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Prediction of three-dimensional structures of proteins and peptides by global op-
timization of the free energy estimate has been attempted without much success for
over thirty years. The key problems were the insufficient accuracy of the free energy
estimate and the giant size of the conformational space. Global optimization of the
free energy function of a peptide in internal coordinate space is a powerful method
of structure prediction that outperforms both Molecular Dynamics, bound by the
continuity requirement, and Monte Carlo, bound by the Boltzmann ensemble gener-
ation requirement. We demonstrate that stochastic global optimization algorithms of
the first order, i.e., with local minimization after each iteration (e.g., Monte Carlo-
Minimization), have a greater chance of finding the global minimum after a fixed
number of function evaluations. Recently, the principle of optimal bias was mathe-
matically justified and the Optimal-Bias Monte Carlo-Minimization algorithm (a.k.a.
Biased Probability Monte Carlo-minimization) was successfully applied to theoreti-
calab initio folding of several peptides, resulting in more than a 10-fold increase in
efficiency compared to the Monte Carlo-Minimization method. The square-root bias
is shown to be comparable in performance with the previously derived linear bias.
A 23-residue peptide of beta-beta-alpha structure can be predicted from any random
starting conformation. @ 1999 Academic Press
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INTRODUCTION

Ab initio prediction of three-dimensional structures of large macromolecules remains
main theoretical and computational challenge in biology. Most of the globular proteins ad
a unique conformation in agueous solution. It is believed that the compact and unique
formation of a protein corresponds to the global minimum of its free energy function, atle
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for small, independently folding protein domains [10, 11]. Therefore, to predict the nati
folded conformations of a peptide or a small protein one needs to evaluate the free en
in the vicinity of every trial conformation with sufficiently high accuracy [8, 12] to sepa
rate the native minimum from billions of low energy alternatives. Furthermore, the nati
conformation must béoundin a space of almost 100 dimensions within a reasonable tim

We will argue here that global optimization algorithms, not bound by trajectory continui
or by the canonical ensemble generation requirements of MIMC, represent the best
approach for solving the protein folding problem. In addition, we will argue that firs
order stochastic global optimization algorithms (which apply full local minimization afte
each random move) are superior to zero-order algorithms (which do not). Finally, we v
introduce the optimal bias principle, derive the square-root bias, and demonstrate the s
and accuracy of the OBMCM algorithm in predicting the native conformation of larg
peptides with nontrivial topology.

MOLECULAR DYNAMICS: LARGER STEPS, BETTER SAMPLING

Traditional Newtonian molecular dynamics in Cartesian space remains an important a
rithm for sampling the conformational space of peptides [13—-15]. This algorithm, optimiz
and refined over the years, is best applied to simulations with explicit water molecules. S
eral attempts have been made to predict the native peptide conformation from a “denatu
state through dynamic simulations in water [13—15]; however, these attempts have had
limited success. The longest simulation to date is thes Eimulation of the villin headpiece
domain which reached a metastable folded state [14].

The requirement for a small time step of integration (about 1 fs) imposes severe limitati
on efficiency. Another factorincreasing the computational effortis the accuracy of the ene
function; this accuracy must be sufficient to distinguish the correct solution from billions
false alternatives, many of which may be very energetically similar to the correct answ

Animportantalternative to dynamicsin Cartesian space is dynamicsininternal coordir
(torsional) space. The first application of torsion dynamics was limited to linear chains [
and was based on Wittenburg's formalism for connected rigid bodies—which is relat
in turn, to equations derived for-body space satellites [17, 18]. The general equation
for internal coordinate molecular dynamics of arbitrary fixed branched biomolecules w
firstintroduced and tested on biomolecules in 1989-1991 [19-21]. Subsequently, two 0
implementations of torsion dynamics were proposed and applied to x-ray refinement
NMR-structure determination [22, 23] and peptide simulations [24]. This method alloy
us to easily distinguish between “hard” degrees of freedom, such as bond lengths and |
angles, and “soft” degrees of freedom such as torsion angles. Fixation of bond lengths
bond angles allows an increase of the time step of integration to 2—4 fs, and suppres
of fast hydrogen rotations allows another several-fold increase [25] of the minimal tir
step. A number of interesting ideas have been proposed to increase the sampling p
of MD simulations and permit larger time steps of integration [26—28]. In the most rece

! Abbreviations used: BMC, biased Monte Carlo [1]; ECEPP/3, empirical force field for polypeptide
[2—4]; ICM, internal coordinate mechanics [5]; ICMD, internal coordinate molecular dynamics; MC, Mon
Carlo; MCM, Monte Carlo-Minimization [6]; MD, molecular dynamics; OBMCM, BPMC, Optimal-Bias Monte
Carlo-Minimization Bias (a.k.a. Biased Probability Monte Carlo-minimization), a quickly converging stochas
global optimization method using random moves derived from the expected local probability distributions [7]
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implementation the update time of the “slow forces” was increased to 48 fs or more, wh
corresponds to a 10-fold increase in efficiency [26].

