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Genetic screens in zebrafish (Danio rerio) have isolated mutations in hundreds of genes essential for vertebrate
development, physiology, and behavior. We have constructed a genetic linkage map that will facilitate the
identification of candidate genes for these mutations and allow comparisons among the genomes of zebrafish and
other vertebrates. On this map, we have localized 771 zebrafish genes and expressed sequence tags (ESTs) by scoring
single-stranded conformational polymorphisms (SSCPs) in a meiotic mapping panel. Of these sequences, 642
represent previously unmapped genes and ESTs. The mapping panel was comprised of 42 homozygous diploid
individuals produced by heat shock treatment of haploid embryos at the one-cell stage (HS diploids). This “doubled
haploid” strategy combines the advantages of mapping in haploid and standard diploid systems, because heat shock
diploid individuals have only one allele at each locus and can survive to adulthood, enabling a relatively large
quantity of genomic DNA to be prepared from each individual in the mapping panel. To integrate this map with
others, we also scored 593 previously mapped simple-sequence length polymorphisms (SSLPs) in the mapping panel.
This map will accelerate the molecular analysis of zebrafish mutations and facilitate comparative analysis of

vertebrate genomes.

[A table of the mapped genes and ESTs is provided online at http:/ / www.genome.org.]

Lethal mutations in zebrafish (Danio rerio) define the
functions of hundreds of essential genes in the verte-
brate genome (Driever et al. 1996; Haffter et al. 1996).
Powerful methods for the analysis of mutant pheno-
types can provide an understanding of the function of
these genes at the cellular level (Kimmel 1989; Schier
and Talbot 1998). More than 25 genes defined by
mutations have been cloned, and these molecular
studies demonstrate the ability of forward genetic ap-
proaches in zebrafish to reveal new genes and new
gene functions that are conserved among vertebrates
(Postlethwait and Talbot 1997; Talbot and Hopkins
2000). More than 1800 additional mutations have
been identified in genetic screens, and developing ge-
netic maps and other resources to accelerate the mo-
lecular analysis of these mutations is an important ob-
jective.

Beginning in 1994, several maps of the zebrafish
genome have been produced to facilitate the identifi-
cation of mutated genes by positional cloning and the
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candidate gene approach. The first map (Postlethwait
et al. 1994) was constructed by scoring randomly am-
plified polymorphic DNA (RAPD) markers in a panel of
haploid embryos. The use of haploid embryos simpli-
fied the analysis of RAPDs, which usually segregate as
dominant markers for which the two alleles are scored
as the presence or absence of an amplified fragment.
Another mapping strategy employed simple-sequence
length polymorphisms (SSLPs) and a standard diploid
breeding protocol (Knapik et al. 1998; Shimoda et al.
1999). SSLPs segregate typically as codominant mark-
ers and they are more useful in diploid crosses than are
dominant markers such as RAPDs. An advantage of the
diploid protocol is that diploid zebrafish survive to
adulthood, providing much more genomic DNA for
mapping studies than haploids, which survive for only
a few days after fertilization. These genetic maps ben-
efit positional cloning projects by increasing the like-
lihood that a mutation will lie near a mapped DNA
sequence.

To facilitate the identification of candidate genes
for mutations, genes have been mapped within frame-
works of RAPDs or SSLPs by scoring polymorphisms in
haploid mapping panels (Postlethwait et al. 1998;
Gates et al. 1999). These gene maps have also been
useful in comparative studies, which have identified
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groups of genes that are syntenic in zebrafish and other
vertebrates.

The recent advent of two radiation hybrid (RH)
maps provides a complementary approach for map-
ping zebrafish genes (Geisler et al. 1999; Hukriede et al.
1999). RH maps assign positions to markers based on
their retention in particular members of a panel of cell
lines constructed by fusing irradiated zebrafish cells to
rodent cells. As such, markers that tend to be present in
the same hybrid cell lines are closer together than
those that are coretained infrequently. One limitation
of this approach is that RH maps tend to have more
uncertainty in the order of closely spaced markers than
genetic maps, but an important advantage is that
mapped sequences need not be polymorphic.

