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Recent improvements in flexible docking technology may lead
to a bigger role for computational methods in lead discovery.
Although fast and accurate computational prediction of binding
affinities for an arbitrary molecule is still beyond the limits of
current methods, the docking and screening procedures can
select small sets of likely lead candidates from large libraries of
either commercially or synthetically available compounds. 
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Abbreviations
ACD Available Chemicals Directory
ER estrogen receptor
HTS high-throughput screening
ICM Internal Coordinate Mechanics
MM Mining Minima
PMF Potential of Mean Force
QSAR quantitative structure/activity relationship 
RMSD root-mean-square deviation
SEED Solvation Energy for Exhaustive Docking
TK thymidine kinase
VLS virtual ligand screening

Introduction
Virtual ligand screening (VLS) based on high-throughput
flexible docking is an emerging technology for rational lead
discovery based on receptor structure [1,2]. Rapid accumu-
lation of high-resolution three-dimensional structures,
further accelerated by the structural proteomics initiative
[3,4] and the improvements of docking and scoring tech-
nology, are making VLS an attractive alternative to the
traditional methods of lead discovery. VLS can sample a vir-
tually infinite chemical diversity of drug-like molecules
without synthesizing and experimentally testing every
screened molecule. Typically, a corporate high-throughput
screening (HTS)-ready compound library ranges from
200,000 to 1,000,000 molecules. Even with corporate
libraries as large as these, however, the experimental HTS
often does not result in viable leads (Martin Rosenberg,
personal communication). The high cost of such massive
experimental testing and its technical complexity are fur-
ther motivation for the theoretical alternative. Finally, the
virtual experiment, as opposed to a high-throughput assay,
can be easily designed to select for a particular binding site
or receptor specificity. A flow chart of the flexible docking
and VLS procedure is given in Figure 1.

Docking and screening methods have a long history that is
described elsewhere (for a review, see [5,6]). We have not

tried to cover docking and binding energy-prediction
methods that are too computationally expensive for high-
throughput applications and take more than 3–5 minutes
per ligand per processor. Here we will review the most
recent advances in the area of high-throughput flexible
docking and computer screening, as well as applications of
these techniques to lead discovery. 

Flexible docking methods
Most of the existing established flexible docking algo-
rithms, such as DOCK, ICM (Internal Coordinate Mechanics),
FlexX, QXP, Ecepp/Prodock, Pro_LEADS, Hammerhead,
FLOG, GOLD, LUDI, AutoDock and GREEN have been evolv-
ing for years. Most groups continue to improve their core
docking procedures or develop additional protocols on top
of them to answer a specific question.

FlexX is an incremental construction docking algorithm
involving three steps: selection of base fragments of the
ligand molecule, placement of base fragments in the active
site, and incremental reconstruction of the whole ligand. In
a recent paper from the FlexX group [7•] the performance
of the algorithm was evaluated on a set of 200 complexes.
An attempt was made to include explicit water molecules
into docking simulations (‘Particle concept’ in [7•]).
Possible water positions are pre-calculated, and during the
incremental reconstruction stage water molecules are
placed at the pre-computed positions if they can form
additional hydrogen bonds to the ligand. In a test on 200
complexes with known structures, improvements were
observed, but only for some targets (e.g. HIV protease
complexes) containing a strongly bound water molecule.
The overall effect of water inclusion, however, was mar-
ginal, with the number of complexes predicted to within
1 Å RMSD of experimental structure actually decreasing.

In contrast to the incremental construction algorithms,
exemplified by DOCK and FlexX, the Internal Coordinate
Mechanics (ICM) docking algorithm relies on global opti-
mization of the entire flexible ligand in the receptor field.
The ICM program [8] combines large-scale random moves
of several types with gradient local minimization [9] and a
history mechanism that both expels from the unwanted
minima and promotes the discovery of new minima [10].
The random moves include pseudo-Brownian moves [11],
optimally biased moves of groups of torsions [9] and single
torsion changes. An extension and optimization of the
energy terms and the algorithm for flexible grid docking
was reported [12]. The optimized function included lone-
pair-based hydrogen bonding, a smooth hydrophobic term,
truncated van der Waals term and electrostatics. A bench-
mark of 51 complexes of 23 receptor proteins was used for
validation and docking procedure optimization via a com-
prehensive cross docking of all ligands to all receptors. Of
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the 51 complexes, 26 were predicted with better than 2 Å
RMSD (~50%). The optimized set of parameters resulted
in significant improvements of the docking predictions. 

