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Abstract: Solvation effects play a profound role in the energetics of protein folding. While a
continuumdielectric model of solvation may provide asufficiently accurateestimateof thesolvation
effects, until now this model was too computationally expensive and unstable for folding simula-
tions. Here we proposed a fast yet accurate and robust implementation of the boundary element
solution of the Poisson equation, the REBEL algorithm. Using our earlier double-energy scheme,
we included for the first time the mathematically rigorous continuous REBEL solvation term in our
Biased Probability Monte Carlo (BPMC) simulations of the peptide folding. The free energy of a
23-residuebba-peptide was then globally optimized with and without the solvation electrostatics
contribution. An ensemble of bba conformations was found at and near the global minimum of the
energy function with the REBEL electrostatic solvation term. Much poorer correspondence to the
native solution structure was found in the “control ” simulations with a traditional method to
account for solvation via a distance-dependent dielectric constant. Each simulation took less than
40 h(21 hwithout electrostatic solvation calculation) on asingleAlpha 677 MHzCPU and involved
more than 40,000 solvation energy evaluations. This work demonstrates for the first time that such
a simulation can be performed in a realistic time frame. The proposed procedure may eliminate the
energy evaluation accuracy bottleneck in folding simulations. © 2001 John Wiley & Sons, Inc.
Biopolymers (Pept Sci) 60: 124–133, 2001
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INTRODUCTION

It is well recognized that electrostatic interactions
have profound effects on macromolecular structure,
folding, and binding. Simplistic pairwise Coulomb
energy used in a number of molecular force fields
proved to be inadequate in many cases since it does
not account for the solvent effects. Presence of a

highly polar solvent (water) effectively screens the
interaction of the charges of the solute, and favors the
exposure of the charged and polar groups on the
surface. The most rigorous treatment of solvation
effects might be the inclusion of explicit water mol-
ecules into the system. Such calculations require ad-
dition of thousands of new atoms for a moderately
sized macromolecule, and a long run of molecular
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dynamics is necessary to achieve even rather superfi-
cial sampling of the phase space for the added water
molecules. Extensive sampling is needed since the
solvent molecules are not static and their thermal
motion is essential for the electrostatic properties of
the solvent.1 Furthermore, the energy accuracy in
these simulations is limited by simplifications of non-
polarizable explicit water models. Modeling of pro-
tein folding with explicit water thus remains limited to
short peptides.2

As an alternative to explicit solvent, one can use
the continuous dielectric model that has recently been
successfully used to evaluate thermodynamic stability
of conformational ensembles.3–5 Instead of the dis-
crete molecules, the solvent is represented as a con-
tinuum of high dielectric constant. In this case, the
electrostatic energy may be calculated as the energy
of a set of point charges in a low dielectric constant
medium surrounded by a high dielectric constant me-
dium. The molecular surface is usually taken as a
boundary between the two. Unfortunately, analytic
solutions exist only for special shapes, e.g., a spheri-
cal boundary. Certain methods utilize these analytic
solutions to obtain relatively simple approximations
of energy under an assumption that the protein has
quasi-spherical shape, e.g., the image charge approx-
imation.6–8 Generalized Born methods use similar
assumptions (reviewed by Bashford and Case9). The
precision of these approximations is limited. A more
rigorous approach is numeric solution of the differen-
tial Poisson equation

2¹~«~r !¹f~r !! 5 r~r !

where« is the dielectric constant (permittivity),f is
the electric potential, andr is the charge density. Two
major approaches have been developed: the finite
difference method10 and the boundary element meth-
od.11,12

The finite difference method is currently the most
popular approach. The major disadvantage of the
method is that it requires manipulations of very large
three-dimensional arrays since the properties such as
electrostatic potential, charges, and dielectric constant
have to be represented on a three-dimensional grid.
To achieve an adequate precision, the sub-Ångstrom
grids are required. For a medium-sized system of 50
Å diameter and grid step of 0.5 Å, the calculations
involve the manipulation of several arrays of 100
3 100 3 100 5 one million values each, which is
both slow and memory-consuming. Another short-
coming of the finite difference method is the strong
dependency of the results on the grid step, size, and

position, since both the dielectric boundary and the
point charges are projected to a grid instead of being
kept at their original positions.