To expand the zebrafish gene map, we have local-
ized single-stranded conformational polymorphisms
(SSCPs) corresponding to 642 previously unmapped
genes and expressed sequence tags (ESTs) in a meiotic
mapping panel comprised of 42 homozygous diploid
individuals. To facilitate comparisons with other maps,
we also scored in the mapping panel 593 previously lo-
calized SSLPs, which were used widely in genetic linkage
and RH maps, as well as 129 previously mapped genes
and ESTs. This map will facilitate the molecular analysis
of zebrafish mutations and provide an important re-
source for comparative mapping analysis.

RESULTS

Construction of Homozygous Diploid Mapping Panel
We have assembled a mapping panel comprised of gy-
nogenetic homozygous diploid individuals (also called
heat shock diploids), which are produced by heat
shock treatment of haploid embryos during the one-
cell stage (Fig. 1). The heat shock treatment is applied
after the S-phase of the first zygotic cell cycle so that
chromosomes have replicated, but because heat shock
blocks the subsequent cytokinesis, the haploid chro-
mosome set becomes doubled (Streisinger et al. 1981;
Westerfield 1995). This produces diploid embryos that
are homozygous at every locus. Many embryos sub-
jected to heat shock treatment are inviable, but a sub-
stantial fraction develops normally and some individu-
als grow to fertile adults. Because heat shock diploids
are doubled haploids, the use of this protocol in map-
ping studies provides the key advantages of haploid
embryos, simplifying linkage analysis and facilitating
the use of dominant markers (Young et al. 1998). An
additional advantage is that heat shock diploids can
survive beyond embryonic stages, allowing genomic
DNA to be collected in relatively large quantities from
juveniles and adults, whereas haploid embryos survive
for only (¥ days.

The mapping panel (HS panel) was comprised of
42 heat shock diploid F, progeny obtained from two
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Figure 1 Production of the homozygous diploid mapping
panel. C32 and S|D fish were crossed to produce a heterozygous
F, generation. Eggs from two F, females were fertilized with UV-
irradiated sperm, which makes no genetic contribution to the
progeny. The resulting haploid embryos were subjected to heat
shock treatment, which doubles the haploid chromosome set.
DNA for the mapping panel was prepared from homozygous
diploid F, adults.

C32 X §JD F, females. C32 and SJD are inbred map-
ping strains (Streisinger et al. 1981; Nechiporuk et al.
1999) and F, females were obtained from natural
crosses of C32 and SJD adults (Fig. 1). Nineteen of the
F, individuals in the HS panel were progeny of one
C32 X §JD female and 23 were progeny of the second
C32 x §JD female. The HS panel contains products of
42 meioses and the panel therefore provides an average
resolution of 2.4 ¢cM. The C32 and SJD strains are
highly polymorphic with respect to one another, with
[P0% of markers showing different alleles in a previous
comparison of the two strains (Nechiporuk et al. 1999).
Both strains are inbred, and only [010% of SSLP markers
reveal heterogeneity among different individuals of
the same strain (Nechiporuk et al. 1999). Thus, we ex-
pected most markers that were heterozygous in one F;
female also to be heterozygous in the other, such that
F, progeny of the two females should segregate iden-
tical alleles. Accordingly, [010% of SSLPs (21 of 200 for
which we tracked allele differences) showed differences
between the two families in the heat shock panel (HS
panel). Most markers displaying allele differences were
polymorphic in both families in the panel and only 14
of 1364 markers that we scored in the HS panel were
polymorphic in one family but monomorphic in the
other. The positions of these 14 markers were assigned
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according to the genotypes of the family in which the
marker was informative.

