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1 Introduction

1.1 New sequencesfrom proteomicsand genomics

Genomics and proteomics efforts generate new results at aremarkable pace. Over 30
organisms have been sequenced and contribute evol utionary information and new
proteins with yet unknown function that are important from a basic research point of view
and for biomedica research. We now need ways to andyze the information and make
something useful of it, which may turn out to be amgjor obstacle. From a protein
structure point of view, the DNA sequences have to be analyzed for coding regions,
protein congtructs shall be expressed correctly at good yields, functions and properties
shall be determined, and the structure needs to be solved. For example, of the more than
600 predicted G-protein coupled receptors (GPCRs) in the human genome, 250-300 have
been annotated in swissprot, 100 have been experimentaly characterized and only 2
crysta structures have been reported.

1.2 Structural proteomics

A complete undergtanding of protein function requires the structures of the individud
components and their complexes to be determined. The huge amount of data from
genomics and proteomics requires high-throughput and highly automated procedures for
structure determination. There are currently twelve public Structure proteomics centers
(see www.resh.org/strucgen.html) that aim to solve long term scientific goas and
generate data available for the public. The private efforts are more geared towards
proteins that are easier to solve and are drug targets. The mgjor companiesin the U.SA
are Structurd Genomics, Syrrx and Plexicon. The mgority of structures are solved by
crystalographic methods. Determination of structures that are new, or difficult to
crysdlize well, often requires the use of synchrotron resources due to the availability of
high-energy source and MAD phasing. In cases where asmilar structure exigts, eg. co-
crystds of smal molecules used in drug discovery processes, molecular replacement
methods make it possible to utilize smdler, in-house ingruments with higher availability
and lower cost. The experimentd techniques that dlow crystdlization of membrane
proteins are progressing rapidly and will soon bring lots of data, see for example Chang
& Roth (Chang and Roth 2001). Nuclear magnetic resonance (NMR) is currently used to



determine structures for proteins with molecular weights less than 25 kDa. Recent
developments in hardware and pul se sequences, including TROSY sequences, may
extend the practica range to about 50 kDa. NMR is indispensable for structure
determination of proteins that cannot crystdlize or that yied low-qudity crysas.
Automated structure determination methods have been devel oped but are till not capable
of routine analyss. NMR aso provides ussful tools for screening for folded structures
(line shape andysis will quickly reved how well-folded a structure is and may be used to
select congtructs for structure determination with NMR or crystallography) and for
determination of physica properties (e.g. dynamics and pK s of ionizable groups).

Despite the recent devel opments in structure proteomics, the resources are till too
limited. To date, the protein databank (www.rcsh.org) contains 16245 entries as of
October 9, 2001 (Berman et al. 2000), with dmost 3000 structures a year growth rate.
Curioudy, the structural genomics initiative does not change this number dramaticaly.
Only about 300 to 1000 structures are expected to be added per year. Even if the number
of solved structures would double, it’s fill an order of magnitude smaller than the known
protein sequences resulting from the genomics and proteomicsinitiatives, and amgjority
of important targets will be missed. In addition, the cost for each solved sructure is
subgtantia (typically $100-300 k). The totd budget of the seven public structure
proteomics centersin the U.S. isroughly 35 million dollars per year. Determination of
biomolecule interactionsis of mgor importance, and determination of complex structures
isagreater chadlenge compared to the individua parts. And how can effects of single
nucleotide polymorphisms and mutants be evaluated promptly and cost effectively?
Computationa biology addresses these questions and may play a significant role to

decrease the gap between available sequences and structures.

Overdl, to cover the difference between sequences and structures we need to be able to at
least build models by homology (short of being able to accurately predict structure from
scratch), and both predicted and experimenta structures can then be further studied to
predict their function and to design specific ligands if necessary.



