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1 Introduction 

1.1 New sequences from proteomics and genomics 

Genomics and proteomics efforts generate new results at a remarkable pace. Over 30 

organisms have been sequenced and contribute evolutionary information and new 

proteins with yet unknown function that are important from a basic research point of view 

and for biomedical research. We now need ways to analyze the information and make 

something useful of it, which may turn out to be a major obstacle. From a protein 

structure point of view, the DNA sequences have to be analyzed for coding regions, 

protein constructs shall be expressed correctly at good yields, functions and properties 

shall be determined, and the structure needs to be solved. For example, of the more than 

600 predicted G-protein coupled receptors (GPCRs) in the human genome, 250-300 have 

been annotated in swissprot, 100 have been experimentally characterized and only 2 

crystal structures have been reported. 

1.2 Structural proteomics 

A complete understanding of protein function requires the structures of the individual 

components and their complexes to be determined. The huge amount of data from 

genomics and proteomics requires high-throughput and highly automated procedures for 

structure determination. There are currently twelve public structure proteomics centers 

(see www.rcsb.org/strucgen.html) that aim to solve long term scientific goals and 

generate data available for the public. The private efforts are more geared towards 

proteins that are easier to solve and are drug targets. The major companies in the U.S.A 

are Structural Genomics, Syrrx and Plexicon. The majority of structures are solved by 

crystallographic methods. Determination of structures that are new, or difficult to 

crystallize well, often requires the use of synchrotron resources due to the availability of 

high-energy source and MAD phasing. In cases where a similar structure exists, e.g. co-

crystals of small molecules used in drug discovery processes, molecular replacement 

methods make it possible to utilize smaller, in-house instruments with higher availability 

and lower cost. The experimental techniques that allow crystallization of membrane 

proteins are progressing rapidly and will soon bring lots of data, see for example Chang 

& Roth (Chang and Roth 2001). Nuclear magnetic resonance (NMR) is currently used to 



determine structures for proteins with molecular weights less than 25 kDa. Recent 

developments in hardware and pulse sequences, including TROSY sequences, may 

extend the practical range to about 50 kDa. NMR is indispensable for structure 

determination of proteins that cannot crystallize or that yield low-quality crystals. 

Automated structure determination methods have been developed but are still not capable 

of routine analysis. NMR also provides useful tools for screening for folded structures 

(line shape analysis will quickly reveal how well-folded a structure is and may be used to 

select constructs for structure determination with NMR or crystallography) and for 

determination of physical properties (e.g. dynamics and pKas of ionizable groups).  

Despite the recent developments in structure proteomics, the resources are still too 

limited. To date, the protein databank (www.rcsb.org) contains 16245 entries as of 

October 9, 2001 (Berman et al. 2000), with almost 3000 structures a year growth rate. 

Curiously, the structural genomics initiative does not change this number dramatically. 

Only about 300 to 1000 structures are expected to be added per year. Even if the number 

of solved structures would double, it’s still an order of magnitude smaller than the known 

protein sequences resulting from the genomics and proteomics initiatives, and a majority 

of important targets will be missed. In addition, the cost for each solved structure is 

substantial (typically $100-300 k). The total budget of the seven public structure 

proteomics centers in the U.S. is roughly 35 million dollars per year. Determination of 

biomolecule interactions is of major importance, and determination of complex structures 

is a greater challenge compared to the individual parts. And how can effects of single 

nucleotide polymorphisms and mutants be evaluated promptly and cost effectively? 

Computational biology addresses these questions and may play a significant role to 

decrease the gap between available sequences and structures. 

Overall, to cover the difference between sequences and structures we need to be able to at 

least build models by homology (short of being able to accurately predict structure from 

scratch), and both predicted and experimental structures can then be further studied to 

predict their function and to design specific ligands if necessary. 



2 Computational tasks 

We will now list the current problems in structural biology where computational methods 

can contribute. We will outline the problems, describe a solution, focus on some points 

that are of special importance and give examples of case studies. The framework for the 

discussion will be the ICM program that has been designed to approach all of the 

following problems, and we will initially explain the internal coordinate system that is the 

basis for the following discussion. 