Markers and Linkage Analysis

To construct a genetic linkage map, we scored 1364
polymorphic markers in the HS panel (Figs. 2 and 3;
Table 1, available online at http://www.genome.org).
These markers included 593 previously mapped SSLPs
and 771 SSCPs derived from zebrafish ESTs and fully
sequenced cDNAs. Locus names, accession numbers,
and primer sequences for the genes and ESTs scored in
the HS panel are shown in Table 1. The genes and ESTs
represented 482 different UniGene clusters (four of
which were mapped in duplicate, see below) and there
were 285 sequences that were not assigned to UniGene
clusters in the current release (UniGene Build 6; http://
www.ncbi.nlm.nih.gov/UniGene/Dr.Home.html). Se-
quence comparisons with TIGR Assembler (Sutton et
al. 1995) and the BLAST algorithm (Altschul et al.
1997) did not reveal overlap among these 285 se-
quences, suggesting that most correspond to different
genes.

Of the SSCPs scored in the HS panel, 642 corre-
spond to previously unmapped genes and ESTs (Table
1, available online at http://www.genome.org). In ad-
dition, we scored 59 SSCPs corresponding to genes lo-
calized in previous genetic maps (Postlethwait et al.
1998; Gates et al. 1999) and an additional 25 genes that
were localized in RH maps (Geisler et al. 1999;
Hukriede et al. 1999). Forty-five of the ESTs scored in
the HS panel were localized in previous maps.

Linkage analysis assembled the 1364 polymor-
phisms into a map with 25 linkage groups, each repre-
senting one zebrafish chromosome (Fig. 3). The mark-
ers occupied 598 unique map positions. All map posi-
tions in the 25 linkage groups were supported by lod
scores of =3 and there were no gaps >22 cM.

The 25 linkage groups in the HS panel map
spanned 3011 cM, using the Kosambi mapping func-

C32
HS panel individuals |

.

Z10663

Figure 2 Examples of polymorphisms scored in 23 individuals
in the heat shock (HS) mapping panel and C32. An SSCP in the
wnt8 gene and the SSLP Z10663 are shown.
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tion to estimate the occurrence of double crossovers.
Previous estimates put the total length of the female
meiotic map at 2900 cM (Johnson et al. 1996), suggest-
ing that the HS panel map covers nearly the entire
genome. Accordingly, we were able to assign map po-
sitions to all of the polymorphic markers scored in the
HS panel, because all markers in the data set showed
significant linkage (lod =3) to at least one other
marker.

As one measure of the error frequency in genotype
data, we examined apparent double crossovers occur-
ring in short intervals, which are uncommon and thus
likely to reflect erroneous genotype assignments.
Among the 53522 individual genotype assays in the
data set (an average of 39.2 individuals scored per
marker), there were only two double crossovers in in-
tervals <20 c¢cM. This suggests that the frequency of
genotyping errors in the data set is low.

As another measure of the accuracy of the map, we
compared the positions of markers mapped in the HS
panel and in previous work. The HS panel map as-
signed 591 of 593 SSLPs to the same linkage groups as
Shimoda et al. (1999). Of these 591 markers, there were
eight cases where the order of closely spaced markers
differed between the two maps. Because closely spaced
markers are separated by few recombinants, these dif-
ferences may reflect a small number of genotyping er-
rors in one or both data sets. It is also possible that
these discrepancies were caused by differences in the
strains used to construct the two mapping panels. Two
SSLPs (23054, Z9559) were assigned to different linkage
groups; we repeated the genotype assays and con-
firmed the assignment of these two markers in the HS
panel. In addition, the positions we assigned for these
two SSLPs matched those obtained from RH mapping
(M. Ekker, pers. comm.). Thirty-nine genes localized in
our map were analyzed previously in a C32 X SJD hap-
loid mapping panel (Postlethwait et al. 1998) and all of
these were assigned to the same linkage group in both
maps. There was one discrepancy among the 49 genes
and ESTs common to our map and that of Gates et al.
(1999). We mapped EST AI544741 to LG 3, and Gates
et al. (1999) localized AA606157, another EST assigned
to the same UniGene cluster (Dr.1344), to LG 1. One
EST that we mapped (AA495459) was assigned to a dif-
ferent linkage group in the T51 RH panel. The assign-
ments of the discrepant markers AI544741 and
AA495459 in the HS panel were confirmed by a second
set of genotype assays. In addition, there were four
cases, all confirmed in duplicate genotype assays, in
which sequences assigned to the same UniGene cluster
were mapped to different linkage groups in the HS
panel (Dr.261, Dr.274, Dr.345, Dr.1339). These may
represent genes with pseudogenes or they may be pairs
of duplicate genes generated by chromosomal duplica-
tions.
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Figure 3 (See pages 561-565.) Genetic linkage map of the zebrafish genome. Positions of 1364 polymorphic markers scored on the HS
panel are shown. GenBank accession numbers, UniGene numbers, and primer sequences for genes and ESTs are shown in Table 1
(available online at http://www.genome.org). SSLP markers were described by Shimoda et al. (1999).
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Figure 3 (See p. 561 for legend.)
DISCUSSION haploid mapping panels (144 in Postlethwait et al.