2 Computational tasks

We will now lig the current problems in structurd biology where computational methods
can contribute. We will outline the problems, describe a solution, focus on some points
that are of gpecia importance and give examples of case Sudies. The framework for the
discusson will be the ICM program that has been designed to approach dl of the
following problems, and we will initidly explain the internal coordinate system thet isthe
basis for the following discussion.

2.1 Interna coordinate mechanics, |ICM

Predicting structure means finding agloba minimum of an ill-behaved energy function

of hundreds of variables and specia approaches are needed to be devel oped to deal with
the problem. The most commonly used molecular mechanics force fields operate in
Cartesan space and provides solutions to many of the tasks that were mentioned above.
However, the large number of degrees of freedom of even asmall size protein makes it
impossble to efficiently search the globa conformationd space, e.g. in protein folding.
By switching to an internd coordinate system operating in torson space and fixing the
high frequency variables (bond lengths, bond angles), the number of degrees of freedom
isreduced seven-fold. If planar or tetrahedra geometry is assumed for every atom, the
decrease is roughly ten-fold, and provides afaster and till accurate means of energy
caculations. Force fidlds working in torson space were first described 25 years ago
(Momany et al. 1975) and are currently being developed in programs such as ICM
(Abagyan 2000; Abagyan et al. 1994), ECEPP (Nemethy et al. 1992) and DY ANA
(Guntert and Wuthrich 2001). Description the molecular system in torson space aso
enables efficient sampling of the conformationd space. A Monte Carlo minimization step
in torson space changes arandomly sdected group of coupled variables according to
their loca probability digtribution and performs aloca energy minimization (Figure 1).
(Abagyan and Argos 1992; Abagyan R et al. 1994; Li and Scheraga 1987) Thissep is
repeated and coupled with mechaniams to limit sampling of uninteresting areas and
encourage sampling of new areas until the procedure converges. New conformations are
sdlected if the energy difference between the new and old conformetion (DE = Env1 — By)

;DE/RT

islessthan O, or if arandom number between 0 and 1 issmdler than € ,wheeRis

8.314 kJ(mol K) and T is the amulation temperature (Metropolis sdlection). The



Metropolis selection dlows the procedure to traverse loca energy barriers, and the size of
the barriers that can be crossed is dependent on T. A stack of the lowest energy
conformationsis continuoudy updated, and aso contains the number of times a particular
conformation has been vigted. If a certain number of steps have yielded the same
conformation, the smulation temperature is doubled to alow escape from loca minima
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Figure 1. Conformation minimization in torsion space is more efficient for finding the
global minimum conformation of a polypeptide. (Abagyan R et al. 1994) @) Monte Carlo
minimization for the folded structure in torsion space using the ICM protocol outlined in
the text (top) and in Cartesian space using molecular mechanics minimization (bottom).
Random deviations from the folded structures were generated in torsion and Cartesian
space, respectively. The RMS deviation between the starting and target conformationsis
shown on the horizontal axes, the RM S between the minimized and target structureis
shown on the vertical axes. Monte Carlo minimization in torsion space can find the
folded structure even if the distortions are more than three A. Note that a full
conformational search employs additional steps and can find the global minimum from
any given starting structure. b) Minimization trajectories drawn on the energy |landscape
projected into two dimensions. The torsion space |landscape with fixed covalent geometry
(top) contains less local minimathan the corresponding landscape for Cartesian space

with relaxed covalent geometry, and provides afaster route to the global minimum.



