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Summary

Binding of the Tat protein to TAR RNA is necessary for viral replication of HIV-1. We screened the Available
Chemicals Directory (ACD) to identify ligands to bind to a TAR RNA structure using a four-step docking pro-
cedure: rigid docking first, followed by three steps of flexible docking using a pseudobrownian Monte Carlo
minimization in torsion angle space with progressively more detailed conformational sampling on a progressively
smaller list of top-ranking compounds. To validate the procedure, we successfully docked ligands for five RNA
complexes of known structure. For ranking ligands according to binding avidity, an empirical binding free energy
function was developed which accounts, in particular, for solvation, isomerization free energy, and changes in
conformational entropy. System-specific parameters for the function were derived on a training set of RNA/ligand
complexes with known structure and affinity. To validate the free energy function, we screened the entire ACD
for ligands for an RNA aptamer which bindsL-arginine tightly. The native ligand ranked 17 out of ca. 153,000
compounds screened, i.e., the procedure is able to filter out>99.98% of the database and still retain the native
ligand. Screening of the ACD for TAR ligands yielded a high rank for all known TAR ligands contained in the
ACD and suggested several other potential TAR ligands. Eight of the highest ranking compounds not previously
known to be ligands were assayed for inhibition of the Tat-TAR interaction, and two exhibited a CD50 of ca. 1µM.

Abbreviations:HIV-1, human immunodeficiency virus – type 1; ACD, Available Chemicals Directory; Tat, trans-
activating regulatory protein; TAR, RNA transactivation response element; CD50, competitive dose – concentration
of compound required to reduce to 50% the binding of protein to RNA; RMSD, atomic root-mean-square deviation.

Introduction

In recent years there has been much effort to de-
sign diagnostic and therapeutic agents which bind
to protein receptors based on their three-dimensional
structure. This effort has been fueled by the increasing
availability of protein structures via X-ray crystallog-
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raphy and NMR. However, there has been little or
no effort to design drugs rationally on the basis of
the sequence-dependent three-dimensional structure
of DNA or RNA. The reason for this is undoubt-
edly due to the paucity of three-dimensional structures
of possible targets available. However, structure de-
termination methods have advanced to the state that
structures of potential DNA and RNA targets are be-
coming available. Consequently, we can now entertain
the concept of designing agents to bind to gene targets
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based on the detailed three-dimensional structure of
the target.

While the idea of targeting three-dimensional
structure has been successfully applied to devise
chemotherapeutic ligands to bind proteins, design of
nucleic acid-binding ligands has been generally lim-
ited to utilizing primary structure, e.g., development of
an antisense oligonucleotide to bind a specific stretch
of mRNA. At best, the spatial consequences of the
primary structure have been indirectly acknowledged
in ligand design, e.g., narrowing of the minor groove
in AT-rich moieties of a DNA duplex. Very recently,
aminoglycosides capable of binding to the standard
A-RNA duplex while discriminating against standard
B-DNA have been described [1]. These various strate-
gies have had some success, but with the numerous
potential RNA and DNA tertiary structure targets, it
would be good to develop alternative means to de-
sign binding agents. An initial foray in this direction
has been recently described: identification of a car-
bocyanine dye strongly favoring binding to a guanine
dimeric hairpin quadruplex over nonquadruplex DNA
structures [2].

In principle, combinatorial chemistry provides a
route to create and assay a large number of com-
pounds. However, such an approach needs a scaffold
upon which to build the many structural variations
possible with combinatorial chemistry. We will indeed
be very limited if we simply choose to build upon the
few nonnucleotide, nonprotein ligands (e.g., amino-
glycosides) known to bind RNA or DNA. Instead, we
should be able to use computer-aided design methods
to provide a list of novel lead compounds for assay and
subsequent combinatorial chemistry.

Here we will describe the discovery of agents with
the objective of disrupting the essential HIV-1 TAR-
Tat interaction necessary for viral replication. This
work serves the dual purpose of demonstrating the
feasibility of our strategy to target RNA tertiary struc-
ture and yields lead compounds capable of binding to
an extremely important RNA target with micromolar
competitive dose.

Human immunodeficiency virus, type 1, or HIV-
1 encodes a transactivating regulatory protein, called
Tat, which regulates expression of all viral genes by
increasing production of mature, full-length viral RNA
[3, 4]. Tat acts by binding to a specific RNA target
termed the transactivation response element (TAR).
TAR consists of a short RNA stem-loop structure
found at the 5′-ends of all nascent lentiviral transcripts.
Binding of Tat to TAR is thought to lead to the recruit-

ment of cellular proteins and induce viral transcription
[5]. Critical features of both the HIV-1 Tat protein and
HIV-1 TAR have been delineated [6–12]. A direct cor-
relation has been found between Tat binding to TAR
RNA and the up-regulation of HIV-1 mRNA transcrip-
tion [13, 14]. Interruption of the Tat-TAR interaction
blocks HIV-1 replication in infected cells [15].

There has been significant interest in finding small
molecules which target the HIV-1 Tat-TAR interac-
tion. Amino acids or nucleotide-based analogs derived
from Tat or TAR [16, 17] and aminoglycoside an-
tibiotics [18] interfere with the Tat-TAR interaction.
High toxicity or low bioavailability of these mole-
cules prevent them from becoming viable anti-HIV-1
agents. Benzodiazepines [19] and epoxy steroids [20]
can inhibit the cellular function of Tat. However, their
antiviral activities can be explained by mechanisms
other than inhibiting the Tat-TAR interaction [21].
High-throughput in vitro screening of fairly large com-
pound libraries for inhibition of Tat-TAR interactions
followed by assessment of activity in cell studies with
Tat-activated reporter gene assays enables screening
for new potent anti-HIV-1 agents [18]. Combinato-
rial chemistry methods combined with in vitro and
in vivo assays resulted in discovery of a new hybrid
peptoid/peptide oligomer of 9 residues that specifi-
cally inhibits the Tat/TAR interaction, both in vitro
and in vivo [22]. Experimental determination of the
three-dimensional structure of a fragment of the Tat
protein [23] enabled use of computational methods for
design of small ligands for Tat protein [24]. Although
structures of HIV-1 [25] and BIV TAR [26] RNAs are
available, there are no published examples of com-
putational approaches for design of ligands for this
molecule.