Trosset and Scheraga [13] extended the ECEPP3 core and
the Monte Carlo Minimization algorithm and developed
the program ProDock, in which the ligand is optimized by
Monte Carlo minimization and the receptor is represented
by grid potentials. The Bezier splines were used to calcu-
late derivatives of the grid energy for efficient gradient
minimization of a ligand.

New docking programs continue to emerge (e.g. MCDOCK

[14], SEED (Solvation Energy for Exhaustive Docking) [15]
DARWIN [16], MM (Mining Minima) [17], GLIDE (T Halgren,
‘Rapid flexible docking of ligands to receptor sites with
GLIDE’, West Coast Annual Discovery 2001 Conference).
Even more programs are in development. SEED [15] uses a
large pre-set library of molecular fragments, which are

docked into the binding site. The fragment–receptor inter-
action energy, which includes a sophisticated solvation term
based on the generalized-Born approximation [18•], is 
subsequently evaluated for each fragment position, 
best-docked fragments are selected and merged using
CCLD (Computational Combinatorial Ligand Design) gen-
erating a number of putative ligands. However, the
validation of the approach was rather indirect. Because of
the way docked molecules were constructed, it appears to
be difficult to test the method on a large variety of com-
plexes with known structures, limiting comparison with
experimental structures to a few rigid molecules or to a
qualitative similarity of generated and known ligands. A
generalized-Born solvation model similar to the original
SEED was re-implemented in DOCK [19•].

The MM algorithm for ligand docking was published by
David, Luo and Gilson [17]. This optimizer generates a
large number of conformations and evaluates them using
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Flow chart of the flexible docking and VLS procedure. ADME-TOX, adsorption, distribution, metabolism, excretion and toxicity; GA, genetic
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the CHARMM force field, keeps track of the minima sam-
pled at every iteration, and recombines the best solutions
similarly to a genetic algorithm. The search is guided
away from the previously discovered minima in a manner
similar to the ICM conformational stack mechanism [10] or
Tabu Search [20,21]. The method was compared with
AutoDock, FlexX and MCDOCK.

MCDOCK uses Monte-Carlo simulated annealing to identi-
fy the global minimum. In contrast to the ProDock and
ICM algorithms, MCDOCK does not employ gradient 
optimization of the ligand. The conformations are 
generated with geometrical docking followed by energy-
based docking. MCDOCK was successfully tested on 19
ligand–receptor complexes [14]. 

DARWIN — a new docking program based on a genetic
algorithm and the CHARMM force field — was developed
and tested on two carbohydrate-binding proteins [16].
The paper provides an insight into the importance of sol-
vation effects. Initially, several water molecules observed
crystallographically in the binding pocket were retained,
and good docking results were obtained without any spe-
cific solvation term. However, when the waters were
removed, no solution within 3 Å of experimental struc-
ture could be found. The results improved if the
electrostatic term was completely omitted. Finally, when
an electrostatic solvation term using the finite-difference
solution of the Poisson equation was employed, the cor-
rect solution (RMSD less than 0.5 Å) was recovered.
Encouragingly, the implicit solvent model could success-
fully substitute for the explicit water molecules, at least
for the system tested.

Information about a bound ligand can facilitate docking of
similar ligands binding in a similar mode. Fradera et al.
[22] developed an extension to the DOCK4.0 program to
incorporate the similarity of the docked molecules to lig-
ands with known binding mode. The similarity can both
guide the ligand during the docking process and modify
the final binding score of a ligand. The method was
applied to thrombin ligands. 

A general comparison between different classes of global
optimization algorithms for docking is difficult because of
the critical dependence of the performance on details of
the implementation. Diller and Verlinde [23] compared
some stochastic methods with the incremental construc-
tion methods and concluded that stochastic methods have
inferior performance. 