MONTE CARLO

In most cases, the native protein structure important for biological function can be ct
sidered one unigue conformation in the mean field of the solvent, rather than a truly dyna
system. In other words, one can introduce a pseudo-free-energy potential that is a fun
of the peptide conformation. Therefore, a traditional Monte Carlo method—the prime
goal of which is the generation of a Boltzmann ensemble—may be replaced by an a
rithm aimed at the fastest possible identification of the lowest energy minimum. The lai
is the primary goal of global optimization methods. A Monte Carlo method can also
designed to allow better sampling of the phase space [29], but the requirement of canol
ensemble generation defeats the purpose of efficient global optimization. An easy exan
for a single harmonic well, a Monte Carlo method will need to calculate at least seve
dozen values until the convergence criterion is met, while a local minimization method ¢
findthe potential energy minimum in a single step. In the case of a rugged energy landsc
the goals and the strategies are still different, since instead of sampling all the low ene
patches of the hyper-surface, the global optimization is only aimed at finding the shor
path to the global minimum.

As we have noted, the native conformation is largely unique with the exception of so
flexible surface side chains and surrounding water molecules. Therefore, if the free enert
solvent can be calculated implicitly for every trial conformation based on the electroste
and surface effects, the free energy of a folded and solvated conformation can be:
approximated by a function of a single conformation! An additional assumption is that t
vibrational entropy differences between possible folded conformations are not large. If
explicit water model is used, and/or the peptide conformation is essentially dynamic (e
no particular backbone conformation dominates the statistical sum), conventional Mc
Carlo or molecular dynamics methods become more appropriate.

Which approximation of the solvent in a peptide simulation, explicit or implicit, is mor
accurate? Clearly the implicit method is faster, but is it less accurate? The answer to
question is still not clear. On one hand, explicit water can potentially take the effects
finite molecular size into account (e.g., form a bridge of a certain length between hydro
bonding groups). On the other hand, the problems and inaccuracies they introduce
outweigh the benefit. Let us list them: a large increase of the system size (thousanc
water molecules); inaccuracies due to insufficient sampling; truncation of the electrost
interactions or artificial boundary conditions; and limitations of the simple electrosta
and polarization model of a single molecule. The continuous electrostatic models [30, :
however, are free from the above problems. They automatically consider an infinite sl
of solvent and its electrostatic properties to be directly described by the experiment
measured dielectric constant.

STOCHASTIC GLOBAL OPTIMIZATION, OBMCM

A global optimization can reach the minimum much faster than a Monte Carlo proced
simply because the detailed balance condition, compulsory for the Monte Carlo procec
but unimportant for global optimization, is dropped. Therefore, an efficient local ener
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optimization, the fastest way to identify the local minimum, can be used. Even the m
sophisticated molecular dynamics and Monte Carlo algorithms could still only be appl
to sample either the neighborhood of known protein conformations or a complete con
mational space of rather small peptides. Typically, when using the above methods one
problems with predicting a new peptide or loop conformation from scratch without kno
ing the answer. Our goal, however, is to predict the lowest energy conformations of la
peptides and protein loops from scratch without any prior structural information.

A number of stochastic global optimization methods have been developed [32]. They
be divided into methods with (first-order) and without (zero-order) local minimization aft
each step. These methods may be further subdivided according to the way in which ran
moves are made, their temperature scheduling, and their use of simulation history.
sampling bias, aimed at faster convergence, can be done according to the experimer
observed preferences [1, 7, 33] defined either as a continuous function [7] or as a disc
grid function [1, 33]. Another productive idea aimed at improved sampling is to make loc
backbone moves [34, 35], or restrict the random moves according to the kinetic escape
estimate (the so-called diffusion process-controlled Monte Carlo method [36]). Several
cellentreviews of other zero-order Monte Carlo methods, which are not specifically aime
the global optimization of a pseudo-free-energy potential, were published recently [29, :

Generally all the stochastic methods with minimization outperform the methods wi
out local minimization (similarly the efficiency of a local minimization method critically
depends on the use of energy derivatives). Indeed, the introduction of the Monte Ca
Minimization (MCM) method [6] was a major step forward. With MCM it became possibl
to identify the global minimum of Met-enkephalin in fewer than 100,000 energy evaluatiol
However, larger peptides—especially in a hon-alpha-helical conformation—still requir
a prohibitively large number of energy evaluations.

The next radical step forward was extension of the MCM method with the principle
optimal bias (OBMCM, a.k.a. BPMC). The goal of the optimal bias is toauggori infor-
mation about local probability distributions in the best possible way in order to minimize t
number of random steps to the global minimum. For macromolecules the algorithm re
on the assumption that the local energy landscape due to local sequential interactions
peptide is perturbed in a quasi-random way by non-local interactions that are compar
in magnitude. This assumption leads us to the formulation of a simple stochastic model
the square-root bias rule [38] (see the next section).