Side chain and backbone torsion angle changes are partly biased to make the search
procedure more efficient and gtill alow rare conformations (that do exist in protein
structures) to be sampled. This so called optima biased Monte Carlo minimization
(OBMCM, ak.a BPMC) protocol improves the sampling efficiency by an order of
magnitude compared to Monte Carlo minimization and has been shown to predict
gructures ab initio with high efficiency.(Abagyan and Totrov 1999; Totrov and Abagyan
2001) A criticd issuefor dl molecular mechanics cadculations is the accuracy of the
potentials. ICM uses parameters that have been optimized for proteins based on the
ECEPP3 forcefidd (Nemethy G et al. 1992) and aso includes entropy and implicit
solvent energy terms. (Abagyan 1997) The accuracy of the energy function is critical and
we have recently developed a new Interna Coordinate Force Field (ICFF) that includes
implicit flexibility of bond length, bond angle and “1-4” van der Wads interactions by
projection of a Cartesian force field onto the interna coordinate molecular modd with
fixed bond geometry. (Katritch V., Totrov M., and Abagyan R., submitted) The main
object with ICFF isto improve the force field description of both protein and non-protein
molecules and to enhance ligand docking accuracy.

2.2 Homology modeling.

Roughly 10% of the available protein sequences resulting from the genomics efforts can
be expected to be solved despite the mgjor progressin structura proteomics. The
remaining, unsolved structures will contain awedth of information of interest for the
understanding of how cdllswork and how we can treat disease. One important role of
computationa biology isto predict three-dimensond structures of proteins by homology
modeling to cover this gap. Simple comparative modeding tools have been used for three
decades and are well established.

The easy step in modeling homology isto copy digned parts of the backbone from a
homologue. In general, good models can be generated if the template structure has more
than 30% sequence identity, and the predicted structures often have aC, RMSD lessthan
1.5 compared with the crystal structure. Although the accuracy of the predicted structures
islimited, the modds are till vauable for arange of tasksinduding prediction of

function to ligand design.



The firg gep in homology modding isto find template structures and produce a
(multiple) sequence dignment. PS-BLAST (Altschul et al. 1997) and hidden Markov
models are commonly used tools for both tasks. Alignment qudity can be further
improved by incluson of sructura information, as in the secondary-structure-and-
residue- accessibility-enhanced ZEGA dgorithm (Abagyan R 2000; Abagyan and Batalov
1997), and by manua ingpection and editing. The qudity of the aignment is crucid for
the result since an error will propagate throughout the procedure. The query polypeptide
chain is then threaded onto the template structure and the backbone and conserved
resdues are overlaid on the template Structure. In the next step, side chains
conformations for non-conserved residues are optimized. Findly, the inserted or deleted
loops are placed. Loop modeling is currently one of the most challenging parts of
homology modeling and should be treated with caution in the subsequent andysis. One
solution is to search for peptide fragments with smilar sequence and end point distances
in agructure database, and score dl hits on the modd. Loop modding is more successful
if the end point coordinates are known, such asfor redesign of available proteins.
(Borchert et al. 1994; Borchert et al. 1993)

2.3 Abinitiofolding

Three-dimensiona structures of proteins till cannot be predicted from first principles
without knowledge about homologous structures. In the future, it will hopefully be
possible by efficient and accurate globa optimization of the free energy function. Ab

initio folding requires afast globa search dgorithm and a complete and correct energy
function. The solvation energy is an important term and was, until recently, a difficult
problem to address. The structure of awell-folded 23-residue peptide with bba topology
was recently predicted using a biased probability Monte Carlo search including implicit
solvent electrogtatics. (Totrov M and Abagyan R 2001)

2.4 Annotation

Once anew sructure (model) has been determined, it needs to be annotated with respect
to properties and function. This information includes the character of the surface,
functiond residues, hinge points, locd rigidity, potentia binding pockets, sequence
amilarity to related proteins, energetic strain and local accuracy of the model. In



addition, information from biologica and structura databases can be projected on the
new structure, such as mutation data, SNP sites, known binding and cataytic sites, dimer
interfaces, dynamics parameters and so forth.

2.5 Target selection.

The number of potentid, or hypothetica, biomedicd targetsisfar larger than the number
that can currently be exploited. It is therefore necessary to select, from alist of Structures,
those that have a potentia for further development. Are there pockets with the right size
and character for drug design (see below)? What are the chances that a particular peptide
binding groove that isimportant for function can be blocked with asmall molecule or a
peptido-mimetic? These kinds of annotation results are critical for target sdlection, and
athough some steps in the procedures can be automated, interactive analysis and
inspection are fill required for optimal results.