2.1 Internal coordinate mechanics, ICM 

Predicting structure means finding a global minimum of an ill-behaved energy function 

of hundreds of variables and special approaches are needed to be developed to deal with 

the problem. The most commonly used molecular mechanics force fields operate in 

Cartesian space and provides solutions to many of the tasks that were mentioned above. 

However, the large number of degrees of freedom of even a small size protein makes it 

impossible to efficiently search the global conformational space, e.g. in protein folding. 

By switching to an internal coordinate system operating in torsion space and fixing the 

high frequency variables (bond lengths, bond angles), the number of degrees of freedom 

is reduced seven-fold. If planar or tetrahedral geometry is assumed for every atom, the 

decrease is roughly ten-fold, and provides a faster and still accurate means of energy 

calculations. Force fields working in torsion space were first described 25 years ago 

(Momany et al. 1975) and are currently being developed in programs such as ICM 

(Abagyan 2000; Abagyan et al. 1994), ECEPP (Nemethy et al. 1992) and DYANA 

(Guntert and Wuthrich 2001). Description the molecular system in torsion space also 

enables efficient sampling of the conformational space. A Monte Carlo minimization step 

in torsion space changes a randomly selected group of coupled variables according to 

their local probability distribution and performs a local energy minimization (Figure 1). 

(Abagyan and Argos 1992; Abagyan R et al. 1994; Li and Scheraga 1987) This step is 

repeated and coupled with mechanisms to limit sampling of uninteresting areas and 

encourage sampling of new areas until the procedure converges. New conformations are 

selected if the energy difference between the new and old conformation (∆E = En+1 – En) 

is less than 0, or if a random number between 0 and 1 is smaller than e-∆E/RT , where R is 

8.314 kJ/(mol K) and T is the simulation temperature (Metropolis selection). The 



Metropolis selection allows the procedure to traverse local energy barriers, and the size of 

the barriers that can be crossed is dependent on T. A stack of the lowest energy 

conformations is continuously updated, and also contains the number of times a particular 

conformation has been visited. If a certain number of steps have yielded the same 

conformation, the simulation temperature is doubled to allow escape from local minima. 



 

Figure 1. Conformation minimization in torsion space is more efficient for finding the 

global minimum conformation of a polypeptide. (Abagyan R et al. 1994) a) Monte Carlo 

minimization for the folded structure in torsion space using the ICM protocol outlined in 

the text (top) and in Cartesian space using molecular mechanics minimization (bottom). 

Random deviations from the folded structures were generated in torsion and Cartesian 

space, respectively. The RMS deviation between the starting and target conformations is 

shown on the horizontal axes, the RMS between the minimized and target structure is 

shown on the vertical axes. Monte Carlo minimization in torsion space can find the 

folded structure even if the distortions are more than three Å. Note that a full 

conformational search employs additional steps and can find the global minimum from 

any given starting structure. b) Minimization trajectories drawn on the energy landscape 

projected into two dimensions. The torsion space landscape with fixed covalent geometry 

(top) contains less local minima than the corresponding landscape for Cartesian space 

with relaxed covalent geometry, and provides a faster route to the global minimum. 



Side chain and backbone torsion angle changes are partly biased to make the search 

procedure more efficient and still allow rare conformations (that do exist in protein 

structures) to be sampled. This so called optimal biased Monte Carlo minimization 

(OBMCM, a.k.a. BPMC) protocol improves the sampling efficiency by an order of 

magnitude compared to Monte Carlo minimization and has been shown to predict 

structures ab initio with high efficiency.(Abagyan and Totrov 1999; Totrov and Abagyan 

2001) A critical issue for all molecular mechanics calculations is the accuracy of the 

potentials. ICM uses parameters that have been optimized for proteins based on the 

ECEPP3 force field (Nemethy G et al. 1992) and also includes entropy and implicit 

solvent energy terms. (Abagyan 1997) The accuracy of the energy function is critical and 

we have recently developed a new Internal Coordinate Force Field (ICFF) that includes 

implicit flexibility of bond length, bond angle and “1-4” van der Waals interactions by 

projection of a Cartesian force field onto the internal coordinate molecular model with 

fixed bond geometry. (Katritch V., Totrov M., and Abagyan R., submitted) The main 

object with ICFF is to improve the force field description of both protein and non-protein 

molecules and to enhance ligand docking accuracy. 