To conclude this section we should say that, in a realistic
case, an average reputable docking algorithm would dock
only about 30–50% of the binders to the receptor pocket
with RMSD less than 2–3 Å in about 1–3 minutes per 
molecule on a single processor. Of course, additional 
information, a favorable target or a selection of ligands may
improve the results. Clearly, there is significant room for

improvement that might be achieved through better force
fields, and more rigorous optimization procedures. 

Integrating docking and chemistry
In a straightforward application of VLS, molecules of
interest are built in advance and were docked to a recep-
tor pocket and evaluated. Instead of generating a large
number of combinations in advance, however, the 
molecule can be ‘built’ into a pocket when needed. A
large number of programs were designed to grow ligands
atom-by-atom (Genstar, Legend, MCDNLG, CONCEPTS

[24–27]), or fragment-by-fragment (Grow, LUDI,
GrowMol, GroupBuild, SPROUT, BUILDER, SMOG and
CONCERTS [28–36]). These methods struggle with two
main problems: the low accuracy of docking and the
force field, as well as a too-restricted or too-liberal 
assessment of chemical accessibility. 

An approach based on the DOCK docking algorithm was
reported recently [37]. DOCK was one of the first ligand-
docking programs [38]. The initial version used rigid
ligands; later, flexibility via incremental construction of
the ligand in the binding pocket was incorporated. A
recent paper by Makino et al. [37] describes how six types
of reactions, utilizing combinatorial chemistry on a solid
support, are used in combination with the DOCK confor-
mational search to construct a ligand. 

Usually, ligand-building algorithms attempt to design an
ideal ligand directly in the active site. In practice, howev-
er, a single predicted ligand is uninteresting for a chemist
because of low prediction accuracy (both false positives
and false negatives), unexpected absorption, distribution,
metabolism, excretion and toxicity properties, cross-reac-
tivity, chemical accessibility, etc. Typically, the chemist
can synthesize a small combinatorial set of compounds
almost as easily as a single compound. Therefore, the task
the chemist is confronted with is the selection of several
good scaffolds for a particular target, or a family of targets,
as well as the selection of the best sidechains for a given
scaffold. These problems have been addressed in a recent
paper by Lamb et al. [39], which enhanced the previously
published CombiDOCK approach from the same group [40]
from the comparison of sidechains to the comparison of
three scaffolds docked to three related protein targets.
The results are encouraging. 

Chemical clustering of a hit list and retaining only the best
representatives of each family can increase chemical diver-
sity of the generated hits. This approach was successfully
applied by the Shoichet group to thymidylate synthase,
dihydrofolate reductase, and a lysozyme mutant [41].

Receptor flexibility 
One of the biggest challenges of ligand docking is taking the
flexibility of the protein binding sites into consideration
(reviewed in [42]). There are five levels of sophistication in
the consideration of receptor flexibility [43•,44]: 
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1. Use a static crystal structure of a receptor complexed
with another ligand, or use an unliganded structure, the
first is usually preferable.

2. Build a receptor model that tolerates ligand binding with
some clashes without explicit repacking of the receptor
sidechains (the model is static but permissive and implies
multiple binding modes).

3. Use several alternative receptor binding site conforma-
tions for docking and merge the docking results.

4. Include partial receptor flexibility by allowing receptor
relaxation for different trial conformations of the ligand.

5. Perform joint global optimization of molecular dynamics
simulations of ligand and the receptor binding site. 

The main problem with explicit inclusion of receptor flex-
ibility into docking calculations is that it makes the results
worse, not better. Also, the explicit treatment of receptor
flexibility is too computationally expensive to include in
VLS of large libraries. Therefore, most of the docking algo-
rithms use levels (1) and (2) because ligand binding
pockets are usually relatively rigid. Levels (4) and (5) are
used for protein–protein docking [45] in which flexible
sidechains at the interacting surfaces are unavoidable, and
it has been demonstrated that the refinement of the dock-
ing solutions by global optimization of the surface
sidechains does improve the results. 