2.6 Detecting drugable pockets

Structure-based design of ligands can, in principle, be targeted towards awhole protein
molecule or complex, but it is more efficient to find and focus on specific Stes. Given a
suitable receptor structure, one of the first stepsisto identify Stesthat are “drugable’. A
ample and efficient method is to map out cavities in the receptor structure that is not
occupied with ligands/inhibitors or solvent molecules. More sophigticated methods
caculate potentid maps for pocket Sze, charge distribution and smilar properties, and
finds potentia pockets by contouring the sum of the maps. A benefit from the latter
method is that binding Sites on the surface that are solvent exposed will aso be identified
(Figure 2). These methods are highly reliable for finding and characterizing binding
pockets in structures where aligand has been co-crystallized with the receptor.
Additional potential binding Sites are often found that may represent pockets with trapped
solvent molecules or well-defined groves on the protein surface. To our knowledge, there
are dill no examples of rationd ligand design based on anon-natura binding pocket, i.e.
apocket that is not known to bind any ligands, but there are aready successful designs of
ligands targeting protein-protein interaction interfaces.



2.7 Small molecule docking and virtual ligand screening

A protein that can affect disease progression have the potential to be a drug target. The
most desirable gpproach to regulate atarget’ s activity isby design of amdl, ordly
bicavallable, ligands. (Peptides and proteins are more difficult for this task in humans for
anumber of reasons, including ddivery issues and immune response.) Screening of tens
of thousands molecules is standard practice in industry, but it is codlly. It istherefore
desirable to reduce the number of compounds to be tested.



Figure 2. Four potential drug binding pockets of the M TH152 flavin mononucleotide
binding protein. (Christendat et al. 2000) The top panel shows the overall structure with
the pockets shown as dark gray blobs. The lower panel shows a close-up view of the top
part of the structure, along with the FMN molecule as agray cpk model and a magnesium
ion as ablack sphere. Note that the pockets are all partly surface exposed and that the
FMN unit covers two pockets. The two remaining pockets are “empty” in the pdb file and
could be targets for discovery of new ligands, conceivably in combination with an
adjacent site. The structure was solved in a structural proteomicsinitiative that comprised

424 proteinsfrom Methanobacterium ther moautotr ophicum

Virtud ligand screening (VLS) drastically reduces the number of compounds that need to
be screened in vitro and in vivo in the search for active ligands. (See Abagyan and Totrov
2001 and references therein.) Pharmacophore modeling has traditionaly been used for

this purpose, but the method is hampered by the low diversity of the resulting libraries

and the bias towards the template ligands. If instead alarge number of compounds are
docked to a binding site without bias of known ligands, a better diverdty, sdectivity and



toxicity properties may be achieved. The starting point of the procedure is to caculate
potential maps of the target Ste of areceptor mode (from X-ray, NMR or homology
modeling) in the desired Structurd State (e.g. open or closed state, as for nuclear receptor
ligand binding domains). The maps may cover two vicina pockets to provide additiondl
binding energy and specificity (see for example Shuker et al. 1996). A library with
compounds to be screened shdl be generated. The compounds are virtuad and are not
restricted to available, synthesized molecules and provides one clear advantage of VLS
versus high throughput screening (HTS). They should be sdlected based on chemical
feagbility an ondrug-like properties, such as absorption, metabolic properties and low
toxicity. The efficiency of automatic docking of flexible ligands improvesiif potentia