We have mapped 771 zebrafish genes and ESTs by scor-
ing SSCPs in a meiotic mapping panel comprised of
homozygous diploid individuals. In previous genetic
linkage maps, (150 genes were analyzed in each of two

1998; 157 in Gates et al. 1999). In RH mapping
projects, Geisler et al. (1999) and Hukriede et al. (1999)
mapped 355 and 148 genes and ESTs in the T51 and
LNS54 panels, respectively. In total, the sequences
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Figure 3 (See p. 561 for legend.)

doubles the number of mapped zebrafish genes and
ESTs.

The strategy we used in constructing the HS panel
has a number of advantages for mapping experiments.
First, the inbred mapping strains C32 and SJD are di-

mapped in these previous studies define (500 different
genes. Sequence comparisons and analysis of UniGene
cluster assignments indicate that 642 of the 771 poly-
morphisms we localized correspond to previously un-
mapped sequences. Consequently, our map more than
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vergent and many markers exhibit polymorphisms in
C32 X SJD crosses (Nechiporuk et al. 1999). Second,
because homozygous diploid fish can survive to adult-
hood, we were able to collect enough genomic DNA to
map >10,000 markers in future mapping studies with
the HS panel. This is a substantial advantage over map-
ping panels comprised of haploid embryos, which sur-
vive only a few days and therefore yield much less ge-
nomic DNA. The ability to map many markers in a

single cross diminishes the need to integrate maps pro-
duced in different mapping panels. Third, the use of
homozygous diploids simplifies linkage analysis in
comparison to sexual diploid protocols, because no
heterozygotes are present in a population of homozy-
gous diploid fish. This is useful particularly in the
analysis of SSCPs, because these polymorphisms can be
subtle, so that it can be difficult to distinguish hetero-
zygotes from both classes of homozygotes.
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The map presented here will accelerate the mo-
lecular analysis of zebrafish mutations by the posi-
tional cloning and candidate gene approaches. Posi-
tional cloning projects are accelerated as the density of
mapped polymorphisms grows and the number of pos-
sible entry points for chromosomal walks increases.
Gene maps augment the candidate approach because a
comparison of map positions is a straightforward ini-
tial test to determine if a mutation might disrupt a
particular gene. The polymorphisms corresponding to
the genes we have mapped allow one to test candidate
genes near a mutation of interest for direct linkage in a
mutant mapping cross. Finally, this gene map will ad-
vance comparative mapping resources by allowing the
identification of groups of syntenic genes that are con-
served among vertebrates (Postlethwait et al. 1998).

METHODS

Production of Homozygous Diploids

Heat shock diploids were prepared from F, females that were
heterozygous for C32 and SJD genomes according to the pro-
cedures in Westerfield (1995) and raised to maturity. DNA was
extracted from fully grown adult heat-shocked fish as de-
scribed for the isolation of high molecular weight DNA from
mammalian cells (Sambrook et al. 1989). Animals varied in
mass between 0.19 g and 0.64 g and yielded [0100-500 pg of
genomic DNA.

Data Collection and Linkage Analysis

PCR was performed in 12.5-ul volumes as described previ-
ously (Gates et al. 1999). In typical PCR assays, 0.6 ng of
genomic DNA was used as a template. SSLP markers were elec-
trophoresed on denaturing acrylamide gels and SSCP markers
were analyzed on nondenaturing acrylamide gels as described
previously (Gates et al. 1999). Because SSCP analysis can gen-
erate complex banding patterns and because some primer
pairs amplify multiple, unlinked fragments, polymorphisms
were scored for major bands on SSCP gels.

