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Nano means Big |?

Nanoscale objects do not fully belong to
the microcosm

Many atoms, electron, etc., are involved

Number of degrees of freedom is large

Micro Few degrees of freedom
Macro # of the degrees of freedom tends to
Infinity

Meso Large but finite number



Mesoscopic systems

1.Too big to be analyzed individually

2. Two small to neglect sample-to-sample
(ensemble) fluctuations
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>50 years of Anderson Localization
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Absence of Diffusion in Certain Random Lattices
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Bell Taeplbone Laborgtories, Mwrray Till, New Sersey

{Received Octoher 10, 1957)

This paper presents a simple model for such processes as spin dfeslon or conduaction In the “impurity
band. ™ These processes nvolve transpaort in a lattice which is in some sense random, and in them diffusion
s expected to take place via quantum jumps between lpcalized sites, In this simple model the esential
randomness is introdeced by requiring the snergy to vary mndomly from site to site. I is sbown that at Jow
ennugh densties no diffugion at all can tpke pluce, and the crterin for transport o ootur are grvei.
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Localization of single-electron wave-functions:
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Nobel Lecture

P hi | ip W. Ar'l de rSD n Mobel Lecture, December 8, 1577

g The Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both. in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
In each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and

even fewer saw its Importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive

adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .




Spin Diffusion
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Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
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Cold Atoms

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D.Clément, L.Sanchez-

Palencia, P. Bouyer & A. Aspect, “Direct observation of Anderson localization of
matter-waves in a controlled Disorder” Nature 453, 891-894 (12 June 2008)

L. Fallani, C. Fort, M. Inguscio: “Bose-Einstein condensates in disordered
potentials” arXiv:0804.2888

Q: What about electrons ?

A VYes,.. but electrons interact with each other



@ Scattering centers,
e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson e Lattice - tight binding model
M @) d el e Onsite energies & - random

 Hopping matrix elements 1 ij

I l and 2! are nearest
ors

W<e<W I. neigh
l
uniformly distributed 0 otherwise

= f(d)sw

I<1, I>1
Insulator Metal

All eigenstates are localized There appear states extended
Localization length § all over the whole system



Einstein (1905): <r2>= Dt

Random walk
11 Ejiffusion constant

always diffusion

as long as the system conductivity e D

has no memory Einstein relation
(Marcovian process)

Anderson(1958): It might be that

For quantum (r?)—o=— const
particles
D=0
’ u
not always!

Quantum interference = memory Anderson insulator



Why ar'bi1'r'ar'y ®® 0 @
®  weak hopping I is ? ®® Q&
not sufficient for ®®® 8
O . XXX
the existence of ® ®® 9 e
the diffusion &

Einstein (1905): Marcovian (no memory)
process > diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation =

Why 7
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Quantum interference - long time memory



Hamiltonian

H =
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von Neumann & Wigner (a
“noncrossing rule” -
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Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467
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Eigenfunctions
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Off-resonance
Eigenfunctions are
close to the original on-
Site wave functions
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Resonance
In both eigenstates the
probability is equally
shared between the sites



Anderson insulator Anderson metal

Few isolated resonances There are many resonances
and they overlap



Anderson Transition

I > I I < I
¢ C
localized and
A € extended never4
c |
all states are
localized
DoS
>

[©.. - mobility edges (one particle)



Eigenfunctions | )y i 1)

localized

Q. Is anything interesting P
" happening with the spectrum:



Density of States Density of States

energy
—#1 #1




Density of States is not singular

at the Anderson

This applies only
average Density

Fluctuations 7

transition

to the I
of States

Metal Vi(ﬁ) Insulator
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2. Spectral statistics
and Localization




RANDOM MATRIX THEORY

ensemble of Hermitian matrices

N XN with random matrix element N —©
E, - spectrum (set of eigenvalues)
0, = <Ea+1 — Ea> - mean level spacing
< ...... > - ensemble averaging
g = E..—E, - spacing between nearest
- 51 neighbors
P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity i JEEIVE]S

Level repulsion ORI Wy



1
Gaussian
Orthogonal
0.8 Ensemble
0.6 } Orthogonal
p=1
0.4} 1
Simplectic
0.2 | i
0 —_————
0 05 1 15 2 os|
| S P06
Poisson — comple'relz U
uncorrelated

levels o s o e . e



RANDOM MATRICES

N XN matrices with random matrix elements. /N — o©

Dyson Ensembles

Matrix elements Ensemble [  realization

real orthogonal 1  T-Inv potential

2 x2 matrices simplectic 4 T-Inv, but with spin-
orbital coupling



e,

Reason for P(S) — 0 when S— 0:

1.