BENCHMARKS

To optimize and test new energy functions and global optimization methods, we r
on experimentally characterized peptides with compact unique topologies supported w
out disulfide bonds and metals. Until recently there were not many suitable candida
Most small peptides remain unfolded in aqueous solution; among those peptides wi
do assume a specific conformation, the majority adopt a simagielical conformation
[39]. Fortunately, several beta-forming peptides and the smallest compact mixed-topol
peptide [40] (BBAL) have been discovered. The 23-residue BBA1 peptide contains the s
thetic residue 3-(1,10-phenanthrol-2-ybalanine (Fen), and was later replaced by anothe
23-residue peptide (BBA5) which contains no synthetic amino acids and forms a ste
beta-beta-alpha structure [9]. BBA5 became the smallest protein-like folded peptide
provides the ideal benchmark for the evaluation of theoretical folding algorithms.
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The geometrical model used in all calculations is the extended internal coordinate mc
(ICM) [5]. This model is convenient for tree-like branched polymers and may be applied
any number of arbitrarily interacting molecules. Atypical ICM system will have all covaler
bonds lengths and bond angles fixed; torsion angles that are not involved in rigid rings
free. Analytical equations of motion have been derived for an arbitrarily constrained IC
tree, together with equations which permit the efficient calculation of pair-wise energy ter
with respect to free internal coordinates [5, 19].

The required accuracy of the energy function was estimated as less than 1 kcal/mo
residue [8]. To achieve this accuracy we have previously used full-atom models, the ECEF
vacuum force field [2—4], improved electrostatic solvation [7], and solvent-accessil
surface-dependent estimates of side chain entropies [7]. This function worked well
simulations of 12 and 16 residue helices and with the BBA1 peptide, but we noticed
a number of BBA5 and beta hairpin simulations that the function is biased toward alf
helices.

To find the global energy minimum of the target peptides, we used a Monte Ca
minimization-based global optimization algorithm [6] in conjunction with a special st
of biased random moves. In previous studies that employed Monte Carlo-based algoritt
investigators have focused on simulation temperature schedules [41] and the accept
criteria (e.g., [42]). Several years ago we first suggested that the rational design of ran
moves is the key to a radical increase of the sampling efficiency [7]. A strategy was C
lined for dividing the internal coordinates into groups of strongly coupled variables (zone
and it was proposed that the random moves could be biased according to a pre-calcu
continuous local probability distribution. In addition, we derived the statistically optim:
algorithm to bias the random move within the zone.

Here we discuss different aspects of an efficient stochastic global optimization techni
for large molecular systems and present theoretibahitio folding of the detailed atomic
model of the BBA5 peptide with the BPMC procedure.

INTERNAL COORDINATES

When we predict the conformation of a large flexible molecule, we must do it in tt
right space. The choice is the following: Cartesian coordinates, torsion angles, a full
of internal coordinates, and the inter-atomic distances. We will focus on the third choi
whichisideally suited for imposing the covalent structure constraints and generating nat
conformational rearrangements for multi-molecular arbitrarily fixed systems.

The general scheme of the ICM tree is shown in Fig. 1. In this model atoms are constru
sequentially from the origin as a directed graph, while the preceding bond length, a b
angle, and a dihedral angle define the geometrical position of each node. This dihedral &
can be of two types at a branching point. The dihedral angle defining the “main bran
will be referred to as a torsion angle and is usually free, while the difference between
above torsion angle and the dihedral angle defining the secondary branch will be referre
as a phase angle and is usually constrained. This choice of independent internal coordil
makes setting of chemical constraints trivial.

Accordingly, the BBA5 molecule (chemical structure Acet-Tyr-Arg-Val-DPro-Ser
Tyr-Asp-Phe-Ser-Arg-Ser-Asp-Glu-Leu-Ala-Lys-Leu-Leu-Arg-Gln-His-Ala-Gly-COOH)
is represented by a directed graph in which all bond lengths, bond angles, and phase a
are constrained. The number of free torsion angles is 129. This number includes the pe|
planew angles that are restrained by the torsion potential to b80 are free to change.
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FIG.1. Aninternal coordinate representation of one or several molecules in which any subset of bond leng
as well as bond, phase, and torsion angles which determine the directed tree-like graph, can be constraine
graph can contain virtual atoms and bonds. The first six internal coordinates determine the rotation and trans|
of the whole molecule. Analytical derivatives of a pair-wise energy function with respect to the four types
variables for such an object are given in [5, 19, 20] and the equations of motion are given in [19-21, 25].

The number of essential backbone torsion angles is 45. The model contains 385 atom:
includes hydrogen atoms.

Evenly distributed random values are assigned to all the free torsion angles, excep
w angles, to generate the initial conformation for each simulation.