maps are used instead of full atom representation of the receptor. These maps describe
the shape, charge digtribution and hydrogen bonding properties of the fixed receptor.
Each ligand is positioned in a defined Site and the structure is optimized (Figure 3). The
ligands can be targeted to a specific binding steif it is known (which is not an option for
HTYS), or it can be the whole receptor. Due to limitations in the free energy caculation of
the bound and unbound ligand, the ranking of the generated structuresis based on a
scoring function rather than of the calculated energy. Manud inspection of the top hits
has aso been a successful dtrategy for the final sdlection. Speciad properties of the ligands
can eadly be included in the processing of the hit ligt, eg. the presence of afunctiond
group in space to provide selectivity for a particular protein isoform. Two recent
examples of true sructure based ligand design involve the ligand binding domain (LBD)
of the nuclear receptor retinoic acid receptor (RAR). In the first case, amodd of the
RARg antagonist-bound structure was constructed based on the inactive RARa structure
and the antagonist bound estrogen receptor LBD. (Schapira et al. 2000) Over 150 000
compounds were screened in silico, of which 30 were sdected manualy from the top 300
hits selected by the scoring agorithm. This significantly reduced set of ligands was tested
for activity in vitro. Two new antagonists and one agonist were found. This example
demondtrates the vdidity of thein silico screening procedure, and also provides an
example where amodeled receptor was successfully used. In asimilar sudy, the agonist-
bound structure of RARa LBD was congtructed from the RARg LBD by replacing three
resdues in the binding pocket. (Schapiraet al. 2001) Again, 30 structures were selected
out of 150 000 initial compounds for in vitro binding. Two agonists were active at 50 nM
and one has an entirely nove structure as compared to known RAR ligands.
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Figure 3. The general procedure for virtual ligand screening starts from areceptor model

and acompound library and resultsin alimited list of potential ligands.
2.8 Peptide-protein docking

Docking of flexible peptides to a protein represents a more difficult problem than smal
molecule docking due to the dramatic increase of number of freedom for the ligand, and
a0 because the binding surface of the receptor is often flat and more permissve to
uncorrect solutions. The accurate calculation of solvent e ectrogtatics and entropy
becomes more important for surface docking experiments. A recent exampleisthe
docking of phosphotyrosine-containing peptides to SH2 and PTB domains. (Zhou and
Abagyan 1998) It was shown that three flexible penta- or hexa- peptides were correctly
docked to an SH2 domain modd. Docking of longer peptides (around 11 residues) to
SH2 or PTB domains was more challenging and gave correct results only when the
phosphotyrosine moiety was restrained to its binding pocket in the protein. It is probably
agenad rulethat longer peptides are more difficult to dock and that biologica
information will aid in the prediction. A less complex task isto dock flexible peptides to



well-defined grooves on the protein surface. Recent results from the docking of peptides
to HLA (human MHC) proteins are encouraging, and will be useful in structurd
immunology research.

2.9 Protein-protein docking.

The association of two biomoleculesis afundamenta processin the cel. Itisamagor
chdlenge for computationa biology to predict the structure of a complex given the two,
separately solved structures. Formation of a biomolecule complex is accompanied by
conformationa changes of both structures. It would therefore be intuitive to dock fully
flexible molecules, but thisis far out of reach with the current methods and resources.
The solution is to represent the receptor with potentia grids (as described in virtud
ligand screening above) and to ignore the flexibility of the ligand until alate Sage of the
procedure. Severa groups have successfully recreasted complex structures from the
separate parts by rigid body docking (reviewed in (Sternberg et al. 1998)), but using the
individually solved structures as starting pointsisthe redigtic exercise and will be a
chdlenge for the future when many, single structures are expected to be solved.