2.2 Homology modeling. 

Roughly 10% of the available protein sequences resulting from the genomics efforts can 

be expected to be solved despite the major progress in structural proteomics. The 

remaining, unsolved structures will contain a wealth of information of interest for the 

understanding of how cells work and how we can treat disease. One important role of 

computational biology is to predict three-dimensional structures of proteins by homology 

modeling to cover this gap. Simple comparative modeling tools have been used for three 

decades and are well established. 

The easy step in modeling homology is to copy aligned parts of the backbone from a 

homologue. In general, good models can be generated if the template structure has more 

than 30% sequence identity, and the predicted structures often have a Cα RMSD less than 

1.5 compared with the crystal structure. Although the accuracy of the predicted structures 

is limited, the models are still valuable for a range of tasks including prediction of 

function to ligand design. 



The first step in homology modeling is to find template structures and produce a 

(multiple) sequence alignment. PSI-BLAST (Altschul et al. 1997) and hidden Markov 

models are commonly used tools for both tasks. Alignment quality can be further 

improved by inclusion of structural information, as in the secondary-structure-and-

residue-accessibility-enhanced ZEGA algorithm (Abagyan R 2000; Abagyan and Batalov 

1997), and by manual inspection and editing. The quality of the alignment is crucial for 

the result since an error will propagate throughout the procedure. The query polypeptide 

chain is then threaded onto the template structure and the backbone and conserved 

residues are overlaid on the template structure. In the next step, side chains 

conformations for non-conserved residues are optimized. Finally, the inserted or deleted 

loops are placed. Loop modeling is currently one of the most challenging parts of 

homology modeling and should be treated with caution in the subsequent analysis. One 

solution is to search for peptide fragments with similar sequence and end point distances 

in a structure database, and score all hits on the model. Loop modeling is more successful 

if the end point coordinates are known, such as for redesign of available proteins. 

(Borchert et al. 1994; Borchert et al. 1993) 

2.3 Ab initio folding 

Three-dimensional structures of proteins still cannot be predicted from first principles 

without knowledge about homologous structures. In the future, it will hopefully be 

possible by efficient and accurate global optimization of the free energy function. Ab 

initio folding requires a fast global search algorithm and a complete and correct energy 

function. The solvation energy is an important term and was, until recently, a difficult 

problem to address. The structure of a well-folded 23-residue peptide with ββα topology 

was recently predicted using a biased probability Monte Carlo search including implicit 

solvent electrostatics. (Totrov M and Abagyan R 2001) 

2.4 Annotation 

Once a new structure (model) has been determined, it needs to be annotated with respect 

to properties and function. This information includes the character of the surface, 

functional residues, hinge points, local rigidity, potential binding pockets, sequence 

similarity to related proteins, energetic strain and local accuracy of the model. In 



addition, information from biological and structural databases can be projected on the 

new structure, such as mutation data, SNP sites, known binding and catalytic sites, dimer 

interfaces, dynamics parameters and so forth. 

2.5 Target selection. 

The number of potential, or hypothetical, biomedical targets is far larger than the number 

that can currently be exploited. It is therefore necessary to select, from a list of structures, 

those that have a potential for further development. Are there pockets with the right size 

and character for drug design (see below)? What are the chances that a particular peptide 

binding groove that is important for function can be blocked with a small molecule or a 

peptido-mimetic? These kinds of annotation results are critical for target selection, and 

although some steps in the procedures can be automated, interactive analysis and 

inspection are still required for optimal results. 

2.6 Detecting drugable pockets 

Structure-based design of ligands can, in principle, be targeted towards a whole protein 

molecule or complex, but it is more efficient to find and focus on specific sites. Given a 

suitable receptor structure, one of the first steps is to identify sites that are “drugable”. A 

simple and efficient method is to map out cavities in the receptor structure that is not 

occupied with ligands/inhibitors or solvent molecules. More sophisticated methods 

calculate potential maps for pocket size, charge distribution and similar properties, and 

finds potential pockets by contouring the sum of the maps. A benefit from the latter 

method is that binding sites on the surface that are solvent exposed will also be identified 

(Figure 2). These methods are highly reliable for finding and characterizing binding 

pockets in structures where a ligand has been co-crystallized with the receptor. 