ADDITIONS TO THE ECEPP/3 POTENTIALS AND ELIMINATION
OF THE a-HELICAL BIAS

The BBAS5 23-residue peptide has about 70 essential degrees of freedom; yetit folds ir
uniqueg-B-a arrangement. Previously, we argued [8, 12] that a highly accurate free ene
evaluation(<1 kcal/mol) for each trial conformation is necessary to recognize the nati
state among zillions of alternatives. To meet this requirement we introduced correcti
in the all-atom vacuum force field ECEPP3 [2—35], and appended to it the solvation f
energy [7] and the entropic contribution [7],

E = Evw + Enbondst Etorsions+ Eelectr + Esoiv + Eentropy

The individual terms are calculated as follows.

A; CB;
=2 gz g |
i

Al D::
ij ij

Ehbonds= g 12 7d10 >
i.j ij ij
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wherei, j are a pair of atoms separated by less thanA7a&hd more than two chemical
bonds;d;; is an inter-atomic distance, B, A, andD are parameters for each two atom
types; andC is 0.5 for a pair separated by three bonds and 1 otherwise.

Etorsion = Z Um coSNg — ¢o),

torsions

33X a:
Eelectr: Z qu qj ,

i Sdij

whereq; are electric charges, distance-dependent dielectric constast d;;, andUr, are
individual torsion barriers. The solvation contribution in this simulation was calculated
a sum of products of solvent-accessible surface agpby( the solvation energy densities
(07) derived from the water—vacuum transfer energies [8],

Esov = Zo'iai-
i

Finally, the entropic contribution from the protein side chains is calculated from the maxin
burial entropies for each residue type and their relative accessibilities,

Eenropy= —RT Y AS™a,/al®
residueo

A number of simulations with peptides of different topologies convinced us that the curre
form of the ECEPP3 force field has a bias toward alpha helices. To compensate for
bias we imposed a soft torsion potential on the backhpaegle: 05(1+ cog90+ v)). A
stronger torsion potential of 1 kcal/mol amplitude was applied to Val, lle, and Thr residu
The corrected potential was used for simulations with all peptides, including-tiedical
ones. Without the correction the lowest energy conformation of most of the peptides 1
we simulated is dominated by onehelical element.

DERIVATION OF THE OPTIMAL BIAS

Several years ago we introduced the idea of the optimal bias in a Monte Carlo-ba
stochastic global optimization procedure. This procedure increased the efficiency of
peptide structure predictions by at least an order of magnitude [7].

Let us pose a mathematical problem of the optimal bias in random sampling specific
directed at finding a single right answer, and give a solution in three guessing games.
underlying model we have in mind is a chain molecule described as a set of torsion an
X, where eacly; is either a scalar representing an individual angle or a vector represent
several correlated angles (gs¢ backbone angles or a group of side chain angles). Or
can see, however, that the consideration below is general and is applicable to a wide «
of global optimization problems.

Game 1 (always bet on the bestSuppose that we are guessing values of only on
vector x which is distributed according t8(x). How should we guess to maximize the
probability of the correct guess? In a continuous case this is equivalent to finding a func
f () maximizing the integra{P),

(P) =/S(X)f(X)dx,

under the normalizing conditiorf, f (x) dx=1.
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The answer is trivial and uninteresting. Actually we should always guess the same n
likely value xS (f (x) = §(x — x5=)). This sampling strategy is obviously not very pro-
ductive, since it does not really correspond to what we expect from a global optimizat
procedure, which is to predict all the variables correctly. In this game we will always |
guessing the same value and even though the probability of the correct guess in each
is maximal, we will never be successful with any value other than the most probable.

Game 2 (linear bias). In the second guessing game we are trying to find the be
guessing probability functiori (x) to achievesimultaneougprediction ofn x-values with
certain accurachi(x, x°), given the fact that’-values are distributed according to a known
distribution S(x).

It has been shown [6] that the guessing (or sampling) probability function maximizi
the product oh integrals,

P= H/h(x, x0) f(x) dx,
i—1

is actually identical to the expected probability distributidrix) = S(x).

Game 3 (square root bias).Here we are actually going to guess many times until w
get the correct answer and we assume that it can be done independently fer Baen
be proven that the functiofi(x) minimizing the average number of guesses required t
find the correct answer is a square root of the distribution func@ion. f (x) =C./S(x)
(f(x) normalized to 1 after the root is taken).

Let us derive the optimal sampling strategy for the simplest case of two states (see
for a complete description). To derive the rule, we must formulate a different criterion
optimality (the objective function).

The guessing problem formulated in this way can be understood even in the case of
fixed choices. Let us imagine the following game: each time you are given one of t
choices and you guess until you are right, but every time fargetyour previous choice.
(Independence of the previous selection is actually well justified in the real case in wh
the environment of each residue changes after each step/guess.) After the problemis s
and the number of your guesses is recorded you are given another problem, and so or
the two types of choices are offered with frequenesieands,, respectivelys, + s, =1).