Computational screening of a very large database
of compounds via their docking onto a receptor struc-
ture is a logical step in drug discovery programs
where the receptor structure is available. There have
been several successes in using computational data-
base docking methods for discovery of ligands for
proteins and RNA [1].

Theoretical prediction of association of a ligand
with a receptor requires efficient sampling of the
conformational space of the flexible ligand and a
sufficiently accurate energy function to score the con-
formations obtained. In the past few years, several
groups have developed docking methods which al-
low for ligand flexibility. Four different strategies are
currently in use for docking of flexible ligands [31]:
(a) Monte Carlo or molecular dynamics docking of
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complete molecules [32–39], (b) in-site combinatorial
search [40–45], (c) site mapping and fragment assem-
bly [41, 42, 46, 47], and (d) evolutionary algorithms
[48–51].

With increasing degrees of freedom, searching
with either a molecular dynamics or Monte Carlo
method in Cartesian coordinates becomes more unre-
liable due to the necessity of restricted sampling of
conformational space [31, 52]. On the other hand,
methods which work in internal coordinate space, such
as ICM, are orders of magnitude faster [38, 39], since
they cut down the number of variables by a factor of
7 on average. They can provide reasonable sampling
of conformational space on a time-scale suitable for
screening large databases. ICM uses pseudobrown-
ian Monte Carlo minimization in torsion angle space
coupled with local minimization in order to globally
optimize an energy function. The function can include
standard force-field terms (van der Waals, hydrogen
bond, electrostatic and torsion angle terms) as well as
entropy terms and solvation terms (solvent accessible
surface based term, or Poisson, or MIMEL electrosta-
tic terms). This continuous flexible docking method
does not restrict the sampling but nevertheless is very
fast because it works with torsional coordinates. Both
grid and all-atom energy evaluation are available in
ICM2.6.

An in-site combinatorial search explores the con-
formational space of small molecules in discrete steps.
The problem is finding the combination of discrete
states of constitutive residues that minimizes the en-
ergy function. The methods work fast and are success-
fully used for rough flexible-ligand docking.

Fragment assembly algorithms break a ligand into
rigid fragments, align all of the fragments onto the pro-
tein target, and merge those fragments whose linkers
are close enough to one another. To avoid a combina-
torial explosion of the size of the conformational space
for very flexible ligands, the search is narrowed down
to a few promising head-fragment alignments, then fo-
cusing successive fragment alignments onto the link-
ers to which they must merge. A major drawback of
the algorithms is the assumption that aligning isolated
fragments on the binding site can provide a reasonable
basis for modeling of the ligand conformation.

Evolutionary or genetic algorithms substantially
speed up flexible docking by considerably narrowing
the sampling of conformational space. However, this
often results in a bias towards good hits found initially.

Combinatorial search, fragment assembly and evo-
lutionary algorithms all speed up docking consider-

ably by narrowing down sampling of conformational
space due to their underlying simplifications. The
methods are sometimes very effective but, because of
these simplifications, fail in many cases.

For the current work, we use a four-step dock-
ing procedure. We combine a very fast rigid docking
(DOCK, version 3.5 [53, 54]), used for a preliminary
filtering of the database, and three steps of continuous
flexible docking using a Monte Carlo search in torsion
angle space (ICM, version 2.6) [38, 39]. Each flexi-
ble docking step is performed with progressively more
detailed conformational sampling on a progressively
smaller list of top-ranking compounds. This combi-
nation provides a very fine docking procedure while
keeping run times still reasonable. Both grid and all-
atom energy evaluation are available in ICM2.6. For
the work described here, we used the more precise
but slower all-atom energy evaluation. Our method
is more precise, but computationally more expensive,
than flexible docking procedures which use precal-
culated energy grids, combinatorial search, fragment
assembly or other simplifications. Nevertheless, the
method is still fast enough for database screening on
common hardware.

To identify potential inhibitors of the Tat-TAR in-
teraction, we have performed virtual screening ofca.
153,000 compounds contained in the Available Chem-
icals Directory (ACD-3D, version 95.1, Molecular De-
sign Limited Information Systems, San Leandro, CA).
Validation of our approach to docking flexible RNA
ligands was carried out using structures of five known
RNA-ligand complexes available in the Brookhaven
Protein Data Bank [73]. Subsequent application of the
method to HIV-1 TAR RNA led to a list of several
potential ligands. Some of the best-ranked compounds
were tested for inhibition of the Tat-TAR interaction in
a scintillation proximity assay. Two of them exhibited
a competitive dose CD50 of ca. 1µM.

Methods

Simulation of known structures

To prepare the structures of the complexes for simula-
tions using the pseudobrownian Monte Carlo search in
torsion angle space (ICM, version 2.6), every complex
was subjected to the following regularization proce-
dure: the RNA molecule was assembled from ICM
library residues and the ligand molecule was built
with ideal covalent geometry using ICM tools; every
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atom of these two molecules was tethered to the cor-
responding atom of the experimental structure; the
tethers were minimized, then torsion angles for the
residues far away from the binding site (typically,
more than 3 residues away) were fixed, and a Monte
Carlo search of ca. 30,000 steps was performed, with
tether energy and restraint energy terms added to the
usual force field. The distances between atoms in-
volved in ligand-RNA hydrogen bonds were restrained
during the regularization. There are five structures of
RNA/ligand complexes, where the ligand is not a pro-
tein or oligonucleotide, available in the Brookhaven
Data Bank: ATP-binding RNA aptamer in complex
with AMP (1raw) [27], RNA aptamer complexed with
arginine (1koc) [28], flavin mononucleotide-RNA ap-
tamer complex (1fmn) [29], RNA aptamer complexed
with L-citrulline (1kod) [28], and tobramycin-RNA
aptamer complex (1tob) [30]. The starting structures
for the ligands were obtained by randomization of
translational, rotational and torsional coordinates of
the ligand for 1raw, 1koc and 1kod complexes, so
that the atomic root-mean-square deviation (RMSD)
with respect to the experimental ligand conformation
was>15 Å. For 1fmn and 1tob complexes, random-
ization could not be performed because these binding
sites are partially closed. So, the ligands in these cases
were partially displaced from the experimental posi-
tions by means of restrained minimization as far as
the binding site permits, and the torsion angles were
randomized. A Monte Carlo search was performed
with three loose distance restraints, which keep the
ligand within 15 Å of the binding site. The energy
expression for the Monte Carlo procedure included
van der Waals, hydrogen bond, distance-dependent
electrostatic and torsion angle terms as well as the
restraint energy term, or solvation term based on sol-
vent accessible surface area with distance-independent
electrostatic term [38, 39]. The energy expression for
local minimization (150 steps performed after every
Monte Carlo step) included van der Waals, hydrogen
bond, distance-dependent electrostatic and torsion an-
gle terms. Geometrically different (as evaluated by the
root- mean-square displacement of the ligand atoms)
and low energy conformations were accumulated in a
conformational stack as described in Reference 74.

