Theoretical Biophysics Group Home Page
  Overview
  Research
  Development
  Dissemination
  Services
  Home
Theoretical Biophysics Group
Abstract
NIH Resource for Macromolecular Modeling and Bioinformatics
UIUC

Sergei Izrailev, Sergey Stepaniants, Manel Balsera, Yoshi Oono, and Klaus Schulten. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophysical Journal, 72:1568-1581, 1997.

IZRA97We report molecular dynamics simulations which induce, over periods of 40-500 ps, the unbinding of biotin from avidin by means of external harmonic forces with force constraints close to those of AFM cantilevers. The applied forces are sufficiently large to reduce the overall binding energy enough to yield unbinding within the measurement time. Our study complements earlier work on biotin-streptavidin that employed a much larger harmonic force constant. The simulations reveal a variety of unbinding pathways, the role of key residues contributing to adhesion as well as the spatial range over which avidin binds biotin. In contrast to the previous studies, the calculated rupture forces exceed by far those observed. We demonstrate, in the framework of models expressed in terms of one-dimensional Langevin equations with a schematic binding potential, the associated Smoluchowski equations, and the theory of first passage times, that picosecond to nanosecond simulation of ligand unbinding requires such strong forces that the resulting protein-ligand motion proceeds far from the thermally activated regime of millisecond AFM experiments, and that simulated unbinding cannot be readily extrapolated to the experimentally observed rupture.

Full Text


Search Site:
Overview Research Development Dissemination Services
 

Back to Top | Home

This document was last modified on Fri Oct 11 10:32:21 2002
Material on this page is copyrighted
Contact Webmaster for more information
148117 accesses since 03 Nov 2000