Broughton [44] successfully used short runs of molecular
dynamics for incorporation of protein flexibility in pro-
tein–ligand docking that actually improved the results.
This was achieved by a combination of statistical analysis
from molecular dynamics runs with grid ligand docking.
The method was applied to rank a homologous series of
COX-2 ligands. 

Schapira et al. [43•] performed explicit receptor sidechain
and ligand co-optimizations on a small set of known lig-
ands (level 5). An alternative receptor sidechain
arrangement was identified in this simulation and the new
receptor conformation was used in flexible ligand docking
of a much larger set of compounds (level 3). Docking
against several alternative static conformations and the
explicit global optimization of a small set of ligands to flex-
ible receptors may become a more popular approach,
especially in cases where a set of ligands requiring the
alternative packing is known. 

Scorring
Let us make several general comments about scoring lig-
ands. First, if a ligand is not docked correctly (see the
docking section), there is no hope of calculating a correct
score based on this docked conformation. Second, the scor-
ing function of choice will strongly depend on its intended
use. The best scoring function for ranking a large diverse

virtual library (i.e. discriminate a small number of binders
from hundreds of thousands of non-binders) is usually dif-
ferent from the scoring function optimized to explain
binding of a small focused library of related compounds.
Third, QSAR (quantitative structure/activity relationship)
approaches, having very little to do with docking, can be
used if the binding of a set of ligands is characterized
experimentally. Most ab initio scoring functions, therefore,
are based on interaction terms (e.g. DOCK force field or
chemical scoring), whilst the scores can be further adjust-
ed using QSAR analysis to the experimental binding
affinity data (LUDI, ChemScore, SCORE).

The ‘Fresno’ scoring function [46] exemplifies the derivation
of a scoring scheme for a particular receptor (MHC class I)
based on two training sets and three-dimensional models of
bound peptides. The authors achieved good prediction accu-
racy (around 1 kcal/mole) and described a method to
re-optimize their scheme for a different class of receptors. 

It has been shown repeatedly that most scoring functions fail
to show significant correlations with binding constants when
confronted with novel ligand–receptor systems, even though
they are generally tuned well to predict binding constants for
a training set. Because the primary goal of the screening
score is to discriminate binding ligands from the background,
it may be beneficial to optimize the scoring explicitly for the
best differentiation between active and inactive ligands,
rather than for the correct ranking of the binders. 

A benchmark set of 23 diverse receptors and 63 ligands was
used to tune the scoring function for the best separation of
binders and non-binders across the set [47•]. The discrimi-
nation function is calculated from the scores derived as a
weighted sum of five physical terms (hydrophobicity, solva-
tion electrostatics, hydrogen bonding, ligand deformation
energy and the van der Waals ligand–receptor interaction
energy). This function was recently tested by Brooks and
colleagues (personal communication) and in a comparison of
screening algorithms and showed a strong selectivity.

An alternative to an empirical function based on predicted
physical interaction terms is a ‘knowledge-based’ function
that uses statistics for the observed inter-atomic contact
frequencies and/or distances. These methods assume that
derived statistical preferences implicitly reflect favor-
able/unfavorable interactions between functional groups
(see DrugScore [48], PMF [Potential of Mean Force] [49]
BLEEP [50]).

Combining multiple scoring functions may reduce the
number of false positives, which are likely to be different in
different scoring schemes. This will work, however, only if
a substantial fraction of the database (~10%) is retained for
each score to avoid false negatives. A study covering 13
scoring functions and two docking methods (DOCK and
GAMBLER, an in-house method at Vertex) [51•] found that
consensus scoring may dramatically reduce the number of
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false positives identified by individual scoring functions.
Three target receptors (p38 MAP kinase, inosine
monophosphate dehydrogenase and HIV protease) and
several hundreds of active ligands plus 10,000 random com-
pounds were used as a benchmark. Similar results were
reported by Bissantz et al. [52•] (see below) who concluded
that consensus scoring improved the hit rate several-fold. 