Threading the HIV sequence onto the BIV TAR
structure

The 29-nucleotide fragment of HIV TAR RNA ex-
amined in one NMR structural study [25] and the

Figure 1. The sequences of the HIV-1 and BIV TAR RNA hair-
pin loops. The residues involved in base triples are in italics. The
alignment used for threading is shown by arrows.

28-nucleotide fragment of BIV TAR RNA used in an-
other NMR structural study [26] are shown in Figure 1.
For reasons cited subsequently, we decided to use the
BIV structure but with the HIV sequence for our tar-
get RNA. The structural model of the bulge moiety of
TAR was built by threading the HIV sequence onto the
BIV TAR structure using a regularization procedure
very similar to that described above, with the align-
ment shown in Figure 1. For mismatched residues,
only N1 and N9 atoms were tethered. After mini-
mization of the tethers, the torsion angles in the first
three stem base pairs and in the loop were fixed, and a
Monte Carlo search of ca. 30,000 steps was performed,
with tether energy and restraint energy terms added
to the usual force field. Hydrogen bond distance re-
straints were imposed for base pairs and for the triple
base.

Scintillation proximity assay

The peptide ISIS RP-350 consists of 39 amino acid
residues from position 48 to 86 of the HIV-1 Tat pro-
tein. The peptide is labeled to high specific activity
(100 µCi ml−1) with 125I at Amersham Life Sci-
ences. Streptavidin-coated SPA beads are incubated
for 20 min at room temperature in a PRB buffer
(50 mM Tris, pH 8.0, 1.5 mM MgCl2, 50 mM KCl,
10% glycerol and 0.01% NP-40) with 0.1µCi of
the labeled peptide and 100 nM ISIS 5832, an RNA
oligonucleotide with a 3′-biotin. Incubation can be
done in the presence or absence of compounds un-
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Figure 2. The results of flexible docking of ligands onto rigid RNA receptors for complexes of known structure. (a) 1raw, (b) 1koc, (c) 1fmn,
(d) 1tob, (e) 1kod: these simulations were carried out with the solvent modeled via distance-dependent electrostatics; (f) 1kod: the solvent is
modeled via atomic solvation parameters, electrostatics is attenuated (ε = 20). Simulated conformations are colored red; experimental NMR
conformations are green.
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der study in a volume of 50µl in an opaque 96-well
plate. Following incubation, the plates are spun at
1000 rpm for 5 min to settle the SPA beads. The bi-
otinylated TAR oligonucleotide binds the streptavidin-
coated SPA beads.125I-Tat peptide associated with
the biotinylated TAR oligonucleotide excites the scin-
tillant in the SPA bead, resulting in a quantifiable
signal which can be read in the TopCount 96-well
scintillation counter. Compounds that interfere with
the Tat/TAR interaction result in125I-Tat floating free
in buffer where excited electrons are quenched before
transferring energy to scintillant in the SPA bead. This
is observed as a decrease in signal. The data were
expressed as CD50 values (compound concentration
required to achieve a 50% decrease in intensity of the
signal).

Results and discussion

Validation via simulations of known structures

One can use a variety of possible energy functions
with ICM2.6. In order to choose the most appro-
priate energy function and run-times and to validate
the docking technique, we performed simulations of
ligand conformations for RNA/ligand complexes of
known structure starting from a random ligand con-
formation. The RNA molecules were kept rigid during
the simulation. We used five structures available in the
Brookhaven Data Bank. The details on generating the
starting conformations can be found in the Methods
section.

The results of the simulations are shown in Ta-
ble 1 and Figure 2. The ligand conformations for 1raw,
1koc, 1fmn and 1tob are reproduced reasonably well
with the standard energy function, which includes tor-
sion angle energy term, van der Waals term, hydrogen
bond term and distance-dependent electrostatics with
ε= 4r. The ligand conformation for 1kod is not repro-
duced well (RMSD= 4.3 Å for all heavy atoms) when
using this energy function but approaches the experi-
mental structure (RMSD= 2.5 Å for all heavy atoms)
only with the solvent modeled via atomic solvation
parameters [55, 56] and with attenuated electrostatics
(ε = 20). The simulation reaches convergence in only
3 hrs on an SGI R5000/180, because there are many
local minima separated by only∼=0.3% energy from
the global minimum, which corresponds to the con-
formation consistent with the experimental one. We
ran simulations with higher (ε = 30, 40) and lower

(ε = 1, 4, 10) dielectric constants: all of them find the
experimental conformation, but only withε = 20 does
it correspond to the global energy minimum.

In the case of 1raw, 1koc and 1fmn, the atomic
RMSD relative to the experimental conformation for
the recognition moiety is more meaningful than total
RMSD, because the rest of the molecule is positioned
much more approximately in the NMR structures. The
sugar-phosphate moiety in 1raw hardly forms specific
contacts with the receptor, since chemical modifica-
tions in this fragment do not alter the binding much
[27]. The different models deposited for the 1fmn
structure in the Brookhaven Data Bank reveal that
the sugar-phosphate tail of the flavin mononucleotide
does not have a determined conformation, i.e., it is
inappropriate to compare this part of the molecule
with the simulation. In 1koc, the COO− and NH3

+
groups switched places relative to the NMR structure
(Figure 2b). Again, the groups are positioned fairly
arbitrarily in the NMR structure, too, because there
are no nonexchangeable protons in these groups, i.e.,
there are no experimental restraints.