Map data were collected and analyzed using Map Man-
ager 2.6.5 (Manly 1993; http://mcbio.med.buffalo.edu/
mapmgr.html). The complete genotype data set in Map Man-
ager format can be obtained at http://zebrafish.stanford.edu.
Each locus was placed initially at the position that maximized
its lod score as indicated with the “Links” feature of Map
Manager. Markers were then placed manually to minimize the
number of double recombinants. In cases where double re-
combinants remained, autoradiographs were reexamined,
and if an individual was again scored as a double recombi-
nant, the genotype assay was repeated. Map graphics were
drawn with MapMaker software (Lander et al. 1987) using the
Kosambi mapping function and modified for clarity with
Canvas 5.0.

Primer Design

D. rerio sequences from the NCBI nonredundant sequence da-
tabase (NR) are housed in a MySQL relational database system
(http://www.mysql.com), accessible through in-house-
developed web query interfaces. The database was updated
monthly with new ESTs (M. Clark and S. Johnson, Washing-
ton University Zebrafish Genome Resources Project; http://
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zfish.wustl.edu) deposited in the NR database. Genes and ESTs
were clustered into groups of overlapping sequences using
TIGR Assembler (Sutton et al. 1995). Primers used to develop
SSCPs were designed from these contigs using Primer 3.0.6
(Rozen and Skaletsky 1997) and synthesized at the Stanford
DNA Sequencing and Technology Center. SSLP primer se-
quences were obtained from Shimoda et al. (1999; http://
zebrafish.mgh.harvard.edu/) and primers were synthesized at
the Stanford DNA Sequencing and Technology Center or ob-
tained from Research Genetics.

ACKNOWLEDGMENTS

We thank Michael Gates and the members of our laboratories
for helpful discussions, Michele Mittman and Lauren Jow for
technical assistance, Marc Ekker for communicating unpub-
lished data, and the Stanford DNA Sequencing and Technol-
ogy Center for oligonucleotide synthesis. This work was sup-
ported by NIH grants RO1IDKS55378 (W.S.T. and J.H.P.),
RO1RR12349 (W.S.T.), PO1HD22486 (J.H.P. and S.L.J.), and
R21HGO01704 (A.F.S.). A.ES. is a Scholar of the McKnight En-
dowment Fund for Neuroscience. W.S.T. is a Pew Scholar in
the Biomedical Sciences.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES

Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W.
Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs. Nucleic
Acids Res. 25: 3389-3402.

Driever, W., L. Solnica-Krezel, A.F. Schier, S.C.F. Neuhauss, ]J.
Malicki, D.L. Stemple, D.Y.R. Stainier, F. Zwartkruis, S. Abdelilah,
Z. Rangini et al. 1996. A genetic screen for mutations affecting
embryogenesis in zebrafish. Development 123: 37-46.

Gates, M.A,, L. Kim, E.S. Egan, T. Cardozo, H.I. Sirotkin, S.T.
Dougan, D. Laskari, R. Abagyan, A.F. Schier, and W.S. Talbot.
1999. A genetic linkage map for zebrafish: Comparative analysis
of genes and expressed sequences. Genome Res. 9: 334-347.

Geisler, R., G.-J. Rauch, H. Baier, F. van Bebber, L. Bross, M.P.S.
Dekens, K. Finger, C. Fricke, M.A. Gates, H. Geiger et al. 1999. A
radiation hybrid map of the zebrafish genome. Nat. Genet.

23: 86-89.

Haffter, P., M. Granato, M. Brand, M.C. Mullins, M.
Hammerschmidt, D.A. Kane, ]J. Odenthal, F.].M. van Eeden, Y.-J.
Jiang, C.-P. Heisenberg et al. 1996. The identification of genes
with unique and essential functions in the development of the
zebrafish, Danio rerio. Development 123: 1-36.