THEOREM. The optimal random guessing strategy minimizing the average number
guesses is to guess with relative frequenciemtl £ so that

f S

f Vs
Proof. Let us calculate the average number of guedtgsssedintil the correct answer
is given, provided that previous guesses are forgotten and thus each guess is indepel
If in our random guessing strategy the probability of a correct guess in a single tria
f, and the successful result can be achieved through the first correct(guesd ), the
first incorrect guess and the second correct ggpss- (1 — f) f), the first two incorrect
guesses and the correct guéps= (1 — f)?f), etc., the average number of guesses reac

Nguesses= P1+2p2+3p3+ - - -
=f4+20- f)f +31— F)2f+---+nl— H" L1 4... = 1/f,
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since each member of this series dividedfbig a derivative ok", wherex = (1 — f), and
the series + x + x? 4+ x3 + - - - + x" converges to A(1 — x) asn tends to infinity. After
taking the derivative and multiplying it by we arrive atNgyesses=1/f.

Now, in the case of two choices, we will guess the first choice with unknown probabili
f, and the second choice with =1 — f;. The average number of guesses reads

(Nguesses = Si/f1 + S/ fa.
To derive the optimaf; and f,, let us set the derivative @Ngesses With respect tof; to O:
S/17 -8/ =0
or
S/ff=9/17,
or

f1/f2 = (SI/S)Y2

This sampling strategy is also valid for multiple discrete states as well as for aset ¢
continuous variables [31].

DESIGN OF RANDOM MOVES

In the previous section we concluded that by biasing the random steps according tc
expected local probability distribution we improve the efficiency of the stochastic glok
optimization procedure. Since we are optimizing tree-like branched polymers descril
geometrically by a set of internal coordinates, the next question is how to divide all 1
internal variables into groups (further referred to as zones). We will assign an expec
probability distribution to each zone according to the structural preferences in the datat
of several thousand known protein structures or according to a short calculation on
fragments of a given peptide. The simplest choice is to change one angle at a time
use a square root of an average distribution of this type of angle, as found in numer
known protein structures or in a separate calculation, to determine its sampling probabi
However, by choosing zones of several correlated angles (for example, the bagkaonde
¢ angles) we can further improve the accuracy of the expected probability distribution &
therefore improve the sampling efficiency [7].

Previously we implemented three types of random moves that allowed us to consi
three types of optimization problems such as:

e ab initio peptide folding (zone move: global change of an individual groug af
angles or the side chajn-angles),

e loop prediction in homology modeling and design (loop move: local loop rearrang
ments of two types; Fig. 2),

e molecular association (pseudo-Brownian move: incremental rotation and translat
of the whole molecule; Fig. 2).

The zone and loop moves are intramolecular, while the pseudo-Brownian move is neces
for sampling of intermolecular arrangements. Let us introduce the essential propertie
random moves. If the move is generated regardless of the current geometry, we will cz
static while the move taking into account the changing geometry will be caljgdmic
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FIG. 2. The types of random moves used in ICM.

An example of the static random move is changing a randomly chosen torsion with
amplitude of 90 [43]. An example of a dynamic move is changing torsions with prob
abilities depending on the current secondary structure. It is also important to discrimir
betweenlocal and distributedmoves (changing one local group of variables or two ol
more groups at a time, respectively), amwdrelatedanduncorrelatednoves (angles in one
or several groups are changed in concert or independently, respectively). Finally, ran
moves may be eithatiscreteor continuous

While the zone and loop moves, which are correlated and continuous, greatly improve
rate of convergence for peptide and loop simulations [44], they do not optimally cover 1
whole range of essential molecular rearrangements, since they change only one local ¢
of variables at a time. In the first class the group consists of several adjacent unconstra
torsion angles in the tree, while in the second case a larger, but still contiguous, ct
fragment is deformed under the constraint that the loop ends do not change their posi
These moves therefore are local and static, since they only change conformation of a |
contiguous fragment and do not depend on the current conformation.

The local correlated moves are efficient in foldighelices and short compact loops.
However, beta sheets or long loops which require simultaneous movement of the two r
adjacent chain fragments cannot be efficiently sampled without correlated and distribt
moves. Two types of such moves are described here: a bipartite loop move and a beta-zif
move (Fig. 2).

In the one-partite loop deformation momeadjacent angle@ > 6, N < Nigop torsiond are
chosen and a random biased move is performed according to the residue-degegdent
probability distributions, followed by a loop closure procedure. In the bipartite loop mov
then y-¢ angles are divided into two groups separated by a random number of interver
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Four possible Zipping Moves
H bonding patterns

LL L ——-

FIG. 3. Four types of thes-zipping move. If one of the patterns shown is identified, a temporary distanc
restraint is imposed to extend tjgehairpin.

angles and then the biased change and the closure procedures are performed. To fac
formation of beta sheets we applied another type of random move, a beta-zipping m
After the random initial choice of the residue of interest, the hydrogen bonding neighb
are identified. The four situations of interest are shown in Fig. 3. If such a neighbor exist
geometrical rearrangement of both strands is generated to form the missing hydrogen |
and extend the beta structure. This move is distributed since both strands are chang
once and correlated since the sevarap angles are changed at once.