It is informative to examine the relationship be-
tween energy and RMSD from the experimental struc-
ture. Such a dependence for one complex, 1raw, is
shown in Figure 3. The points represent best-energy
conformations for fifty conformational families ob-
tained in the Monte Carlo simulation. The algorithm
found conformations closer to the experimental struc-
ture than the energy minimum at RMSD≈2.3 Å, but
these conformations have considerably higher energy.

Because four of five experimental structures were
reproduced successfully with the solvent modeled via
distance-dependent electrostatics, we decided to use
this simpler energy function for automated database
docking. In order to rank the ligands after docking
is completed, we need a function to estimate their
binding free energies.

Binding free energy function for ranking ligands

The energy function used in the flexible docking pro-
cedure cannot be used to estimate binding affinity,
because it represents the potential energy – not the
free energy – of the molecular system. It can only be
used for very crude scoring of the ligands. For a more
reliable estimation of affinities, we had to develop
an empirical method which gives adequate estimates
for the molecular systems used in this work, i.e., for
complexes of small molecules with RNA. However,
even this empirical method will be highly imperfect.
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Table 1. Results of flexible docking of ligands on rigid RNA receptors for complexes of known
structure taken from the Brookhaven Protein Databank. The ligands are listed according to the
code assigned by Brookhaven. The atomic RMSD is calculated with respect to the experimental
conformation

PDB Starting RMSD Energy Final RMSD Final RMSD Run-time,

codea (Å) function (Å) (Å) SGI R5000/180

all heavy recognition (min)

atoms moiety atomsb

1raw randomized,>15 Ac 2.3 0.9 50

1koc randomized,>15 Ac 3.4 0.55 6

1kod randomized,>15 Ac 4.3 3.7 60

1kod randomized,>15 Bd 2.5 1.9 180

1fmn 6.4 Ac 3.2 0.8 20

1tob 5.1 Ac 2.4 – 20

a1raw: ATP-binding RNA aptamer in complex with AMP [27]; 1koc: arginine-RNA aptamer [28];
1fmn: FMN-RNA aptamer complex [29]; 1kod: RNA aptamer complexed with citrulline [28]; and
1tob: tobramycin-RNA aptamer complex [30].
bRMSD values for the recognition moiety atoms are calculated for the adenine in 1raw, guanidino
group in 1koc, flavin moiety in 1fmn and side-chain heavy atoms in 1kod.
eTorsion angle energy term, van der Waals term, hydrogen bond term and distance-dependent
electrostatics withε = 4r.
dTorsion angle energy term, van der Waals term, hydrogen bond term and Coulomb electrostatics
with ε = 20 and solvation term, calculated via atomic solvation parameters [55].

Figure 3. Relationship between energy and atomic RMSD from the
experimental structure for docking of AMP on its RNA aptamer
(PDB code 1raw). The points represent best energy conforma-
tions for fifty conformational families obtained during Monte Carlo
simulation.

Its disadvantage is that when we use it for screen-
ing a large database of potential ligands, there will
be several high-ranking compounds which will turn
out to be poor ligands when we do experimental as-
says and we will undoubtedly miss some good ligands.
Its advantage is that it may be the best thing avail-
able for scoring and, as we will see, it can provide
a reasonably effective screening tool such that some
good ligands will achieve high scores and will sub-
sequently be tested experimentally. Furthermore, with
future knowledge about RNA-ligand interactions, the
method can be improved.

Figure 4. Thermodynamic cycle used to derive the empirical func-
tion for the free energy of binding.

There are a number of empirical methods for es-
timation of the free energy of binding [24, 38, 45,
57–61, 75, 76]. Most of the methods calculate bind-
ing free energy on the basis of additive empirical free
energy terms evaluating1G, the difference of Gibbs
energies between the noncovalent complex and its
parts. An alternative approach is based on knowledge-
based potentials derived from statistical analysis of
crystal structures of protein-ligand complexes [61].
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Here we employ an empirical free energy func-
tion derived from the thermodynamic cycle shown in
Figure 4:

1Gbind= 1Gdesolv+1Gbind.vac+1Gsolv (1)

where1Gbind is the Gibbs free energy of binding
in solution,1Gdesolv is the free energy of desolva-
tion, i.e., of transfering the unbound molecular system
to vacuum,1Gbind.vac is the free energy of binding
in vacuum and1Gsolv is the free energy of solva-
tion, i.e., transfer of the complex back to solvent.
1Gdesolv + 1Gsolv can be calculated via the ap-
proach of Wesson and Eisenberg [56]. This method
uses atomic solvation parameters derived from vapor-
solution transfer experiments performed on small
molecules. When a ligand binds to a macromolecular
receptor, it displaces partially frozen water molecules
from the volume of the binding pocket, i.e., these
water molecules gain entropy; we call this a cavity
entropy effect. This entropy gain is probably not fully
accounted for when1Gdesolv+ 1Gsolv is calculated
via atomic parameters because they are derived from
experiments with small molecules: they do not have
cavities. The entropy gain can be very high: measure-
ments of sorption isotherms of water vapor on solid
ovalbumin at several temperatures give values up to
6 kcal/mol [62]. We calculate1Gdesolv+ 1Gsolv as
a sum of a solvation term, calculated via the atomic
parameters of Abagyan [55], and a term1Gcav entropy,
which accounts for this cavity entropy effect:

1Gdesolv+1Gsolv= 6i1Siσi +1Gcav entropy. (2)

where6i means summation over all nonhydrogen
atoms in the molecular system,1Si is the difference
of the solvent accessible surface area of atomi in the
bound and in the unbound state, andσi is a solvation
parameter for atomi. For the purpose of calculating
this solvation term, we distinguish eleven atom types
and use the solvation parameters of Abagyan [55]
shown in Table 2. Hydrogens are ignored in this term.