The boundary element method is based on the
following mathematical observation: the solution of
Poisson equation for the system where the space is
divided into two regions of different dielectric per-
mittivity can be represented as the solution for a
uniform medium if certain additional electrical charge
is distributed over the boundary between the regions.
Since the electric field in the uniform medium obeys
the Coulomb law, once the charge density on the
boundary is known, electrostatic potentials and en-
ergy can be easily calculated. However, to find the
boundary charge distribution, an integral equation has
to be solved. The efficiency of the method depends to
a great extent on the implementation of this solution.

Discretization of the molecular surface is an im-
portant part of the procedure, and has a crucial effect
on its performance and precision. The number of
surface elements needs to be kept as small as possible
to make the calculations fast and to reduce the amount
of memory needed. On the other hand, the shape of
the surface has to be adequately represented in order
to achieve good precision. It is hard to satisfy both of
these conflicting requirements. Usually the surface is
divided into triangles used as boundary elements. One
of the approaches essentially projects a pretriangu-
lated sphere onto the molecular surface.12 While pro-
ducing a relatively small number of surface elements,
it will only generate satisfactory surface representa-
tion for a quasi-spherical molecule and any clefts,
which are quite common for enzymes and receptors,
may get severely distorted. Another approach is to use
the detailed triangulated molecular surface,11 which
guarantees good precision but is extremely slow and
requires large memory to store the matrix. The fast
multipole approximation was used by Nicholls and
colleagues13 to accelerate the boundary element
method calculations and was shown to be efficient for
boundaries comprising more than 10,000 elements.
Up to 30-fold acceleration was achieved for 40,000
boundary elements. In the present work we take a
different approach, to avoid both the excessive num-
ber of boundary elements and the oversimplification
of the surface. We show that it is possible to reduce
the number of boundary elements more than 10-fold
without significant impact on the precision. Instead of
directly using triangles as boundary elements, we
combine them into relatively few composite patches
of arbitrary shape. The limited number of boundary
elements keeps the calculations fast while the accurate
shape of the elements, to a large extent, preserves the
precision. We found that this approach, while simpler
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than the multigrid boundary element proposed by
Vorobiev and Scheraga,14 is much faster and suffi-
ciently precise.

Folding simulations with electrostatic solvation
term were so far limited to rather short fragments with
little or no stable secondary structure.15 Here we
report folding simulations of a 23-residue peptide
Acet–Tyr–Thr–Val–D–Pro–Ser–Fen–Thr–Phe–Ser–
Arg–Ser–Asp–Glu–Leu–Ala–Lys–Leu–Leu–Arg–
Leu–His–Ala–Gly–CONH2, designed to adopt a zinc-
finger-like bba fold without a metal ion. The “Fen”
residue in the sequence of the peptide is an unnatural
amino acid, 3-(1,10-phenanthrol-2-yl)-L-alanine. The
solution structure of this peptide has been solved by
NMR16 and contains both basic types of secondary
structure elements observed in larger proteins.

THE BOUNDARY ELEMENT METHOD

The basic task in continuum dielectric solvation elec-
trostatics calculation is to find the electric potential or
field produced by a system of chargesqi in the region
of space with dielectric constant«in surrounded by a
medium with dielectric constant«out. The idea of the
boundary element method is to find a charge distri-
bution on the dielectric boundary surface that repro-
duces the electric field in the uniform medium with
dielectric constant«in. Once such a distribution is
found, one can calculate the electrostatic potential at
any point from the Coulomb law since the dielectric
medium is now uniform.

Theory

The electric field at an arbitrary point on the boundary
should obey two conditions that can be used to deduce
an equation for the surface charge densitys. The first
condition is the continuity of the normal component
of the electric displacement vector at any point on the
boundary. Ifn is the normal to the boundary,Din is
the displacement just inside the boundary andDout is
the displacement just outside the boundary, than

D in z n 5 Dout z n (1)

The second condition is for the discontinuity of the
normal component of the electric field:

~Eout 2 Ein! z n 5 4ps (2)

whereEout and Ein are the electric field vectors just
outside and just inside the boundary, respectively.

Combining these two equations and taking into ac-
count thatD 5 «E we obtain the following equation
relatingEout ands:

s 5 S« in 2 «out

4p«in
DEout z n (3)

On the other hand, the electric fieldE can be
calculated with the help of Coulomb’s law from the
known electric chargesqi and the charge density
distributions:

E 5 O
i

qi~r 2 r i!