TEMPERATURE, ACCEPTANCE RATIO, AND DISADVANTAGES
OF SIMULATING ANNEALING

The Metropolis acceptance criterion states that a new trial conformation with higt
energy will be accepted with the probability of €éxpA E/ R Tsim), whereTgim is the simula-
tion temperature and E is the energy increase. During global optimization the simulatiol
temperature can be independently tuned for the best performance. The meaning of
parameter in stochastic global optimization is the energy accuracy required to recog
the global minimum. The Metropolis selection procedure is likely to reject the energy ri
of RTgim and, therefore, it “insists” that a new conformation in this energetic vicinity b
generated and evaluated. Simulation at a higher temperature samples more widely an
a larger acceptance ratio, but spends less time in each location, while simulation at a Ic
temperature does the opposite.
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The ultimate test of the MC global optimizers is their ability to identify as many a
possible low energy minima in a minimal number of energy evaluations starting fror
random conformation [45]. The optimal simulation temperatRik, can be found for a
given representative benchmark [45]. In [45], a complete map of low energy states was |
and then the number of local minima in a 20 kcal/mol range from the global minimum w
counted as a measure of global optimization efficiency. The optimal simulation temperat
was found to be about 600 R Ty, is about 1.2 kcal/mol). Both lower temperatures anc
higher temperatures are less efficient in identification of the energy minima.

In simulated annealing the temperature is gradually reduced according to a predetermnr
schedule. The high temperature part of the simulation allows crossing of large ene
barriers and therefore samples broadly but without rigorous refinement in each vicin
Conversely, the low temperature part of the simulation constrains the molecule to the vici
identified by the high temperature calculation, thus allowing determination of its exa
conformation and its energy. However, this scheme is extremely vulnerable. First, it depe
on preexisting knowledge regarding the exanerequired to identify the global minimum.
If we underestimate the time and cool the system off too quickly, the molecule becor
prematurely frozen in an unrelated conformation, while if the cooling schedule is too sl
the simulation is conducted at an inefficient high temperature, which impedes its ability
identify deep local energy minima. Second, simulated annealing relies on the assumy
that the high temperature coarse-grained calculation in its walk through different low ene
valleys will end up in a valley containing the lowest energy minimum, which is not cle:
until the lower temperature refinement is done. The global optimization procedure &
moderately elevated but constant temperature (e.g., 600 K) gives an equal chance to
valley visited and, especially with a proper history-feedback mechanism, does not su
from this impediment.

HISTORY-FEEDBACK MECHANISMS

Both the full simulation history and its recent history can be used to enhance the glc
optimization efficiency. We will consider three undesirable situations that are commol
encountered during optimization, and will describe actions that improve the performan

1. Too many unproductive trials.A frequent “recent-history” problem is inability of
the procedure to make a move, i.e., find an acceptable new conformation at a given
perature. Although a certain degree of persistence is necessary, it may be benefici
provide an “escape mechanism” to avoid excessive searches in an unproductive regic
conformational space [45]. By counting the number of sequentially rejected moves,
can determine whether the search procedure has stalled and take appropriate action. S
escape mechanisms can be envisioned. We found that a temporary temperature raise
the achievement of the upper limit of unaccepted tri#lg) improves the performance.
The temperature is doubled aftdi unproductive steps and is reset to normal after a ne\
conformation is accepted.

Before describing the other two scenarios, we need to introduce the concept of a “c
formational stack.”

Conformational stack of the best representative conformatiolmsany sampling pro-
cedure going through millions of conformations it is useful to accumulate a condensed
of the best representative conformations. Such a conformational stack, first describe
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[45], is useful for visualization and analysis, but, more importantly, it can also provide
useful feedback to the search procedure in a difficult situation. To build the stack, we n
to define the metric in the conformational space. The difference between each two ¢
formations must be quantitatively expressed by a relevant distance function. We use t|
types of comparison depending on a particular modeling task: (1) the root-mean-squatre
viation (rmsd) of the essential torsion angles (appropriate in peptide folding calculatior
(2) Cartesian coordinate rmsd of essential atoms (appropriate in protein loop simulati
or docking against a static receptor); and (3) Cartesian rmsd upon optimal superpositic
the essential atoms (appropriate in small molecule sampling or in peptide simulations)

The conformational stack, which retains only the best energy conformation within a giv
conformational vicinity, evolves gradually during the simulation. Each new conformatic
is compared with the previously stored stack conformations; if it is not in the vicinity
any stack conformation, the new conformation is added to the stack. If it is similar to
existing stack conformation, however, it must compete with the existing conformation ¢
will replace it only if it possesses a lower energy. It is indeed like biological evolutio
in which fitness is determined by the energy and only the fittest conformation surviy
each location. If the vicinity radius is too small the number of stack conformations w
be exceedingly large. Limitation of the number of slots will result in only one family*
dominating the stack. If the radius is too large, one conformation will absorb all the oth
and the diversity will not be visible. In peptide simulation we use the radiusof 30