The free energy of binding in vacuo can be parti-
tioned into the following terms:

1Gbind.vac=1Gel+1GvdW+1Ghb

+1Gisomer+1Gtr/rot+1Gtors (3)

where1Gel,1GvdW and1Ghb account for intermole-
cular interactions: they are respectively electrostatic
interaction, van der Waals interaction and hydrogen
bond terms;1Gisomer is a conformational isomer-
ization term which accounts for the change of the

Table 2. Atomic solvation parameters [55] used in the
empirical free energy function

σ (cal/(mol Å2)) Radius (Å) Atom type

10 1.95 C aliphatic

−9 1.8 C aromatic

−163 1.7 N uncharged

−280 1.7 N+, Nξ in Lys+
−220 1.7 Nη1, Nη2 in Arg+
−114 1.6 O hydroxyl

−64 1.4 O carbonyl

−280 1.4 O− in Glu, Asp

−174 1.4 O in COOH

−22 2.0 S in SH

−92 1.85 S in Met or S-S

molecular internal energies on binding; it includes
both enthalpic and entropic components: this term
can be called intramolecular ‘strain’ (B. Honig, oral
presentation at ‘Molecular Recognition in Drug De-
sign: Docking and Scoring’, February 6–7, 1998, San
Francisco).1Gtr/rot is a term accounting for three
translational and three rotational degrees of freedom
lost by the ligand on binding, and1Gtors is a term
which accounts for the loss of bond configurational
entropy due to freezing of some torsion angles upon
complex formation. Note that we do not isolate into
a separate term the change in torsional enthalpy on
binding: it is included in1Gisomer.

The terms1Gel, 1GvdW and1Ghb are macro-
scopic values, i.e., averages over molecular ensem-
bles. To estimate them, we assume that these terms are
proportional to corresponding potential energy terms
1Eel, 1EvdW and1Ehb calculated for the minimized
conformation of a single molecular complex, i.e.,
to microscopic values. The proportionality factor we
obtain by fitting to experimental binding data. To es-
timate the potential energy terms, we use a force field
[63] with RNA charges taken from Veal and Wilson
[64], Gasteiger and Marsili charges for the ligands
calculated with Sybyl 6.3, and a dielectric constant
ε = 1 since we are calculating binding in vacuo. The
values calculated for these terms are very approxi-
mate, since the force field was developed so that some
physical properties are reproduced but not the bind-
ing energies. The least accurate term is1Eel, since
we only roughly know the charges and have a very
crude figure for the dielectric constant. The inaccu-
racy of these terms provides another reason why they
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Figure 5. Linear regression of experimental binding data with
Equation 6 results in the following values for the empirical para-
meters:a= 0.014±0.005,b= 0.22±0.08.

should be scaled by fitting to experimental data. The
sum of these three terms represents an estimate of
the major part of the enthalpy of interaction; another
part of the enthalpy is in1Gisomer, but this is most
probably a smaller part except when we deal with a
major rearrangement of the molecules upon binding.
These terms are microscopic values. Using them we
try to estimate the enthalpy, which is a macroscopic
function, i.e., an average over a molecular ensemble.
This provides another reason why these terms should
be scaled by fitting to experimental data.

The estimation of1Gdesolv + 1Gsolv through
atomic solvation coefficients is very approximate, too;
we simply do not have a better method at present. So,
we come to the following equation, which uses the pa-
rametera to be determined by fitting to experimental
binding data:

1Gbind=(1Eel+1EvdW+1Ehb+ 6i1Siσi) ∗ a

+1Gcav entropy+1Gtr/rot

+1Gisomer+1Gtors (4)

where1Eel, 1EvdW and1Ehb are the differences in
corresponding potential energies between the unbound
and bound states calculated via the force field.

The calculation of1Gisomer and 1Gcav entropy
presents a major problem; at present, there are no
methods which can reliably cope with this challenge.
Here we use the following approximation. We assume
that the sum1Gcav entropy+ 1Gtr/rot + 1Gisomer is
proportional to the core interaction energy, represented
by the following term: (1Eel+1EvdW+1Ehb+6i1

Si σi) ∗ a. Thus we can rewrite Equation 4 as:

1Gbind=(1Eel+1EvdW+1Ehb+6i1Siσi) ∗ a

+1Gtors. (5)

Parameteranow incorporates1Gcav entropy+1Gtr/rot
+ 1Gisomer as well. Although a larger isomerization
energy is not always compensated by a larger inter-
action energy, and a larger interaction energy does not
always mean more water molecules are pushed out, we
utilize this assumption as a crude approximation.

We calculate1Gtors by multiplying the number
of rotatable bonds fixed on complex formation by a
coefficient 0.59 kcal/mol (1 cal= 4.19 J), which we
calculated by averaging the data on conformational
entropy of amino acid side chains [65].

The most approximate terms in Equation 5 are
1Eel and6i1Siσi ; there are large uncertainties in
the parameters determining these terms. Because of
this, we choose to weigh these terms separately from
1EvdW and1Ehb by using a second parameter:

1Gbind = (1Eel+6i1Siσi) ∗ a

+(1EvdW+1Ehb) ∗ b

+0.59∗Ntors, (6)

where Ntors is the number of rotatable bonds in the
ligand molecule which become fixed upon complex
formation.

The binding constants are available for all five
NMR structures of small ligands complexed with RNA
that are deposited in the Brookhaven Data Bank. Con-
sequently, we derived the parametersa and b by
linear regression of Equation 6 for these structures
(Figure 5). It results in the following values for the
parameters:a = 0.014± 0.005, b = 0.22± 0.08.
The correlation of the experimental points and the
predicted energies is reasonable (R= 0.83). The
standard error for the calculated binding free en-
ergy is± 2.7 kcal/mol. As more structures of RNAs
complexed with small ligands become available, the
parameters can be further refined.

The fact that1Eel is multiplied by a small factor
in Equation 6 may not be unexpected, but it may seem
surprising that6i1Siσi is also multiplied by the same
factor: this term is based on atomic solvation parame-
ters that are fitted to transfer free energy, a directly
measured thermodynamic quantity. There are at least
two reasons for scaling this term. The atomic solva-
tion parameters are derived for derivatives of amino
acids. We do not know parameters for RNA: we must
use protein parameters as an approximation. The sec-
ond reason is simple: we would like to introduce a
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Table 3. Comparison of experimental free energies of binding for
RNA/ligand complexes of known structure with those calculated
via Equation 6 with coefficientsa= 0.014 andb= 0.22

PDB code 1Gbind 1Gbind calculated 1Gbind calculated

experiment by Equation 6f by Equation 7g

(kcal/mol) (kcal/mol) (kcal/mol)

1raw −6.8a −7.2 −7.4

1koc −6.8b −10.8 −10.1

1kod −6.8c −3.6 −4.2

1fmn −7.2d −7.8 −7.6

1tob −12.4e −9.4 −8.8

aReference 71.
bReference 28.
cReference 28.
dReference 29.
eReference 72.
fThe standard error for the calculated binding free energy is
±2.7 kcal/mol.
gThe standard error for the calculated binding free energy is
±2.5 kcal/mol.

third parameter and scale1Eel and6i1Si σi differ-
ently, but with only five experimental points available
at this time we cannot use more than two parame-
ters. As more structures and binding constants become
available, a third parameter can be introduced which
should significantly improve calculated affinities. For
proteins many more experimental points are available.
So, when applying Equation 6 for protein complexes,
a third parameter should certainly be used.