«inur 2 r iu3
1T ~r 2 r s!

ur 2 r su3
ssds (4)

where r is the radius-vector of the point where the
electric field is being calculated,r i is the radius vec-
tors of the chargesqi, rs, andss are the radius-vector
and the surface charge density of an infinitesimal
element of the boundaryds and the integral is taken
over the whole boundary. This expression should not,
however, be directly used in Eq. (3), because the
surface integral in Eq. (4) has a discontinuity at each
surface point. It can be shown that the value of the
integral at the surface point and at the point infinitely
close to it but outside the surface differ by 2psn, and
for Eout one can have

Eout 5 O
i

qi~r 2 r i!

«inur 2 r iu3
1 2psn 1T ~r 2 r s!

ur 2 r su3
ssds (5)

where r is now the radius-vector of a point on the
boundary.

Now we can substituteEout in Eq. (3) and obtain an
integral equation for thes:

s 5 S« in 2 «out

4p«in
2 D O

i

qi~r 2 r i! z n
ur 2 r iu3

1 S«in 2 «out

2«in
Ds

1 S«in 2 «out

4p«in
D T ss~r 2 r s! z n

ur 2 r su3
ds (6)

or

s 2 S « in 2 «out

2p~«in 1 «out!
D T ss~r 2 r s! z n

ur 2 r su3
ds

5 S «in 2 «out

2p~«in 1 «out!
D 1

«in
O
i

qi~r 2 r i! z n
ur 2 r iu3

(7)
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To solve this integral equation numerically, we can
break the boundary into fragments, or elements, and
approximate the continuous surface charge distribu-
tion by a set of surface charge density values, one for
each boundary element (BE). Integrating both sides of
Eq. (7) over the boundary elementSk we obtain

EE
sk

s dsk

2 S « in 2 «out

2p~«in 1 «out!
D EE

sk

EE ss~r sk
2 r s! z nsk

ur sk
2 r su3

ds dsk

5 S «in 2 «out

2p~«in 1 «out!
D 1

«in
O
i
EE

sk

qi~r sk
2 r i! z nsk

ur sk
2 r iu3

dsk (8)

or splitting the integral over the whole surface into a
sum of partial integrals and replacing continuouss
with discreet per-element valuessk

skAk

2 S « in 2 «out

2p~«in 1 «out!
D O

j

sj EE
sk

EE
sj

~r sk
2 r sj

! z nsk

ur sk
2 r sj

u3 dsj dsk

5 S « in 2 «out

2p~«in 1 «out!
D 1

«in
O
i

qi EE
sk

~r sk
2 r i! z nsk

ur sk
2 r iu3

dsk (9)

whereAk is the area of thekth surface element. This
integral equation then turns into a system of linear
equations:

Rs 5 e (10)

wheres is the vector of BE charge densities, matrixR
only depends on the boundary shape and is defined as

Rjk 5 d jkAk

2 S «in 2 «out

2p~«in 2 «out!
D EE

sk

EE
sj

~r sk
2 r sj

! z nsk

ur sk
2 r sj

u3 dsj dsk (11)

and vectore is defined as

ek 5 S « in 2 «out

2p~«in 1 «out!
D 1

«in
O
i

qi EE
sk

~r sk
2 r i! z nsk

ur sk
2 r iu3

dsk

(12)

Indexesj and k refer to the BEs andi refers to the
point charges.

Implementation

A major problem of the BE method is the necessity of
solving the linear equation system with the matrixR
of the sizeN 3 N, whereN is the number of bound-
ary elements.

Unsatisfactory performance in terms of speed re-
mains an obstacle for a wider use of the BE method
for macromolecular electrostatics calculations. In its
simplest form, the method is only practical for the
relatively small systems where a few hundred BEs are
sufficient. Unfortunately, as the number of surface
elements and the matrix size grows, the speed of the
matrix inversion can make the BE electrostatic calcu-
lations impractical. The size of the matrix is propor-
tional to the squared number of the boundary elements
(NBEV

2 ), which means that one cannot have more than
a few thousand surface elements, i.e., 4,000 elements
require a matrix of 64 Mbytes in size. Also, the time
required for the matrix inversion is proportional to
NBE

3 , making calculations for large systems very slow.
The second problem can be circumvented if in-

stead of the matrix inversion one uses the iterative
solution of the linear system. When done properly, the
iterative process usually converges in only a few
(,10) steps. The time required for one iteration is
only proportional toNBE

2 , which makes the iterative
solution preferable for large matrices. To solve the
linear equation system, we use the preconditioned
biconjugate gradient method17 that guarantees a good
convergence.14

Increasing the size of the boundary elements helps
to keepNBE small, but deteriorates the precision. The
characteristic dimension of the bumps and pits on the
protein surface is close to the radius of an atom, which
is about an ångstrom for hydrogen atoms that consti-
tute the majority of the surface atoms. If the surface is
triangulated and the triangles are used as boundary
elements, these triangles should have sides of less
than an angstrom in length to retain atomic details.
Bigger triangles may result in exceedingly large er-
rors: some atoms become very close to the triangu-
lated surface and may even get outside of it.

