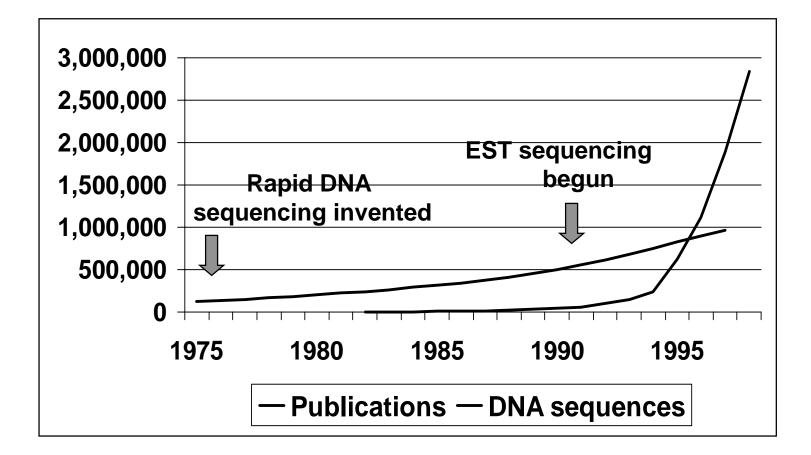
Integrated Software Tools for Functional Genomics

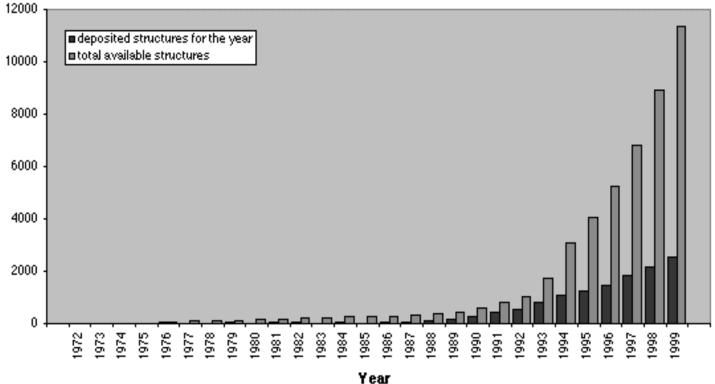
Thomas Ferrin

Patricia Babbitt

Conrad Huang


Teri Klein

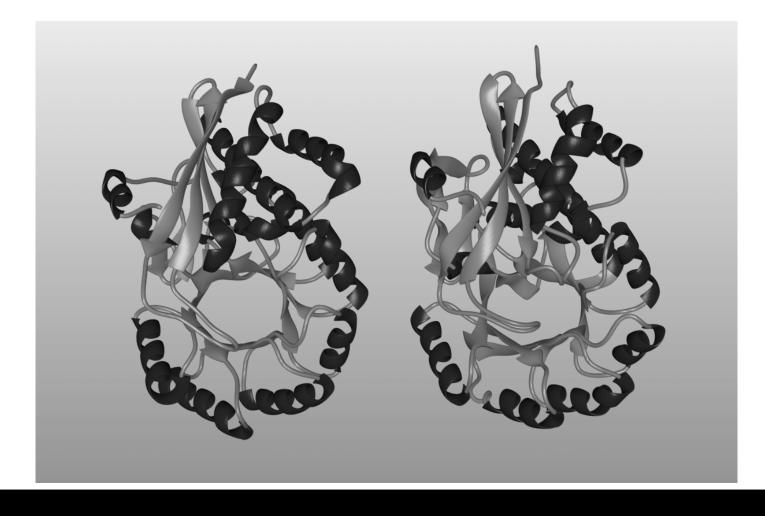
University of California, San Francisco


"It's sink or swim as a tidal wave of data approaches"

Tony Reichhardt Nature 399:517-520 10 June 1999

The Growing Gap in Functional Knowledge

Growth in Protein Structures


last update: 01-Jan-2000

Sequence -> Structure -> Function

Challenges:

- Prediction of structure from sequence
- Prediction of function from sequence
- Understanding of evolutionary changes
- Engineering of specialized function
- Applications in pharmacogenomics and pharmacogenetics
- . . .

Stereo pairs ?

Tools for Comparative Protein Studies

- MinRMS exhaustive search for all plausible structural alignments of two proteins
- AlignPlot interactive exploration of structural alignments
- **MSFviewer integrates sequence and structure space**
- Chimera extensible 3-D molecular modeling system

MinRMS

Find all plausible alignments between two protein structures (experimentally-determined or modeled) using root-mean-square difference of coordinates of alpha-carbons.

- RMSD metric easy to interpret
- Avoids "single best alignment" problem
- Avoids need for parameters
- Finds reasonable alignments even for apparently dis-similar structures

MinRMS Algorithm

Two step process:

- 1. Rotate & translate the two structures to bring similarly shaped regions into close proximity;
- 2. With the two proteins fixed at a particular relative position, select corresponding alpha-carbon atoms between the proteins which minimizes the intermolecular RMSD.