The calculated and experimental free energies of
binding for these five complexes are compared in Ta-
ble 3. For these complexes, we counted the number
of ligand rotatable bonds fixed on binding (Ntors) by
inspecting the complexes visually. For purposes of au-
tomatic database docking, this step must be excluded,
i.e., we must use the number of ligand rotatable bonds
Nrot.b. instead of Ntors. Correspondingly, the coeffi-
cient 0.59 in the conformational entropy term should
be decreased because (a) symmetrical groups should
not be counted: switching between their rotamers pro-
duces indistinguishable states; (b) rotatable bonds for
groups like -OH or -SH should not be counted either
since the hydrogen atom is small, and these groups
usually have enough room to rotate; (c) some of the
rotatable bonds in the ligand are already partially fixed
in the unbound state, and some of them are not com-
pletely fixed in the bound state: the actual loss of
entropy is much less than in the transition from a com-
pletely free to a completely fixed state. Consequently,
we use an empirical value of 0.3 for the coefficient.

Therefore, the actual equation used for scoring ligands
from the database is:

1Gbind=(1Eel+6i1Siσi) ∗ 0.014

+(1EvdW+1Ehb) ∗ 0.22+ 0.3 ∗Nrot.b. (7)

where Nrot.b. is the number of rotatable bonds in the
ligand. A drawback of this energy function is the un-
availability of solvation coefficients for atoms other
than C, O, N, and S. So ligands which contain other
atoms have to be treated separately; at present, we
ignore compounds which contain other atoms. Inclu-
sion in the future will require that we have some
complexes with other atoms for our training set. The
energy function must be parameterized on a training
set of complexes. The more similar the complexes in
the training set are to the target complex, the better the
prediction will be. If no data on similar complexes is
available, we must use some general parameters; the
prediction will be more approximate and it is expected
that the ranking of ligand binding will be less accurate.

Validation of the empirical free energy function
(Equation 7) via screening for a known ligand

As a validation test for the empirical free energy func-
tion (Equation 7) and for the docking protocol, we
performed screening of the ACD for ligands for the
L-arginine RNA aptamer. This complex was chosen
from the five RNA complexes with small molecules
available in the Brookhaven database, because this is
the only one which has a rather tight ligand-binding
pocket fit.

The program DOCK [53, 54], version 3.5, was
utilized for rigid docking of compounds from the
Available Chemicals Directory (ca. 153,000 com-
pounds) to provide preliminary filtering of the data-
base. Fifty overlapping spheres were generated in
order to describe the solvent-accessible surface of the
binding site. The cluster of spheres was manually
edited to achieve uniform coverage of the binding
site. Spheres outside the binding site were eliminated.
Contact scoring without normalization for number of
atoms was used. No chemical matching was used.
Five steric clashes per compound were allowed.L-
arginine showed up with the rank of 8728 out of
153,000. The highest scoring compounds (ca. 20%
of the database) were subsequently subjected to flex-
ible docking using ICM, version 2.6 [38, 39] with
evaluation via the empirical free energy function we
developed (Equation 7). Run times at this step aver-
aged ca. 1.5 min per molecule on an SGI R5000/180.
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Figure 6. Flowchart of the docking procedure. Numerical values
correspond specifically to targeting the arginine aptamer.

The best scoring 20% of these ligands were redocked
with ten times longer sampling per molecule. Fol-
lowing this, 350 compounds were redocked again
with sampling of ca. 50 min per molecule, which
corresponds to ca. 50,000 conformations (energy func-
tion calls) per molecule or ca. 3300 Monte Carlo
steps. This three-step calculation took about a week
on ten SGI R5000/180 machines running in parallel.
This sampling typically ensures convergence for com-
pounds with 7–8 rotatable bonds. For every run of
flexible docking, the initial conformations of the lig-
ands were obtained by randomizing torsion angles and
rotational coordinates and by randomizing the trans-
lational coordinates within a 10 Å-diameter sphere
around the center of the binding site. This three-step
flexible docking procedure improved the rank ofL-
arginine to 195. Figure 6 shows the flowchart for the
docking procedure. The algorithm is not able to recog-
nize that the guanidino group is planar, i.e., its bonds
are not rotatable. With rotatable bonds, arginine finds
a different energy minimum with significantly worse
binding energy. If the bonds in the guanidino group
are fixed, which requires intervention of the operator,

L-arginine ends up in a conformation virtually identi-
cal to the one obtained in the section ‘Validation via
simulation of known structures’ with an RMSD of
3.4/0.55 Å (all heavy atoms/recognition moiety heavy
atoms). On the scoring list it moves to rank 17 with
1Gcalculated= −11.08. (The experimental value is
−6.8 kcal/mol [28]). Note that this value differs from
that in Table 3 (−10.8 kcal/mol), because it was cal-
culated by Equation 7 for automated database docking
rather than by Equation 6 used for calculating values in
Table 3. The ten best ranking compounds are shown in
Figure 7.D-arginine showed up at the rank of 3672,
and L-citrulline at the rank of 13260. Some of the
compounds in the database can have multiple charge
states and protoisomers. For purposes of automatic
database docking, we only consider the protonation
states present in the database.