Additional potential binding sites are often found that may represent pockets with trapped 

solvent molecules or well-defined groves on the protein surface. To our knowledge, there 

are still no examples of rational ligand design based on a non-natural binding pocket, i.e. 

a pocket that is not known to bind any ligands, but there are already successful designs of 

ligands targeting protein-protein interaction interfaces. 



2.7 Small molecule docking and virtual ligand screening 

A protein that can affect disease progression have the potential to be a drug target. The 

most desirable approach to regulate a target’s activity is by design of small, orally 

bioavailable, ligands. (Peptides and proteins are more difficult for this task in humans for 

a number of reasons, including delivery issues and immune response.) Screening of tens 

of thousands molecules is standard practice in industry, but it is costly. It is therefore 

desirable to reduce the number of compounds to be tested. 



 

Figure 2. Four potential drug binding pockets of the MTH152 flavin mononucleotide 

binding protein. (Christendat et al. 2000) The top panel shows the overall structure with 

the pockets shown as dark gray blobs. The lower panel shows a close-up view of the top 

part of the structure, along with the FMN molecule as a gray cpk model and a magnesium 

ion as a black sphere. Note that the pockets are all partly surface exposed and that the 

FMN unit covers two pockets. The two remaining pockets are “empty” in the pdb file and 

could be targets for discovery of new ligands, conceivably in combination with an 

adjacent site. The structure was solved in a structural proteomics initiative that comprised 

424 proteins from Methanobacterium thermoautotrophicum. 

Virtual ligand screening (VLS) drastically reduces the number of compounds that need to 

be screened in vitro and in vivo in the search for active ligands. (See Abagyan and Totrov 

2001 and references therein.) Pharmacophore modeling has traditionally been used for 

this purpose, but the method is hampered by the low diversity of the resulting libraries 

and the bias towards the template ligands. If instead a large number of compounds are 

docked to a binding site without bias of known ligands, a better diversity, selectivity and 



toxicity properties may be achieved. The starting point of the procedure is to calculate 

potential maps of the target site of a receptor model (from X-ray, NMR or homology 

modeling) in the desired structural state (e.g. open or closed state, as for nuclear receptor 

ligand binding domains). The maps may cover two vicinal pockets to provide additional 

binding energy and specificity (see for example Shuker et al. 1996). A library with 

compounds to be screened shall be generated. The compounds are virtual and are not 

restricted to available, synthesized molecules and provides one clear advantage of VLS 

versus high throughput screening (HTS). They should be selected based on chemical 

feasibility an on drug-like properties, such as absorption, metabolic properties and low 

toxicity. The efficiency of automatic docking of flexible ligands improves if potential 

maps are used instead of full atom representation of the receptor. These maps describe 

the shape, charge distribution and hydrogen bonding properties of the fixed receptor. 

Each ligand is positioned in a defined site and the structure is optimized (Figure 3). The 

ligands can be targeted to a specific binding site if it is known (which is not an option for 

HTS), or it can be the whole receptor. Due to limitations in the free energy calculation of 

the bound and unbound ligand, the ranking of the generated structures is based on a 

scoring function rather than of the calculated energy. Manual inspection of the top hits 

has also been a successful strategy for the final selection. Special properties of the ligands 

can easily be included in the processing of the hit list, e.g. the presence of a functional 

group in space to provide selectivity for a particular protein isoform. Two recent 

examples of true structure based ligand design involve the ligand binding domain (LBD) 

of the nuclear receptor retinoic acid receptor (RAR). In the first case, a model of the 

RARγ antagonist-bound structure was constructed based on the inactive RARα structure 

and the antagonist bound estrogen receptor LBD. (Schapira et al. 2000) Over 150 000 

compounds were screened in silico, of which 30 were selected manually from the top 300 

hits selected by the scoring algorithm. This significantly reduced set of ligands was tested 

for activity in vitro. Two new antagonists and one agonist were found. This example 

demonstrates the validity of the in silico screening procedure, and also provides an 

example where a modeled receptor was successfully used. In a similar study, the agonist-

bound structure of RARα LBD was constructed from the RARγ LBD by replacing three 

residues in the binding pocket. (Schapira et al. 2001) Again, 30 structures were selected 

out of 150 000 initial compounds for in vitro binding. Two agonists were active at 50 nM 

and one has an entirely novel structure as compared to known RAR ligands. 