2. Toomany visits to the same vicinityA search stuck in a small region of conformational
space stays in the vicinity of the same stack conformation but does not improve it. In ot
words, new conformations are found and accepted (as opposed to the previous case
these conformations are around a known conformation and are energetically inferior t
The conformational stack counts the number of fruitless visits to the same slot and re
this number to zero if a better energy conformation is found to replace the previously sto
one. A good remedy in this case is to force the escape from this over-visited vicinity
randomizing free torsion angles. We use the amplitude ©f 30

3. Inability toimprove the stack.The stack should be kept at a relatively small size during
the simulation (around a hundred slots), since a comparison with each stack member |
be performed for every new conformation that passes the Metropolis criterion. Theref
the evolution of conformational species will take place within the limited number of slot
Every conformation in a new geometrical vicinity has a chance to replace the highest en
stack conformation, if the new energy is lower. If it does not happen and the search wan
in some high energy areas, not generating any changes in the stack (neither new slot:
improvements of existing slots, nor increase of the number of visits in the existing st
conformation), the “high energy walk” is interrupted. We established the optimal linr
of 50 high energy steps. Once the limit is exceeded the procedure returns to one of
under-visited conformations from the stack.

THE SETUP OF THE OBMCM OPTIMIZATION PROCEDURE

Each simulation starts from a completely random conformation (i.e., random numb
between—180 and 180 are assigned to each variable torsion angle) and ends when |
number of function evaluations reaches its limit or the termination criterion is met (s
below). The energy optimization of a single peptide consists of the following procedure
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1. Biased random move in a randomly chosen group of angles (OB-moves and b
zipping moves).

2. Local energy minimization of the whole molecule
Calculation of the solvation energy and entropy for the minimized conformation
Metropolis selection (temperature increase if the rejection limit is reached)
Comparison of the accepted conformation with the stack (possible history feedbe
Back to step 1.

o0k w

We used the following parameters: simulation temperature of 600 K, a set of local am
acid-dependent probability distributions for the backbgr¢ angles and the side chain
torsion angles as previously described [7]. Conformations were compared with the ang
rms ofy, ¢ angles and the vicinity threshold of 3@as applied. The simulation temperature
was doubled upon 10 sequential rejections; the local randomization witm3glitude was
applied after the same stack conformation was visited more than 40 times; and the cul
conformation was reset to the least visited stack conformation upon 50 unsuccessful tria
modify the stack. These parameters were found by trial and error in alarge number of pef
simulations. The ECEPP/3 force field was used with the modifications described in
preceding section. Following local minimization, the atomic accessibility-based solvati
energy was calculated (the atomic radii and solvation energy densitiae described
elsewhere [8]). The side chain entropy paramete8'® anda™ for each residue were
taken from Ref. [6]. Simulations converged after about 5-7 days using a single SGI R10
processor (250 MHz).

TERMINATION CRITERION

The OBMCM procedure for global optimization is still a stochastic procedure and, as!
said earlier, one does not know in advance how long it takes to find the global minimt
This average convergence time, even at the same number of independent variables, de
strongly on the geometry of the native conformation. The interaction energy between mo
ular fragments may be sufficient to create rather strained and unlikely local conformatic
which aggravate the search. Therefore, the best setup of the global optimization proce
is the one which does not rely heavily on the expected convergence time.

One way to achieve this setup is to start several parallel calculations which periodic:
save their conformational stacks. Since every calculation starts from a completely ranc
configuration and the size of the conformational space is exceedingly large, close simila
both in terms of the energy values and in terms of geometry, between the lowest en
conformations retained in two or more stacks is a good indicator of convergence. Typic
we execute 5-10 runs for a given peptide; if about half of these reach the same lo\
conformation, we assume that the global minimum has been reached.

COMPARISON WITH SOME OTHER MC METHODS

To compare the global optimization efficiencies one could estimate the average ni
ber of energy evaluations required to identify a native-like conformation with sufficient
low conformational energy. First, we compared four zero-order algorithms of random s
generation: changing one randomly selected variable at each step with various an
tudes; changing two or more coupled variables with°l@@plitude; and MD-like random
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The success criterion:
0.9+ (1) Correct pattern of H-bonds; | -
(2) E< Emin+3kcal/mol.

® 0.8r .
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FIG. 4. The fraction of successful runs of OBMCM [7], BMC [1], and MCM [6] simulations as a function
of the number of energy evaluations. The success is defined as identification of a conformation with the co
hydrogen bonding pattern and the energy gap from the global minimum eBgggss than 3 kcal/mol. For the
BMC simulations, no successful run was found within 40° energy evalutions.

movements of all variables with small amplitudes. Simulations ofatheelix and ag-
hairpin peptide indicated that a zero-order optimal-bias MC algorithm yielded both larg
rmsd’s and larger acceptance ratios than all the unbiased categories (Table 2 in [38]).