The empirical free energy function (Equation 7)
could be compared with functions available in the lit-
erature. Here we limit ourselves to comparing results
using Equation 7 with the simplest and most popular
functions. Figure 8 shows the correlation of the energy
calculated by Equation 7 for the 50 best ligands (TAR
RNA run) with: (a) van der Waals interaction energy
(R = 0.50), (b) the sum of van der Waals, hydro-
gen bonding and Coulomb electrostatic (ε = 4) terms
(R= 0.38), and (c) the sum of van der Waals, hydro-
gen bonding and Coulomb electrostatic (ε = 1) terms
(R = 0.27). As we see the correlation is poor. The
correlation is also poor with the Coulomb electrostatic
interaction term only (R= 0.23) and with the hydro-
gen bonding term (R= 0.10). The poor correlation, of
course, demonstrates that results from function (7) are
distinct from the simpler functions; it does not prove
that function (7) is better though. We believe that
taking into account such major effects as solvation,
isomerization free energy and conformational entropy
with scaling factors weighed using experimental data,
not only dramatically rescores the list of ligands, but
dramatically improves the ‘hit rate’. The ‘hit rate’
would appear to be rather good from the limited sam-
ple of compounds experimentally tested (vide infra),
but the extensive calculations entailed in direct studies
on comparison of ‘hit rates’ achieved with different
scoring functions should be the subject of a separate
work.

To understand how much flexible docking im-
proves the result, we need to rank conformations
obtained by DOCK with the same formula we use for
ranking ligands after flexible docking. The rank ofL-
arginine improves from 8728 to 6347 when calculated
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Figure 7. The ten highest ranking compounds resulting from screening the ACD forL-arginine RNA aptamer ligands.L-Arginine itself (with
guanidino group torsion angles being fixed) has a rank of 17 out of the 153,000 compounds in the ACD, with1Gcalculated= −11.08 kcal/mol.

by Equation 7. Rigorous comparison of rigid and flex-
ible docking is beyond the scope of the current work:
we only used rigid docking for crude and quick pre-
liminary filtering of the database. Most probably the
rank ofL-arginine after rigid docking can be improved
by using more extensive sampling and tuning para-
meters with the DOCK algorithm. The rigid docking
can, however, rank a known ligand very low. Some
good inhibitors may be filtered out in the early stage
of docking. The severity of the problem is, of course,
system-dependent.

As we see, the method is quite effective for data-
base screening for RNA ligands: with reasonable run-
times the final list of compounds can be thousands
of times smaller than the original database and still
contain the native ligand.

Structural model for HIV-1 TAR RNA

Figure 1 shows the 29-nucleotide fragment of HIV
TAR RNA used in an NMR structural study [25] and
the 28-nucleotide fragment of BIV TAR RNA studied
[26]. The HIV TAR RNA contains a hairpin loop with
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Figure 8. Correlation of the energy calculated by Equation 7 for the
50 best ligands, from the TAR RNA run, with: dashed line – van der
Waals interaction energy (R= 0.50), dotted line – the sum of van der
Waals, hydrogen bonding and Coulomb electrostatic (ε = 4) terms
(R = 0.38), and solid line – the sum of van der Waals, hydrogen
bonding and Coulomb electrostatic (ε = 1) terms (R= 0.27).

a three-base bulge in the stem. Biochemical studies of
HIV Tat demonstrated that one arginine residue is very
important for specific binding [6]. NMR studies have
shown that the RNA changes conformation upon pep-
tide binding and that an argininamide induces a similar
change, although a higher concentration is required
than for the basic peptide [66]. A structural model
was developed in which the guanidinium group of the
arginine is bound at the three-base bulge, contacting
two phosphates and the edge of a base. In addition,
there was evidence for the formation of a base triple
UAU adjacent to the bulge site [66]. Recently, a more
detailed study of TAR RNA complexed with a Tat-
derived peptide was carried out, which supports the
site and mode of binding of the arginine but disputes
the formation of the base triple [25]. Unfortunately,
the peptide resonances were not assigned in the study.
As a result, the overall geometry of the RNA structure
is not well-defined: the size of the peptide binding site
(the major groove at the bulge region) varies by almost
a factor of two among the twenty models deposited in
the Brookhaven Data Bank. While it is commendable
that the authors are conservative in defining the con-
formation of their subject RNA, this level of precision
makes it very difficult to do structure-based ligand de-
sign; the major groove at the bulge region is obviously
the most interesting region for the design.

The BIV Tat-TAR complex is quite similar to that
of HIV. Biochemical studies revealed that the RNA
binding site for the Tat protein is again a bulge-

containing hairpin, but with a different type of bulge
(Figure 3). Complexes of 14- and 17-residue peptide
fragments of BIV Tat bound to a 28-nucleotide TAR
RNA have been characterized in detail by NMR [26,
67]. Extensive assignments of intermolecular contacts
have been carried out, resulting in a well-defined struc-
ture of the complex [26]. As with the HIV Tat-TAR
interaction, there is a crucial arginine residue – the
R73 sidechain is positioned near the G11-C25 base
pair, and this residue hydrogen bonds both to the edge
of G11 and to the phosphate of the 9–10 step, reminis-
cent of the arginine fork described in the HIV system
[6]. BIV TAR forms the base triple U10-A13-U24.
Although the bulge of the BIV TAR differs from that
of HIV, the geometries of the bulge regions are very
similar for both structures when bound to the peptide.

NMR studies of both free and complexed HIV
TAR RNA came to different conclusions regarding
formation of a base triple [25, 66]. If the base triple
forms, this creates a unique structure, so that if a lig-
and for this site is designed, it most probably would
be very specific for this RNA. Consequently, for the
purposes of drug design, the structure with the base
triple is clearly preferable. Even if the base triple is not
formed in the peptide- or protein-bound structure but
constitutes a low-energy structure, i.e., it exists at least
part of the time in solution or can be easily induced by
the appropriate ligand, it is still preferable to use it for
ligand design for reasons of specificity.

So, we decided to use a base triple-containing
structure for the ligand design. The structural model
of the bulge fraction of TAR was built by threading
the HIV sequence on to the BIV TAR structure us-
ing a regularization procedure [68] with the alignment
shown in Figure 1.