 

Figure 3. The general procedure for virtual ligand screening starts from a receptor model 

and a compound library and results in a limited list of potential ligands. 

2.8 Peptide-protein docking 

Docking of flexible peptides to a protein represents a more difficult problem than small 

molecule docking due to the dramatic increase of number of freedom for the ligand, and 

also because the binding surface of the receptor is often flat and more permissive to 

uncorrect solutions. The accurate calculation of solvent electrostatics and entropy 

becomes more important for surface docking experiments. A recent example is the 

docking of phosphotyrosine-containing peptides to SH2 and PTB domains. (Zhou and 

Abagyan 1998) It was shown that three flexible penta- or hexa-peptides were correctly 

docked to an SH2 domain model. Docking of longer peptides (around 11 residues) to 

SH2 or PTB domains was more challenging and gave correct results only when the 

phosphotyrosine moiety was restrained to its binding pocket in the protein. It is probably 

a general rule that longer peptides are more difficult to dock and that biological 

information will aid in the prediction. A less complex task is to dock flexible peptides to 



well-defined grooves on the protein surface. Recent results from the docking of peptides 

to HLA (human MHC) proteins are encouraging, and will be useful in structural 

immunology research. 

2.9 Protein-protein docking. 

The association of two biomolecules is a fundamental process in the cell. It is a major 

challenge for computational biology to predict the structure of a complex given the two, 

separately solved structures. Formation of a biomolecule complex is accompanied by 

conformational changes of both structures. It would therefore be intuitive to dock fully 

flexible molecules, but this is far out of reach with the current methods and resources. 

The solution is to represent the receptor with potential grids (as described in virtual 

ligand screening above) and to ignore the flexibility of the ligand until a late stage of the 

procedure. Several groups have successfully recreated complex structures from the 

separate parts by rigid body docking (reviewed in (Sternberg et al. 1998)), but using the 

individually solved structures as starting points is the realistic exercise and will be a 

challenge for the future when many, single structures are expected to be solved. 

The initial step in protein-protein docking is to find relative positions of the molecules. 

This can be done by defining a grid around the receptor, placing the ligand in all grid 

points and evaluating the interaction energy. This rigorous method is computationally 

expensive and impractical. A more efficient sampling strategy selects starting points over 

the receptor surface and performs stochastic pseudo-Brownian moves followed by Monte 

Carlo minimization of the rigid structures (Figure 4). However, the binding of two 

biomolecules is always accompanied by some degree of structural changes, everywhere 

from side chain rearrangements to domain motions. Soft docking methods, where van der 

Waals repulsion terms are downscaled, can partly compensate for the mobility 

(Fernández-Recio J, Totrov M and Abagyan R, in press) but suffer from bad 

discrimination of false positives. Local minimization of the interface of the candidate 

complexes would provide more robust predictions. Optimal biased Monte Carlo 

minimization of the initial complexes reproduced the structure of a lysozyme-antibody 

complex with 1.6 Å accuracy (Totrov and Abagyan 1994). An improved version of this 

procedure was recently tested on 24 protein-protein complexes. Seven proteinase-

inhibitor complexes out of eleven were correctly predicted as the highest rank solution 



and mark a clear improvement over previous attempts. (Fernández-Recio J, Totrov M and 

Abagyan R, in press) However, other classes of complexes, such as antibody-antigen 

complexes, proved to be more challenging. Overall, the success rate for protein-protein 

docking is about 30%. Although the precision is still too low for general predictions, ab 

initio dockings provide useful hypotheses that can be confirmed with experimental data 

such as mutagenesis analysis or NMR chemical shift perturbations (see for example 

Morelli et al. 2000). 