Comparisons of docking and scoring methods
How often is a docking geometry prediction correct and
what is the geometrical accuracy of such a prediction? The
majority of the authors consider predictions within a 2 Å
RMSD from the X-ray structure satisfactory. Even though
this error seems high (certainly enough to break a hydro-
gen bond), the essential chemical groups of a ligand at 2 Å
RMSD are usually placed correctly. Most of the deviation
comes from weakly interacting groups at the periphery.
Larger molecules often retain essential features of the
interactions even at 3 Å RMSD values. 

Usually, authors test their methods by re-docking ligands
to the crystal structure of their receptor. However, the
benchmarks vary in the number of ligand–receptor pairs,
their selection, and the details of the set-up. Some
authors do not regenerate the conformations of the lig-
ands from chemical structures, or energy-minimize
complexed receptor structures before using the protein in
the docking simulation, which may make reconstruction
of the complex easier. These differences make it difficult
to compare various methods without actually testing
them side-by-side, on a consistent benchmark. This need
was recently addressed in a number of publications
described below.

DOCK and FlexX were compared in a study based on a set
of 32 thrombin inhibitors representing different chemical
classes of compounds [53]. Public and proprietary X-ray
complexed structures were used to evaluate the simulation
results. DOCK4.0 with chemical scoring was found to be
superior to DOCK4.0 with energy scoring and FlexX with the
Böhm scoring function. The performance of all algorithms
was relatively poor, however, with only 10–35% of the test
compounds docking correctly to within 2 Å RMSD of the
experimental structure. This is in some contrast to the
46.5% of better than 2 Å solutions reported for FlexX by its
authors [54] on a set of 200 protein–ligand complexes. 

Another comparison of DOCK and FlexX has been reported
[55]. In this study, 61 inhibitors of matrix metallopro-
teinase 3 (MMP3) were docked, the resulting
conformations compared with those in X-ray structures,
and several scoring functions tested for correlation with the
experimentally determined binding constants. It was
found that DOCK4.0 with PMF performed best in the pre-
diction of the bound conformation (mean RMSD 1.8 Å),
only four compounds had the wrong binding mode
(RMSD >4 Å), followed by FlexX (2 Å and 12 respective-
ly) and DOCK4.0 with force field score (2.5 Å and 9

respectively). However, FlexX had significantly better
RMSD for the compounds with correctly predicted 
binding mode.

Bissantz et al. [52] compared three docking methods
(DOCK, FlexX and GOLD) and seven scoring functions
(CHEMSCORE, DOCK, FlexX, FRESNO, GOLD, PMF, SCORE).
The benchmark set consisted of 990 random compounds
from ACD (Available Chemicals Directory) and 10 known
ligands for each of the two receptors estrogen receptor
(ER) and thymidine kinase (TK). GOLD came out as a bet-
ter docking tool with 6 out of 10 TK ligands within 2 Å
RMSD (4 and 3 for FlexX and DOCK, respectively), and
similar results for the easier ER test. The study further
shows that the performance of the scoring functions is
often inconsistent across different systems, with DOCK

scores performing well for the apolar binding site of ER
and poorly for the TK, whereas the FlexX score behaved
in the opposite manner. 

Affinity prediction methods were tested on a set of 30
glycogen phosphorylase (GP) inhibitors. X-ray structures
of complexes were available for all ligands, no docking was
performed. Five methods based on QSAR (one 2D and
four 3D) performed predictably well, because the com-
pounds in the set were closely related and were used
themselves to derive the model. Two receptor-based func-
tions, LUDI and SBEP (an empirical function constructed
from four physical terms with weights adjusted by regres-
sion analysis or using neural network to fit the
experimental data) performed poorly. The LUDI function
showed no significant correlation with observed binding
affinity [56]. 

Applications of VLS to lead discovery
It is already common knowledge that many leads are opti-
mized through cycles of structure-based drug design after
HTS. However, more and more lead candidates are now
being discovered directly on the basis of VLS results. 