Screening for TAR RNA ligands

Screening of the Available Chemicals Directory for
TAR RNA ligands was performed using the same pro-
tocol as used for docking of the arginine aptamer
(vide supra). The final list of potential ligands gen-
erated by the procedure contains all known ligands
for TAR RNA. L-arginine [experimental Ki = 4 mM
[69]] appears at a relative rank of 1.0%, and sper-
mine (a generic ligand for nucleic acids) is at 0.22%
[relative rank= 100 ∗ rank/(number of compounds
in database)]. All aminoglycoside antibiotics, which
are known to be ligands for TAR RNA, appear
at reasonable ranks: neomycin, 1.1% [experimen-
tal IC50 = 0.92 µM]; gentamycin, 1.0% [experi-
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Figure 9. The highest ranking compounds, with their scores, from screening of the Available Chemicals Directory for HIV-1 TAR RNA ligands.



607

Figure 10. The conformation of tobramycin docked onto the TAR
RNA structural model resulting from the docking procedure. It is
interesting to compare the results obtained at every stage of the
docking procedure. Figure 11 compares the ranks obtained by the
best 35 compounds (TAR RNA run), following the final run of
50 min Monte Carlo per molecule, with ranking obtained at earlier
stages in the docking procedure. Correlation increases with each
stage of docking: R= 0.025 for rigid docking, R= 0.39 for 1.5 min
of Monte Carlo per compound, R= 0.46 for 15 min of Monte Carlo
per compound. If a large number of compounds is to be screened
experimentally, the final CPU-intensive Monte Carlo run we used
here is not necessary; much shorter times suffice.

mental IC50 = 45 µM]; streptomycin, 0.9% [ex-
perimental IC50 = 9.5 µM]; paromomycin, 1.7%;
kanamycin 1.3%; neamine, 0.29%; tobramycin,
0.04%, lividomycin 2.7% and sisomicin 0.14%. The
latter six antibiotics inhibit Tat peptide binding to
antibiotics inhibit Tat peptide binding to TAR RNA at
a concentration of 3 mM [70]; Benkamycin [3 mM in-
hibitor [70]] was not considered, because it was absent
from the version of the ACD we used. Figure 9 shows
the highest ranking compounds with their scores. Fig-
ure 9 shows that many compounds predicted to be
good ligands for TAR RNA are likely to be false
positives as drug candidates because of their chemi-
cal nature: too many net charges or too polar to be
orally active. In other words they are not ‘drug-like’.
In the current study, we only search for compounds
that disrupt TAR-tat binding and ignore bioavailabil-
ity, specificity, toxicity and other desirable properties
for drug leads. Naturally, a ranked list would need to
be subsequently examined for these properties as well
before subsequent studies of lead compounds were

Figure 11. Ranks obtained at various stages in the docking proce-
dure against TAR RNA for the 35 compounds achieving the highest
ranking following the final run of 50 min Monte Carlo simulation
per molecule. The thin solid line is for rigid docking (R= 0.025),
the sparsely dotted line is for 1.5 min Monte Carlo simulation per
compound (R= 0.39), and the heavily dotted line is for 15 min
Monte Carlo simulation per compound (R= 0.46). This set of
calculations was carried out on a fraction of the compounds in the
Available Chemicals Directory (12,000 compounds out of 153,000);
the results should be typical of the entire ACD.

performed. Figure 10 shows the conformation of to-
bramycin docked on the TAR RNA structural model
resulting from the procedure.

It is interesting to compare the results obtained at
every stage of the docking procedure. Figure 11 com-
pares the ranks obtained by the best 35 compounds
(TAR RNA run), following the final run of 50 min
Monte Carlo per molecule, with ranking obtained at
earlier stages in the docking procedure. Correlation
increases with each stage of docking: R= 0.025 for
rigid docking, R= 0.39 for 1.5 min of Monte Carlo
per compound, R= 0.46 for 15 min of Monte Carlo
per compound. If a large number of compounds is to
be screened experimentally, the final CPU-intensive
Monte Carlo run we used here is not necessary; much
shorter times suffice.

A large number of compounds in the ACD are in-
soluble. Nevertheless, we used all of them for compu-
tational screening. Only compounds soluble in water
(or at least water-miscible solvents) can be readily
tested experimentally, but promising compounds in-
soluble in water can serve as precursors for chemical
modifications which may make them soluble. These
modifications can be designed computationally, so
they do not adversely affect binding.
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Figure 12. Inhibition of Tat-TAR interaction, assayed experimentally, by several compounds which had a high ranking in the virtual screening
procedure.

Experimental test for inhibition of Tat-TAR
interaction

A small number of the higher ranking compounds
were selected to provide an experimental test of our
procedure. The compounds were selected for assay
before the final docking run was performed. We se-
lected readily available, soluble and nonpoisonous
high-ranking compounds from the 15-min-of-Monte
Carlo-per-compound run. A scintillation proximity as-
say (see Methods) was used to investigate inhibition
of the Tat-TAR interaction by eight compounds which
achieved high ranks in the virtual screening procedure.
Additional compounds will be tested experimentally.
The results of the inhibition study are shown in Fig-
ure 12. Two of the compounds tested exhibited a CD50
(concentration of compound required to reduce to 50%
Tat binding to TAR) of about 1µM. We conclude
that the docking method we have devised is quite ef-
fective for database screening for RNA ligands. It is
interesting to examine the rank order of these three

compounds at each stage in the virtual screening pro-
cedure. The ligands, listed by ACD code, received
the following ranks at the four stages (DOCK, MC1.5,
MC15, MC50) of docking:

00001199: 295(MC50),28 (MC15),
3417(MC1.5),6171(DOCK),
00192509: 3 (MC50),3 (MC15),
2720(MC1.5),6919(DOCK),
00003934: 286(MC50),34 (MC15),
1724(MC1.5),1938(DOCK).

It is doubtful that any of these three would have been
included in an experimental screen following the ini-
tial two docking steps unless a rather large screen
was performed. In an industrial setting, screening sev-
eral hundred of the highest ranking compounds which
were readily available and soluble would certainly be
feasible.

Those ligands which exhibit micromolar CD50 can
serve as leads for drug design. The assay we use tests
the ability of compounds to inhibit binding of the tat
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peptide to TAR RNA rather then their ability to bind
to TAR RNA. Strictly speaking therefore, we cannot
claim that the compounds actually bind to TAR in the
manner anticipated. The issue of specificity of bind-
ing to TAR RNA versus other compounds and other
nucleic acids will be the subject of a separate study.
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