Apply a dynamic programming algorithm to find best matches for different numbers of amino acid residues

Algorithm runs in O(n^5) time

 For two 300-residue proteins requires ~1 hour on a fast workstation

MinRMS Output

Large table containing, for each structure alignment:

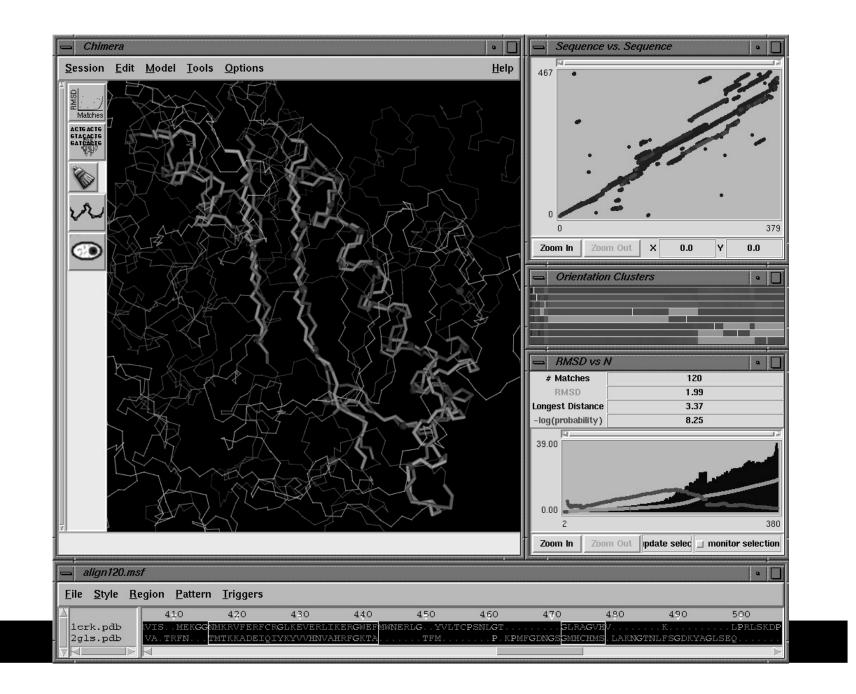
- Number of matched residues
- RMSD for the alignment
- Longest distance between any pair of matched residues
- Levitt & Gerstein similarity score, -log(P)
- Transformation matrix for aligning the structures

AlignPlot

Used to examine MinRMS output for alignments of interest

- RMSD vs. Number of matched residue pairs
 - Useful for examining trade-off between number of matched residues and global superposition
- Orientation clusters
 - Reduces hundreds of alignments into a few representative groups
- Sequence vs. sequence histogram
 - Provides easy identification of patterns such as secondary structure

MSFviewer


Displays multiple sequence alignments from common alignment programs

- Groups of residues in the alignment can be selected
- Corresponding residues in the structure also get highlighted
- Allows user to facile interface to sequence space

Chimera

Molecular visualization system providing:

- Interactive manipulation of multiple molecular structures
- Real-time rendering of models in several formats
 - e.g. ball-and-stick, ribbons, molecular surfaces
- Support for non-molecular objects
 - e.g. points, vectors, markers, spheres, cylinders, polygons
- Command line compatibility with MidasPlus
- Extensible functionality without access to source code
- Use of standard APIs ensure portability to many platforms
 - Windows 95/98/NT/2000, Compaq, SGI, Linux, ...

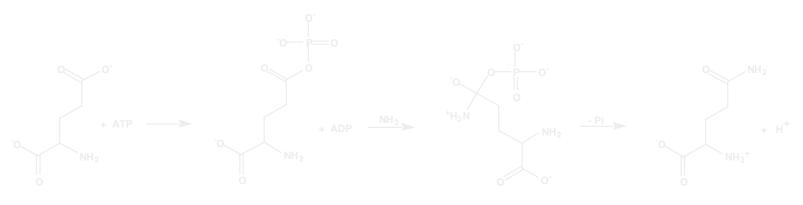
Chimera's Extensibility

Use of Python programming language as Chimera's command language provides for both complex command "scripts" and user-written extensions

- True programming language allows for user commands to contain such constructs as iterative loops and conditional execution with full access to internal data structures
- Widely available Python libraries provide for custom GUIs
 - e.g. menus, dialog boxes, custom graphics
- Python's interpreted language provides for dynamic run-time linking
 - Don't need access to source code to add new features
 - New modules "linked in" when Chimera executes

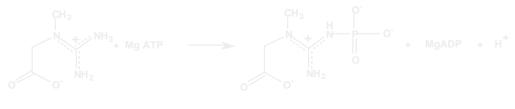
Chimera Extensions

Extensions are just groups of one or more cooperating processes


- AlignPlot, MSFviewer, MidasPlus Command Interpreter are all implemented as extensions
- Extensions can maintain their won state and have their own graphical user interface
- Extensions can be ancillary to Chimera or Chimera can be invoked by another program to provide interactive graphical output