 

Figure 4. Protein-protein docking using pseudo-Brownian Monte Carlo procedure 

followed by optimal biased Monte Carlo Minimization. A weighted potential map (gray, 

diffuse cloud) is calculated from five potential maps for the receptor (black tangle), and 

N starting positions for the ligand are distributed around the map. Each ligand is docked 

and minimized to yield a set of M x N optimized rigid body docking complexes, where M 

is the number of conformations in the stack for each starting position. After clustering 

and removal of redundant complexes, the lowest energy complexes are selected for 

OBMCM optimization of the interface side-chains of the ligand. The resulting structures 

are ranked according to energy (numbers 1-6 in panel f) and in the optimal case, the 

correct complex structure is the one with lowest energy. 

2.10 Protein health 

In the process of determining structures by crystallography, by NMR and by modeling it 

is necessary to check for errors in the intermediate and final solutions. This is becoming 



even more important as structure generation is being increasingly automated and the large 

number of solved structures (and publishing pressure) provides less time for critical 

human inspection, thus increasing the risk for errors. Structural fitness is commonly 

measured by comparison with the experimental data (if available), by local geometry 

criteria and by checking for steric clashes and provides a fast way to identify local 

abnormalities.(Laskowski et al. 1993; Laskowski et al. 1996) More rigorous methods to 

assess structure quality have been suggested. One approach is to compare the energy of 

residues in a target structure with a table of calculated energies for residues in a database 

of X-ray crystal structures with resolution better than 2.0 Å, grouped by residue type. 

(Maiorov and Abagyan 1998) In addition to the geometry check, this method probes the 

non-bonded interactions (including electrostatics and hydrogen bonding) more carefully 

than the simple bump-check and provides a complementary test of structural healthiness. 

2.11 Understand SNPs and mutations 

Naturally occurring single nucleotide polymorphisms (SNPs) may modify both structure 

and function of a protein. This variation in the genetic information is one reason why the 

response to drugs varies between individuals. The functional consequences of SNPs are 

tested in vivo and in vitro, and it is also of interest to understand what the structural 

effects are. Similarly, mutations of genes are responsible for a large number of disease 

states, and an understanding on the molecular level will aid in treatments. Only a fraction 

of all known proteins are being structure determined by X-ray and NMR, so how can we 

cope with all information from SNPs and mutants? Can we predict the effect of a 

mutation to focus experimental characterization efforts to the important targets? On the 

most coarse level, surface exposed residues are expected to influence the folding of a 

protein to lesser extent whereas it can modify the ability to interact with other molecules. 

Increased accuracy in the prediction of mutation effects is challenging and requires more 

sophisticated analysis. (Maiorov V and Abagyan R 1998; Rashin et al. 1997; Wright and 

Lim 2001) 



3 Acknowledgments 

We thank Vsevolod Katritch and Juan Fernández-Recio for helpful discussions and 

comments on the manuscript. L.B. is supported by a post-doctoral fellowship from the 

Human Frontier Science Program. 

4 References 

Abagyan R (1997) Protein structure prediction by global energy optimization. In: van 

Gunsteren WF, Weiner PK and Wilkinson AJ (eds) Computer simulation of 

biomolecular systems: Theoretical and experimental applications. (3rd edition) 

Kluwer Academic Publishers, Dordrecht. pp 363-394 

Abagyan R (2000) ICM 2.8: Users manual. Molsoft L.L.C. La Jolla CA 

Abagyan R and Argos P (1992) Optimal Protocol and Trajectory Visualization For 

Conformational Searches of Peptides and Proteins. J. Mol. Biol. 225:519-532 

Abagyan R and Totrov M (2001) High-throughput docking for lead generation. Curr. 

Opin. Chem. Biol. 5:375-382 

Abagyan R, Totrov M and Kuznetsov D (1994) ICM - A new method for protein 

modeling and design - Applications to docking and structure prediction from the 

distorted native conformation. J. Comp. Chem. 15:488-506 

Abagyan RA and Batalov S (1997) Do aligned sequences share the same fold? J. Mol. 

Biol. 273:355-368 

Abagyan RA and Totrov M (1999) Ab initio folding of peptides by the optimal-bias 

Monte Carlo minimization procedure. J. Comp. Phys. 151:402-421 

Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W and Lipman DJ 

(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search 

programs. Nucleic Acids Res. 25:3389-3402 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN and 

Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res. 28:235-242 

Borchert TV, Abagyan R, Jaenicke R and Wierenga RK (1994) Design, Creation, and 

Characterization of a Stable, Monomeric Triosephosphate Isomerase. Proc. Natl. 