Theinitid gep in protein-protein docking is to find relative postions of the molecules.
This can be done by defining agrid around the receptor, placing the ligand in al grid
points and evauaing the interaction energy. This rigorous method is computationaly
expengve and impractica. A more efficient sampling Strategy sdlects Sarting points over
the receptor surface and performs stochastic pseudo- Brownian moves followed by Monte
Carlo minimization of therigid structures (Figure 4). However, the binding of two
biomoleculesis dways accompanied by some degree of structura changes, everywhere
from side chain rearrangements to domain motions. Soft docking methods, where van der
Wadls repulsion terms are downscaled, can partly compensate for the mobility
(Fernandez-Recio J, Totrov M and Abagyan R, in press) but suffer from bad
discrimination of false pogitives. Loca minimization of the interface of the candidate
complexes would provide more robust predictions. Optimal biased Monte Carlo
minimization of theinitid complexes reproduced the Structure of alysozyme-antibody
complex with 1.6 A accuracy (Totrov and Abagyan 1994). An improved version of this
procedure was recently tested on 24 protein-protein complexes. Seven proteinase-

inhibitor complexes out of eeven were correctly predicted as the highest rank solution



and mark a clear improvement over previous attempts. (Ferndndez-Recio J, Totrov M and

Abagyan R, in press) However, other classes of complexes, such as antibody-antigen

complexes, proved to be more chalenging. Overdl, the success rate for protein-protein
docking is about 30%. Although the precison is il too low for generd predictions, ab
initio dockings provide useful hypotheses that can be confirmed with experimenta data

such as mutagenesis andysis or NMR chemicd shift perturbations (see for example

Moreli et al. 2000).
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Figure 4. Protein-protein docking using pseudo-Brownian Monte Carlo procedure

followed by optimal biased Monte Carlo Minimization. A weighted potential map (gray,

diffuse cloud) is calculated from five potential maps for the receptor (black tangle), and

N starting positions for the ligand are distributed around the map. Each ligand is docked

and minimized to yield aset of M x N optimized rigid body docking complexes, where M

isthe number of conformationsin the stack for each starting position. After clustering

and removal of redundant complexes, the lowest energy complexes are selected for

OBMCM optimization of the interface side-chains of the ligand. The resulting structures

are ranked according to energy (numbers 1-6 in panel f) and in the optimal case, the

correct complex structure is the one with lowest energy.

2.10 Protein health

In the process of determining structures by crystalography, by NMR and by modeling it

is necessary to check for errorsin the intermediate and find solutions. Thisis becoming



even more important as structure generation is being increasingly automated and the large
number of solved structures (and publishing pressure) provides lesstime for critica
human ingpection, thusincreasing the risk for errors. Structurd fitnessis commonly
measured by comparison with the experimental data (if available), by loca geometry
criteriaand by checking for steric clashes and provides afast way to identify loca
abnormalities.(Laskowski et al. 1993; Laskowski et al. 1996) More rigorous methods to
assess structure quality have been suggested. One approach is to compare the energy of
resduesin atarget structure with atable of caculated energies for resduesin a database
of X-ray crystal structures with resolution better than 2.0 A, grouped by residue type.
(Maiorov and Abagyan 1998) In addition to the geometry check, this method probes the
nor+bonded interactions (including € ectrostatics and hydrogen bonding) more carefully
than the smple bump-check and provides a complementary test of structura healthiness.

2.11 Unde gand SNPsand mutations

Naturdly occurring single nucleotide polymorphisms (SNPs) may modify both structure
and function of aprotein. This variaion in the genetic information is one reason why the
response to drugs varies between individuas. The functiona consequences of SNPs are
tested in vivoand in vitro, and it is aso of interest to understand what the structural
effects are. Smilarly, mutations of genes are responsible for alarge number of disease
dates, and an understanding on the molecular level will ad in trestments. Only afraction
of al known proteins are being structure determined by X-ray and NMR, so how can we
cope with dl information from SNPs and mutants? Can we predict the effect of a
mutation to focus experimental characterization efforts to the important targets? On the
most coarse level, surface exposed residues are expected to influence the folding of a
protein to lesser extent whereas it can modify the ability to interact with other molecules.
Increased accuracy in the prediction of mutetion effects is challenging and requires more
sophisticated andysis. (Maiorov V and Abagyan R 1998; Rashin et al. 1997; Wright and
Lim 2001)
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