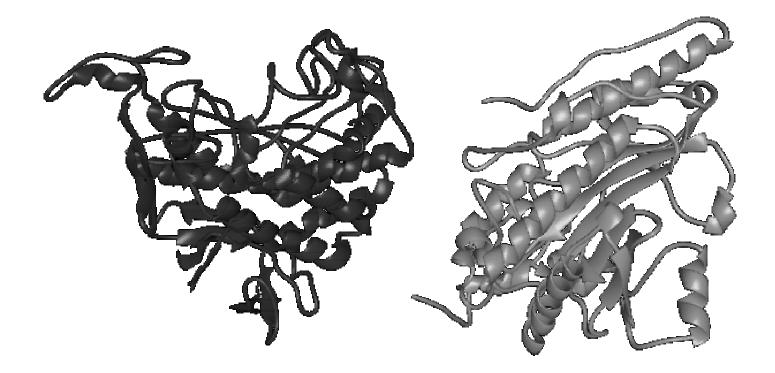
Example Study

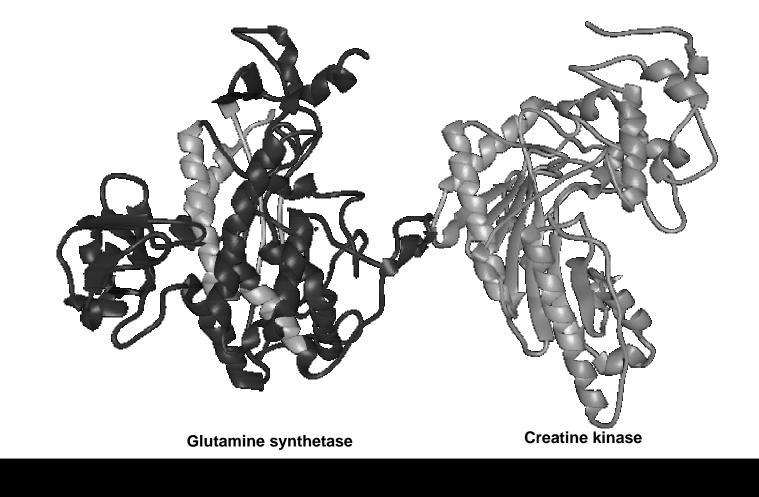
Structural comparison of glutamine synthetase (GS) and creatine kinase (CK)


- GS: 468 residues, PDB entry 2gls
- CK: 380 residues, PDB entry 1crk
- No significant sequence similarity, both have multimeric forms, proposed similar tertiary structures, and catalyze similar reactions

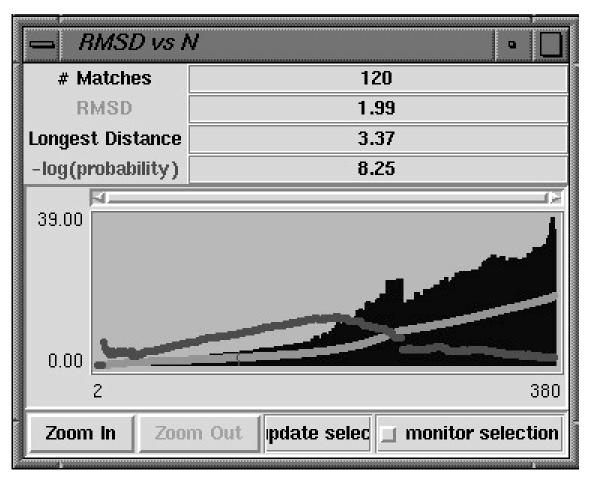
GS and CK catalysis

Glutamate




Creatine

Phosphocreat


Glutamine synthetase and creatine kinase

After MinRMS alignment

AlignPlot GUI

Resulting structure-based sequence alignment

			PAIYAKLRDK		
			VLTMLNEHEV		
			STLIIRCDIL		
			LSL EG.AWNSSTK		
			DHFLFDKPVS		
			VERLIKERGW VHNVAHRFGK		
			ILE .ALYYIGGVI		
			LD.RMGRS RFPD		
			FGR SLEEALNA		
	EFELYYSV				

Live Demonstration

Disclaimer: Anything that can go wrong will do so in direct proportion to the number of people watching

Recent developments

Re-engineering of a natural enzyme with new catalytic function

- Alan Fersht & coworkers at Cambridge Centre for Protein Engineering
- Convert activity of indole-3-glycerol phosphate synthase (IGPS) into that of phosphoribosylanthranilate isomerase (PRAI)
- See C&E News February 21, 2000
- Nature 403, 617 (2000)

Acknowledgements

Co-authors

• Prof. Patricia Babbitt, Prof. Teri Klein, Dr. Conrad Huang

National Center for Research Resources

• P41-RR01081

Department of Energy

• DE-FG03-96ER62269

National Institutes of Health

• AR17323

Additional Information

See UCSF Computer Graphics Laboratory web site:

http://www.cgl.ucsf.edu/chimera