(Hy Hp,»

2

Ez_Ei:\/(= 22_H11)2+‘H12‘

\ & it 5 22 small small small

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If Hy, is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((H,,- Hy1) and Hy,)
should be small and thus P(S) < S IB -1
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e,

Reason for P(S) — 0 when S— 0:

( Hll H12\

Ez_Ei:\/(= D2l H11)2+‘H12‘2

\ % 2 & 22 small small small

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If le is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((H,,- Hy1) and Hy,)
should be small and thus P(S) < S IB -1

3. Complex H, (unitary ensemble) == both Re(H,) and

IM(H,,) are statistically independent == three mdependent
random variables should be small ==> P(S) < § IB ?



Anderson e Lattice - tight binding model
M @) d el e Onsite energies & - random

 Hopping matrix elements 1 ij

uniformly distributed

IS there much in common between Random Matrices
and Hamiltonians with random potential ?

" What are the spectral statistics ?
s of afinite size Anderson model



Anderseon’ liransition

Strong disorder
I1<I
c

Insulator
All eigenstates are localized

Localization length §

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

Weak disorder
I>1
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

J

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20
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Energy scales in the localization problem.

(Thouless, 1972)

1. Meanlevel spacing O, = 1/vxL*

| 5 L is the system size;
1

energy

d is the number of
dimensions

This scale exists in the Random Matrix theory



Energy scales in the localization problem.
(Thouless, 1972)

’l
—

d is the number of
dimensions

D IS the diffusion const

E +has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E,/5 ok g=Gh/e

conductance



Energy scales in the localization problem.

(Thouless, 1972)

1. Meanlevel spacing O, = 1/vxL*

| 5 L is the system size;
1

energy

d is the number of
dimensions

1.This energy scale exists in the Random Matrix theory.

2. This is the only energy scale in the RM theory



Energy scales in the localization problem.

(Thouless, 1972)

, . d
1. Mean level spacing 5] = 1/vx L

i,

E" ,' ':‘;;ff
" ;::_"IJ:‘ 7

l 5 L is the system size;
1

ener gy

d is the number of
dimensions

In the Random Matrix theory

L has a meaning of the
o : this energy scale is absent

inverse diffusion time of
the traveling through the
ET

system or the escape g=—L dimensionless h
rate (for open systems) 5 Thouless g= —2G
1 conductance e



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
~ . : \
Poisson spectral Wigner-Dyson
statistics spectral statistics

Gaussian Invariant Random Matrix
Ensembles describe well those “"complex”
quantum systems, which are characterized
by large Thouless conductance.



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
= . . \
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1.
Is it sharp?
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The bigger the system the sharper the transition



Anderson transition in terms of

pure level statistics

metal, W=5
critical, 16.5
insulator, 100

Wigner

Var S

Scaling of level spacing variance

0.7 Linear size of 3D cube

0.2

12 14 16 15 20

disorder W
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3. Quantum Chaos,

Integrability and
Localization




Main goal is to classify the eigenstates in
ATOMS Termsgof the quanfumynumber'sg

For the nuclear excitations this program does
NUCL E| [rasgmen

: W Study spectral statistics of a particular (3
ngne” e quantum system - a given nucleus =

Spectra: {E }

Random Matrices Atomic Nuclel

* Ensemble *Spectral averaging (over 0)

e Ensemble averaging *Particular quantum system

Statistics of the nuclear spectra
Never thel ess almost exactlr the same as the
a

Random Matrix Statistics




N. Bohr, Nature
137 (1936) 344.

P(s)

1.0 , .
(3)
Poisson 166¢c, ]
108 spacings .
T PBEIRG

05 - .
i GOE .

ad /
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0 1 2 3
(a)
i Poisson NDE )
" 1726 spacings 4

05}
GOE
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0 1 2 3

Particular
nucleus

166 7y

Spectra of
several
nuclei
combined
(after

] spacing)

rescaling
by the
mean level



Why the random matrix

Q " theory (RMT) works so well

for nuclear spectra =

. These are systems with a large
Original i mber of degrees of freedom, and
answer. therefore the “complexity” is high



Why the random matrix

Q " theory (RMT) works so well

for nuclear spectra

. These are systems with a

Original large numbez of degrees of

answer: freedom, and therefore
the “complexity” is high

| ater it there exist very "simple”
systems with as many as 2

became dﬁgr‘ﬁeds of freedom éﬂ,f-,?)'
which demonstrate =

clear that like spectral statistics

?