To reduce the number of boundary elements while
preserving sufficiently accurate boundary representa-
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tion, we define composite boundary elements as as-
sociations of all triangles of the surface belonging to
one atom. This allows us to have detailed representa-
tion of the molecular surface shape with dozens of
triangles per surface atom, while the number of
boundary elements involved in the linear Eq. (10) is
much lower and equals to the number of surface
atoms (Fig. 1). The underlying assumption is that the
variations of the surface charge density across the
atomic surface patch are relatively minor.

Molecular surface was generated by the contour
build-up algorithm18 with subsequent triangulation of
the three basic elements (convex spherical patches,
toroidal saddles, and concave spherical patches). The
algorithm also assigned each triangle to one of the
atoms of the molecule. The assignment was used to

group the triangles into patches of the surface used as
boundary elements. The matrix elementsRjk and vec-
tor ek were then calculated by summation of all con-
tributions from the triangular components of patchesj
andk:

Rj,k 5 O
lj

O
mk

r ljmk
, Ek 5 O

mk

emk
(13)

where l j and mk are indexes of the triangles of the
respective patches. To calculater l ,m, simple approx-
imation of the integrals in Eqs. (11) and (12) can be
obtained by using constant radius-vectorr j of the
point chosen to represent the “center” of the boundary
elementSj instead of variablersj:

FIGURE 1 The composite boundary elements compared to the basic triangles. Left half of the
molecular surface of the polypeptide (shown in solid) has composite boundary elements colored
randomly to illustrate the distribution of sizes and shapes. Right half of the molecular surface is
displayed as a mesh directly produced by triangulation procedure. Drastic difference in the number
of surface elements can be observed.
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r lm 5 d lmAm 2 S « in 2 «out

2p~«in 1 «out!
D ~r l 2 rm! z nl

ur l 2 rmu3 AlAm

(14)

em 5 S « in 2 «out

2p~«in 1 «out!
DAm

1

«in
O
i

qi

~rm 2 r i! z nm

urm 2 r iu3
(15)

However, this approximation is obviously not valid
for the diagonal elements of the matrix, since it is
singular for l 5 m. The simplest solution of the
singularity problem is to discard the integral for the
diagonal elements completely, which would imply
that individual surface elements are considered as flat,
disregarding their curvature. Some improvement in
precision can be achieved if one uses finer tesselation
of the surface for the calculation of the diagonal
elements.19 Vorobjev and Scheraga14 proposed a
semianalytic expression for the diagonal elements.
The expression, however, included an empiric factor,
making the approach somewhatad hoc. Purisma and
Nilar20 suggested that if the surface is composed of
interlocking spheres, one can deduce the diagonal
elements of the matrix from the off-diagonal ones
with the help of a certain normalization condition. We
will show now that the normalization condition in fact
can be used for arbitrary surface. Indeed, if we con-
sider the sum of the elements of one of the rows of the
matrix R, according to Eq. (11):

O
k

Rjk 5 Aj

2 S « in 2 «out

2p~«in 1 «out!
D O

k
EE

sk

EE
sj

~r sk
2 r sj

! z nsk

ur sk
2 r sj

u3 dsj dsk

5 Aj 2 S « in 2 «out

2p~«in 1 «out!
D EE EE

sj

~r s 2 r sj
! z ns

ur s 2 r sj
u3 dsj ds

5 Aj 2 S « in 2 «out

2p~«in 1 «out!
D EE

sj

EE ~r s 2 r sj
! z ns

ur s 2 r sj
u3 ds dsj

5 Aj 2 S « in 2 «out

2p~«in 1 «out!
D EE

sj

2p dsj

5 S1 2
« in 2 «out

«in 1 «out
DAj

or

Rjj 5 S1 2
« in 2 «out

«in 1 «out
DAj 2 O

kÞj

Rjk

Thus, diagonal elements of the matrix can be de-
duced from the sums of the off-diagonal elements and
the surface area of the corresponding boundary ele-
ments. As Purisima and Nilar20 pointed out, this
method of derivation of the diagonal elements assures
consistency of the diagonal matrix, which otherwise
can become singular or can have negative eigenvalues
resulting in large errors.