Acad. Sci. USA 91:1515-1518 



Borchert TV, Abagyan R, Kishan KVR, Zeelen JP and Wierenga RK (1993) The Crystal-

Structure of an Engineered Monomeric Triosephosphate Isomerase, Monotim - the 

Correct Modeling of an 8-Residue Loop. Structure 1:205-213 

Chang G and Roth CB (2001) Structure of MsbA from E-coli: A homolog of the 

multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793-

1800 

Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, 

Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, 

Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM and 

Arrowsmith CH (2000) Structural proteomics of an archaeon. Nature Struct. Biol. 

7:903-909 

Guntert P and Wuthrich K (2001) Sampling of conformation space in torsion angle 

dynamics calculations. Comp. Phys. Comm. 138:155-169 

Laskowski RA, Macarthur MW, Moss DS and Thornton JM (1993) Procheck - a Program 

to Check the Stereochemical Quality of Protein Structures. J. Appl. Cryst. 26:283-291 

Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R and Thornton JM (1996) 

AQUA and PROCHECK-NMR: Programs for checking the quality of protein 

structures solved by NMR. J. Biomol. NMR 8:477-486 

Li Z and Scheraga H (1987) Monte Carlo minimization approach to the multiple-minima 

problem in protein folding. Proc. Nat. Acad. Sci. 84:6611-6615 

Maiorov V and Abagyan R (1998) Energy strain in three-dimensional protein structures. 

Fold. & Des. 3:259-269 

Momany R, McGuire R, Burgess A and Scheraga H (1975) Energy parameters in 

polypeptides. VII. Gemoetric parameters, partial atomic charges, nonbonded 

interactions, hydrogen bond interactions and intrinsic torsional potentials for the 

naturally occurring amino acids. J. Phys. Chem. 79:2361 

Morelli X, Dolla A, Czjzek M, Palma PN, Blasco F, Krippahl L, Moura JJG and 

Guerlesquin F (2000) Heteronuclear NMR and soft docking: An experimental 

approach for a structural model of the cytochrome c(553)-ferredoxin complex. 

Biochemistry 39:2530-2537 



Nemethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S and 

Scheraga HA (1992) Energy Parameters in Polypeptides .10. Improved Geometrical 

Parameters and Nonbonded Interactions For Use in the Ecepp/3 Algorithm, With 

Application to Proline-Containing Peptides. J. Phys. Chem. 96:6472-6484 

Rashin AA, Rashin BH, Rashin A and Abagyan R (1997) Evaluating the energetics of 

empty cavities and internal mutations in proteins. Protein Sci. 6:2143-2158 

Schapira M, Raaka BM, Samuels HH and Abagyan R (2000) Rational discovery of novel 

nuclear hormone receptor antagonists. Proc. Natl. Acad. Sci. USA 97:1008-1013 

Schapira M, Raaka BM, Samuels HH and Abagyan R (2001) In silico discovery of novel 

retinoic acid receptor agonist structures. BMC Struct. Biol. 1:1-7 

Shuker SB, Hajduk PJ, Meadows RP and Fesik SW (1996) Discovering high-affinity 

ligands for proteins: SAR by NMR. Science 274:1531-1534 

Sternberg MJE, Gabb HA and Jackson RM (1998) Predictive docking of protein-protein 

and protein-DNA complexes. Curr. Opin. Struct. Biol. 8:250-256 

Totrov M and Abagyan R (1994) Detailed Ab-Initio Prediction of Lysozyme-Antibody 

Complex With 1.6-Angstrom Accuracy. Nature Struct. Biol. 1:259-263 

Totrov M and Abagyan R (2001) Rapid boundary element solvation electrostatics 

calculations in folding simulations: Successful folding of a 23-residue peptide. 

Biopolymers 60:124-133 

Wright JD and Lim C (2001) A fast method for predicting amino acid mutations that lead 

to unfolding. Protein Eng. 14:479-486 

Zhou YY and Abagyan R (1998) How and why phosphotyrosine-containing peptides 

bind to the SH2 and PTB domains. Fold. & Des. 3:513-522 


