33 GHz



87Rb

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D.Clément, L.Sanchez-
Palencia, P. Bouyer & A. Aspect, “Direct observation of Anderson localization of 
matter-waves in a controlled Disorder” Nature 453, 891-894 (12 June 2008)

ExperimentExperiment
Cold AtomsCold Atoms

Q: Q: What about electrons ?What about electrons ?

A:A: Yes,Yes,…… but electrons interact with each otherbut electrons interact with each other

L. Fallani, C. Fort, M. Inguscio: “Bose-Einstein condensates in disordered 
potentials” arXiv:0804.2888



e
Scattering centers, 
e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities
White noise potentialWhite noise potential
Lattice modelsLattice models

Anderson modelAnderson model
Lifshits modelLifshits model



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

I   i and j are nearest 
neighbors

0 otherwise

( ) WdfIc ∗=



Einstein (1905):
Random walk

always diffusion

Dtr =2

diffusion constant

Anderson(1958):
For quantum 

particles

not always!

constr t ⎯⎯ →⎯ ∞→
2

It might be that

0=D

Dtyconductivi ∝
Einstein relation

0=tyconductivi
Anderson insulator

as long as the system 
has no memory

(Marcovian process)

Quantum interference        memory



Why arbitrary 
weak hopping I is 
not sufficient for 
the existence of 
the diffusion

Einstein (1905): Marcovian (no memory) 
process diffusion

j i
Iij

Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why?



O

Quantum interference – long time memory
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von Neumann & Wigner 
“noncrossing rule”

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467
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Off-resonance
Eigenfunctions are 

close to the original on-
site wave functions

Resonance
In both eigenstates the 
probability is equally 

shared between the sites



Anderson insulator
Few isolated resonances

Anderson metal
There are many resonances 

and they overlap



localized and 
extended never 

coexist!

DoS DoS

all states are
localized

I < IcI > Ic

Anderson  Transition

- mobility edges (one particle)

extended



extended

localized

Eigenfunctions

Is anything interesting 
happening with the spectrumQ: ?



Density of States

energy

Density of States

energy
W− W # I# I−

0I = 0W =

Density of States

energy

0; 0I W≠ ≠

extendedLifshits 
tail

Lifshits 
tail



Density of States is not singular 
at the Anderson transition

This applies only to the 
average Density of States !
Fluctuations ?

ε ε
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2. Spectral statistics 2. Spectral statistics 
and  Localizationand  Localization



Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion
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RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics



Orthogonal 
β=1

Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary
β=2

Simplectic
β=4



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1
    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

( ) 0P s → 0 :s →Reason for                           when
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when
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Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

-W < εi <W
uniformly distributed

Q: What are the spectral statistics 
of a finite size Anderson model ?

Is there much in common between Random Matrices 
and Hamiltonians with random potential ?



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics

Strong disorder Weak disorder



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales in the localization problem.
((Thouless, 1972))

This scale exists in the Random Matrix theory
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1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the
inverse diffusion time of 
the traveling through the 
system or  the escape 
rate (for open systems)

dimensionless
Thouless

conductance

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

Energy scales in the localization problem.
((Thouless, 1972))

1

TEg
δ

=
2

hg G
e

=

In the Random Matrix theory 
this energy scale is absent 1.This energy scale exists in the Random Matrix theory.

2. This is the only energy scale in the RM theory
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g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

Gaussian Invariant Random Matrix 
Ensembles describe well those “complex”
quantum systems, which are characterized 
by  large Thouless conductance.



g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

Transition at g~1.
Is it sharp?



Conductance g

The bigger the system the sharper the transition



Anderson transition in terms of 
pure level statistics

P(s)
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3. 3. Quantum Chaos,      Quantum Chaos,      

Integrability Integrability and and 
LocalizationLocalization



Random Matrices Atomic Nuclei
• Ensemble

• Ensemble averaging

•Spectral averaging (over α)
•Particular quantum system

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics

Spectra: {Eα}

ATOMS

NUCLEI

Main goal is to classify the eigenstates in 
terms of the quantum numbers
For the nuclear excitations this program does 
not work

Wigner: Study spectral statistics of a particular
quantum system – a given nucleus



sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 
137 (1936) 344.



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a 
large number of degrees of 
freedom, and therefore 
the  “complexity” is high

Later it
became
clear that

there exist very “simple”
systems with as many as 2 
degrees of freedom (d=2), 
which demonstrate  RMT -

like spectral statistics