To analyze the effect of the optimal bias on the simulation efficiency three representa
MC global optimization methods were analyzed recently in [38]. In that work athe
initio simulation of a 12-residue-helix and a 12-residug-hairpin were used to compare
OBMCM, BMC zero-order optimization [1], and MCM first-order optimization [6]. For
each method the results of 10 independent simulations, starting from arandom set of dihe
angles, were averaged. The performance of OBMCM, measured as the time requiredtor
the 50% success rate, was one order of magnitude better than the performance of MCVM
about two orders of magnitude better than that of BMC (Fig. 4).

We also compared the OBMCM performance with that of the diffusion process-controll
MC algorithm (DPCMC) [36]; however, the comparison was complicated by substant
differences in the molecular representation and the energy function between the two
ods. We implemented the DPCMC three-step conformation generation scheme [36]
performed the simulation for the all-atom model of the 16-residue peptide [39]. The p
liminary results using DPCMC (Fig. 5) did not show a drastic performance enhancem
over the OBMCM step generation scheme; however, the inferior performance of DPCI
in our test may be due to the implementation details.

SIMULATION OF ¢, 3, AND BBa PEPTIDES

After some efforts to improve the ECEPP3 energy function and the solvation model
were able to predict peptides with different secondary structures using identical proced.
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FIG.5. The bestenergies achieved in the DPCMC and OBMCM simulations for a 16-restoeiex peptide
as afunction of the number of energy evaluations. We performed the DPCMC simulations at 500 K with and wit!
temperature adjustments proposed in [44]. The adjustments algorithm temporarily doubles the temperature if
than 10 trial conformations were rejected in a row. Each presented curve was the average of four indepel
simulations from random starting conformations.

and energy functions. The examples include 12- and 16-residue helical peptides [7, 38
and 12-residug-hairpins [8, 38], and the originally designed 23-resigger peptide [8]
containingd-proline in the fourth position and a phenanthrol side chain in the sixth positic
[40]. Here we report a structure prediction of a new 23-resggite peptide, which contains
only the standard amino acids [9].

Figure 6 shows a series of snapshots taken at different time points during one of
simulations. Each of the four simulations started from a different totally random conforn
tion. Up to 13,000,000 energy evaluations were allowed. Three of four simulations fot
the lowest energy conformation with an accuracy of 3 kcal/mol. The fourth simulation w
stuck at higher energy conformations. The temperature was doubled from 650 to 700 ti
(i.e., the consecutive rejection limit was reached, on average, once per 100 random mc
during each simulation. In all simulations we observed that the C-terminal helix fou
the lowest energy conformation earlier than gy&airpin. The amount of helicity varies
in the set of low energy conformations but most of the conformations have at leas
part of the C-terminal helix. The short beta hairpin at the N-terminus is less pronoun
and is present only in a fraction of the low energy conformations, including the lowe
energy one. We found many low energy conformations in which the hairpin adopts c
ferent conformations or packs differently. The stabilization gap between the lowest ene
BBa conformation, and the lowest energy conformation with a different topology in whic
both theB-hairpin and a turn of the C-terminal helix lose their secondary structures,
6.8 kcal/mol.

Unfortunately, the experimental structure of the BBA5 peptide is not available for dire
comparison. In the minimal energy conformation (i) the C-terminal helix spans residt
from 12 to 20 (exactly the same range is observed in the experimental structure, the back
rmsd with BBAL is 0.4A, all-atom rmsd is 1.8)); (i) the g-hairpin spans residues 2 to
7 (the same as the range in the experimental structure), and the rmsd with BBA1 va
are 0.6 and 1. for the backbone and all atoms, respectively. However, the packing
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X

(o]
(9.3A, -368.8 ke/m) (4.7A, -367.7 kc/m)

&
(3.1A, -370.6 ke/m) (5.2A, -378.6 kc/m)

G23

A22

The lowest energy conformation, E=-385.4 kc/m

FIG. 6. A series of low energy conformations of the 23-residue peptide (BBA5), and the lowest @gergy
conformation. The rms deviation from the minimal energy conformation is shown (the experimental structure
BBAS is not available).
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the hairpin onto the helix in the predicted BBA5 conformation is shifted compared to t
BBA1, with the global rmsd equal to 3R Despite the packing problems, the observec
similarity between the minimal energy conformation for BBA5 and the NMR structure
BBAL1 [9] is encouraging.

CONCLUSIONS

The Optimal Bias Monte Carlo-minimization, featuring an improved energy function ai
an extended set of random moves, can identify the unique global minimum of a 23-resi
peptide (containing 70 essential torsion angles and 385 atoms) after starting from &
of random torsion angle values. Two principal parts of this minimal structure correspc
with high accuracy to the known experimental three-dimensional structure of the pept
however, the packing of these parts differs from the experiment. To our knowledge,
other procedure is capable of finding this conformation from a truly random start. O
calculation takes about 200 h on a single R10000 processor. An identical energy func
and the simulation procedure also predictaghelical and g3-hairpin peptide [8, 38]. A
minor improvement of the energy function combined with a teraflop supercomputer mi
be sufficient forab initio predictions of small proteins.
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