To improve precision further, we also applied sur-
face charge normalization using the relation between
the total induced surface charge and total charge of
the molecule.19 To avoid singularity for molecules
with zero net charge, calculations are performed
twice, only for negative charges and only for positive
charges as described by Nicholls and colleagues.13

The Setup of the Folding Simulations

The Biased Probability Monte Carlo (BPMC) mini-
mization procedure8 was used to globally optimize the
free energy function in the internal coordinate space.
BPMC procedure consists of the following steps per-
formed iteratively:

1. Biased random change of a randomly chosen
group of internal variables. Groups changed
simultaneously includex-angles of a single
side-chain orw, c pair of the peptide backbone.
The probabilities of the new random values of
angles are biased according to the database-
derived distributions.8,21 If the w, c change is
performed on the residue adjacent to ab-strand,
coordinated “b-zipping” move is performed with
a certain probability, extending theb-strand.22

2. Local gradient energy minimization using pseu-
do-Newtonian minimizer.

3. Solvation electrostatic energy and surface-
based entropic term8 calculations.

4. Metropolis acceptance criterion: the new con-
formation is accepted always if it has lower
energy, or with the probability of exp(2DE/
RTsim) if it has higher energy then the previous
conformation (DE is the energy increase and
Tsim is the simulation temperature, set to 600
K).

Low-energy conformations encountered during the
MC search were accumulated in the conformational
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stack as described in Ref. 23. As a starting point for
each MC run, fully randomized conformations were
generated with random values in the range of2180°
to 180° assigned to all flexible torsion angles in the
peptide. To ensure convergence, eight independent
MC runs were performed.

The double-energy scheme, which excludes the
slow terms from the local minimization, allows us to
use efficient gradient minimizer to quickly get near
the local minima of the energy function while still
including these terms in the global search.24 During
the local minimization step, a modified ECEPP322,25

force-field energy with distance-dependent dielectric
constant« 5 4R26,27 was used. Up to 480 energy
evaluations were allowed during each local minimi-
zation run. At the evaluation step, electrostatic solva-
tion energy replaced the modified Coulomb term. At
the same time accessible-surface-based entropic term
was added. Dielectric constants of 2 and 78.5 respec-
tively were used for the interior and the exterior of the
molecule, respectively. The total number of energy
evaluations during the MC run was limited to
12,500,000.

RESULTS AND DISCUSSION

Three factors are crucial for the solvation electrostatic
calculations to be included in peptide folding simula-

tions: speed, accuracy, and robustness. Due to the
large conformational space, thousands of conforma-
tions have to be evaluated to locate the global mini-
mum even with the most efficient search algorithms,
requiring fast energy evaluation. The energy differ-
ence between the native conformation and the unfold-
ed/misfolded conformations is only a few kcal/mole,
thus making errors in energy evaluation beyond 1–2
kcal/mole prohibitive. The large number of energy
evaluations and the diversity of conformations during
each simulation imposes additional requirements to
the accuracy and robustness of the electrostatic cal-
culation.

To address these challenges, we implemented an
accurate boundary element solvation electrostatics
method, abbreviated as REBEL, with a number of
improvements. We proposed the per-atom composite
BE definition, which allows to maintain high-resolu-
tion boundary representation while keeping the total
number of BEs modest. To test the precision of this
approximation, we compared the energy values for
200 peptide conformations obtained using the per-
atom composite BE and standard flat BE (Figure 2).
The rms deviation of the solvation component of the
electrostatic energy for the whole molecule calculated
by the two methods was as low as 0.68 kcal/mole. The
average number of per-atom composite BEs was 273,
while the number of standard flat BEs was 2993, more