New compounds can be identified even if the relevant
crystal structure was not available and a model was suc-
cessfully used instead. Several new antagonists of human
retinoic acid receptor-alpha were discovered with ICM vir-
tual screening of ACD to a model rebuilt from an
agonist-bound retinoic acid receptor-alpha structure [43•].
The idea for repacking of helix 12 and the connecting loop
came from the antagonist-bound estrogen receptor-alpha.
Out of 30 experimentally tested compounds three were
confirmed as antagonists [43•]. 

The ICM flexible docking procedure was also applied to dock
a subset of ACD and find specific binders of the RNA hair-
pin HIV-1 TAR RNA [57]. The scoring function based on
the physical terms was trained on several RNA–ligand com-
plexes. Eight of the highest-ranking compounds selected by
the procedure were assayed for inhibition of the Tat–TAR
interaction, and two exhibited a CD50 of ca. 1 µM. 
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ACD was screened for the inhibitors of kinesin using DOCK

[58]. A DOCK screen of ACD also yielded novel inhibitors of
thymidilate synthase [59]. In yet another DOCK-based
study, the screening of a small virtual library was performed
to discover inhibitors of the hypoxanthine-guanine-xan-
thine phosphoribosyl transferase [60]. 

Using SANDOCK, ACD and the Cambridge Crystallographic
Database were screened against the FK506-binding pro-
tein [61]. The program EUDOCK was used to search a subset
of ACD for farnesyltransferase inhibitors [62].

The design of potent non-peptide thrombin inhibitors
using LUDI has been reported [63]. The best compound
found in this study had a Ki of 95 nM. The X-ray structure
of the complex was determined. The predicted conforma-
tion was found to be in reasonable agreement with the
experimental result. Although the high affinity of the best
ligand found is remarkable, this study should be consid-
ered as an example of lead optimization rather then
discovery, because the explored chemical structures were
largely limited to the derivatives of the known inhibitor
(benzamidine). LUDI was also applied to discover novel
inhibitors of DNA gyrase [64]. 

Conclusions
Ab initio docking of a diverse set of drug-like compounds to
a receptor can be performed in about 1 to 5 minutes per
compound per processor with 10 to 50% docked with less
than 2 Å RMSD from the correct solution. The main chal-
lenge in the discovery of the lead candidates is the
discrimination between a small number of binders and a
very large number of non-binders. Better force fields and
better accounts of the receptor and ligand flexibility are
critical, whilst global optimization methods of different
types demonstrate comparable performance. Experimental
information about binders to a given receptor can be used
to improve the efficiency and accuracy of the docking and
scoring algorithms. Awareness of the requirements and
practical preferences of the chemist need to be better
understood and addressed. Virtual ligand docking and
screening can be applied to selections of individual chemi-
cally accessible lead candidates, selection of the sidechains
for a given scaffold, and/or selection of the scaffolds. The
number of success stories from VLS is growing quickly.

Update
FlexE is an extension of the FlexX docking algorithm that
can take into account the receptor flexibility using a prede-
fined ensemble of receptor structures instead of a single rigid
one [65]. The ensemble is derived from multiple X-ray struc-
tures or by homology modeling, but can potentially be
generated by Monte Carlo or molecular dynamics simulation.
On a test set, results similar to sequential docking to all alter-
native receptor conformations were obtained, with
significantly (~twofold) lower run times. Chen and Zhi [66]
report a novel application of high-throughput docking that
they call ‘inverse docking’. A database of binding sites was

created from Protein Data Bank receptor structures (2700
entries), and screened against specific small-molecule ligands.
Test screens for tamoxifen and vitamin E show some mean-
ingful hits. Diller and Merz [67] report a fast docking
algorithm for library design. The method combines combina-
torial interaction ‘hot spot’ matching for the generation of
initial docked conformation with subsequent refinement of
solutions through minimization of a crude interaction poten-
tial. A test case of library design shows modest (1.7- to
3.3-fold) enrichment of the (simulated) designed library.
Schafferhans and Klebe [68] developed a new approach,
DragHome, which combines 3D QSAR methodology using
known ligands with structural information about the binding
site obtained from homology modeling of the receptor.
Multiple models or conformations of the receptor can be uti-
lized through averaging of the binding-site representation.
The method was tested on thrombin homology models at
40% and 28% identity.
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