Hukriede, N.A., L. Joly, M. Tsang, J. Miles, P. Tellis, J.A. Epstein,
W.B. Barbazuk, F.N. Li, B. Paw, J.H. Postlethwait et al. 1999.
Radiation hybrid mapping of the zebrafish genome. Proc. Natl.
Acad. Sci. 96: 9745-9750.

Johnson, S.L., M.A. Gates, M. Johnson, W.S. Talbot, S. Horne, K.
Baik, S. Rude, J.R. Wong, and J.H. Postlethwait. 1996.
Centromere-linkage analysis and consolidation of the zebrafish
genetic map. Genetics 142: 1277-1288.

Kimmel, C.B. 1989. Genetics and early development of zebrafish.
Trends Genet. 5: 283-288.

Knapik, E.W., A. Goodman, M. Ekket, M. Chevrette, J. Delgado, S.
Neuhauss, N. Shimoda, W. Driever, M.C. Fishman, and H.J.
Jacob. 1998. A microsatellite genetic linkage map for zebrafish.
Nat. Genet. 18: 338-343.

Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E.
Lincoln, and L. Newburg. 1987. MAPMAKER: An interactive
computer package for constructing primary genetic linkage maps
of experimental and natural populations. Genomics 1: 174-181.



Zebrafish Genetic Linkage Map

Manly, K.F. 1993. A Macintosh program for storage and analysis of
experimental genetic mapping data. Mamm. Genome 4: 303-313.

Nechiporuk, A., J.E. Finney, M.T. Keating, and S.L. Johnson. 1999.
Assessment of polymorphism in zebrafish mapping strains.
Genome Res. 9: 1231-1238.

Postlethwait, J.H. and W.S. Talbot. 1997. Zebrafish genomics: From
mutants to genes. Trends Genet. 13: 183-190.

Postlethwait, J.H., S. Johnson, C.N. Midson, W.S. Talbot, M. Gates,
E.W. Ballinger, D. Africa, R. Andrews, T. Carl, J.S. Eisen et al.
1994. A genetic map for the zebrafish. Science 264: 699-703.

Postlethwait, J.H., Y.-L. Yan, M.A. Gates, S. Horne, A. Amores, A.
Brownlie, A. Donovan, E.S. Egan, A. Force, Z. Gong et al. 1998.
Vertebrate genome evolution and the zebrafish gene map. Nat.
Genet. 18: 345-349.

Rozen, S. and H.J. Skaletsky. 1997. Primer 3.0.
(http://www.genome.wi.mit.edu) Whitehead Institute,
Cambridge, MA.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. In Molecular cloning:

A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, NY.

Schier, A.F. and W.S. Talbot. 1998. The zebrafish organizer. Curr.
Opin. Genet. Dev. 8: 464-471.

Shimoda, N., E.W. Knapik, J. Ziniti, C. Sim, E. Yamada, S. Kaplan, D.
Jackson, F. de Sauvage, H. Jacob, and M.C. Fishman. 1999.
Zebrafish genetic map with 2000 microsatellite markers.
Genomics 58: 219-232.

Streisinger, G., C. Walker, N. Dower, D. Knauber, and F. Singer.
1981. Production of clones of homozygous diploid zebra fish
(Brachydanio rerio). Nature 291: 293-296.

Sutton, G., O. White, M. Adams, and A. Kerlavage. 1995. TIGR
Assembler: A new tool for assembling large shotgun sequencing
projects. Genome Sci. & Tech. 1: 9-19.

Talbot, W.S. and N. Hopkins. 2000. Zebrafish mutations and
functional analysis of the vertebrate genome. Genes & Dev.

14: 755-762.

Young, W.P., P.A. Wheeler, V.H. Coryell, P. Keim, and G.H.
Thorgaard. 1998. A detailed linkage map of rainbow trout
produced using doubled haploids. Genetics 148: 839-850.

Westerfield, M. 1995. The zebrafish book: A guide for the laboratory use
of zebrafish (Danio rerio). University of Oregon Press, Eugene,
OR.

Received February 15, 2000; accepted in revised form February 28, 2000.

Genome Research 567
www.genome.org