FIGURE 2 Correlation plot for the solvation electrostatic energies calculated using composite
boundary elements and basic triangles.
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FIGURE 3 Stereo views of simulated and experimental conformations of the 23-residue peptide.
Hydrogen bonds between backbone atoms are shown in dotted lines to highlight formation of
secondary structure elements. (a) Lowest-energy conformation found during the folding simulations
with solvation electrostatics. Contact residues in thea-helix are the same as in NMR structure,
however, theb-turn occurs on residues 3 and 4. (b) Low-energy conformation with the sameb-turn
type as observed in NMR structure, but different helix-sheet interface. (c) NMR structure from
Protein Data Bank entry 1HCW.
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than a tenfold reduction. Calculation using per-atom
composite BE took on average 0.68 s, almost 20 times
faster than with standard flat BEs, for which the
average time was 13.2 s. Conjugate gradient iterations
to solve the BE equation (10) converged after 8–12
steps. We also measured the time spent by the proce-
dure on various stages of the algorithm. For an aver-
age-size 129-residue protein lysozyme, the total run-
time to calculate the electrostatic energy was 5.6 s.
Surface calculation by the contour-buildup algorithm
took 1.3 s, matrix preparation 1.9 s, conjugate gradi-
ents linear equation solution 1.7 s, and final energy
calculations 0.7 s. The time distribution shows that the
technique is currently well balanced, with no promi-
nent bottlenecks. All calculations were performed on
a single Alpha 677 mHz CPU under Linux operating
system.

We generalized the indirect approach of the
Purisima and Nilar20 to the calculation of the diagonal
elements of the boundary matrix, proving its applica-
bility to the molecular surface of the arbitrary closed
shape. We observed that the direct calculation of the
diagonal elements for certain conformations of the
polypeptide resulted in an ill-conditioned matrix and,
hence, large errors in energy evaluation. Albeit rare,
when such situation occurred during the folding sim-
ulation, the conformation was assigned an errone-
ously low energy, misdirecting the conformational
search. However, indirect approach substantially im-
proved robustness of the method.

Eight independent peptide folding simulation runs
were performed, starting from different random con-
formations. Each simulation took an average of 40 h
on a single Alpha 677 mHz CPU. Figure 3 (a, b)
illustrates some low-energy structures found by the
procedure. The analysis of the conformational stacks
accumulated during the simulations has shown that
the lowest-energy conformation, as well as a large
fraction of other conformations within 5 kcal/mole
from the lowest energy, exhibit a well-definedbba-
fold. The helical segment starts at S11, in agreement
with the experimental structure16 (Figure 3c). In the
lowest-energy conformation, theb-sheet packs cor-
rectly against the hydrophobic face on thea-helix,
making contacts with L14, L17, and L18, however the
type of theb-turn formed differs from the one pre-
dicted in the consensus NMR structure. In the latter,
b-turn occurs on residues P4 and S5, while in the
lowest energy conformation it is shifted to V3 and P4
(Figure 3a), resulting in overall backbone rms devia-
tion (RMSD) 3.4 Å. One possible explanation for this
discrepancy is that our energy function overestimates
the free energy gain from the burial of the large Fen
side chain, which is almost completely buried in the

predicted conformation and largely exposed in the
NMR structure. Several other low-energybba con-
formations have the reported type of theb-turn (back-
bone RMSD for the first 8 residues 1.2 Å), but the
helix–sheet interface residues differ significantly from
the experimental structure. The helix is rotated around
its axis by about 90°, leaving L17 completely out of
the interface.

We conclude that our folding protocol does find
most of the features of the native structure correctly.
The imperfect agreement with the experimental struc-
ture may reflect shortcomings of the force field used
as well as low resolution of the experimental data and
limitations of a single conformation representations of
a conformational ensemble.

To illustrate the importance of the solvation term,
we also performed “control” simulations with the
electrostatic term replaced by a distance-dependent
dielectric constant calculation. Low-energy confor-
mations found in the control runs had neitherb-sheet
nor a-helix secondary structure elements formed, in-
dicating that accurate solvation contribution is essen-
tial in the energetics of peptide folding.

CONCLUSIONS

An efficient implementation of the boundary element
method for solvation electrostatics calculations is pro-
posed. A combination of three improvements, namely
the use of large composite boundary elements, the
sum rule for diagonal element calculation and the
surface charge normalization algorithm, made the
method sufficiently fast (less than 1 s per calculation),
accurate (error RMS 0.7 kcal/mole as compared to
much more detailed but slower implementation) and
robust (less than one failure per 200,000 energy cal-
culations) to be used directly in the folding simula-
tions of a 23-residue peptide for the first time. The
BPMC procedure withb-zipping step and exact elec-
trostatic solvation term successfully predicted forma-
tion of the two basic elements of the protein structure,
b-sheet as well asa-helix and favored their correct
packing. The electrostatic solvation term is shown to
be critical for correct folding.

We would like to thank Compaq for providing Molsoft with
the Alpha workstation, which was used for the calculation
and analysis.
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