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Sequence comparison remains a powerful tool to assess the structural
relatedness of two proteins. To develop a sensitive sequence-based pro-
cedure for fold recognition, we performed an exhaustive global alignment
(with zero end gap penalties) between sequences of protein domains
with known three-dimensional folds. The subset of 1.3 million alignments
between sequences of structurally unrelated domains was used to derive
a set of analytical functions that represent the probability of structural
signi®cance for any sequence alignment at a given sequence identity,
sequence similarity and alignment score. Analysis of overlap between
structurally signi®cant and insigni®cant alignments shows that sequence
identity and sequence similarity measures are poor indicators of struc-
tural relatedness in the ``twilight zone'', while the alignment score allows
much better discrimination between alignments of structurally related
and unrelated sequences for a wide variety of alignment settings. A fold
recognition benchmark was used to compare eight different substitution
matrices with eight sets of gap penalties. The best performing matrices
were Gonnet and Blosum50 with normalized gap penalties of 2.4/0.15 and
2.0/0.15, respectively, while the positive matrices were the worst perfor-
mers. The derived functions and parameters can be used for fold recog-
nition via a multilink chain of probability weighted pairwise sequence
alignments.
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Introduction

Evaluating the signi®cance of an alignment is an
important problem in fold recognition. The actual
statistics, however, depend on the alignment algor-
ithm, choice of the substitution matrix and gap
penalties. These problems have been described in
detail recently in several excellent reviews (Bryant
& Altschul, 1995; Altschul & Gish, 1996; Pearson,
1996; Vingron, 1996; Henikoff, 1996). Analytical
expressions for the statistical signi®cance of
sequence comparisons by the fast maximal seg-
ment pair algorithm used in a popular program
BLAST (Altschul et al., 1990) were derived by
Karlin & Altschul (1990). Later, they derived the
statistics for multiple high-scoring segments
(Karlin & Altschul, 1993). Waterman & Vingron

(1994a,b) extended the approach to alignments
with high gap penalties.

Sequence comparisons can be used to infer the
similarity of three-dimensional topologies (Lesk &
Chothia, 1980; Chothia & Lesk, 1986); in this case,
information about three-dimensional (3D) struc-
tures is used directly to derive probability distri-
butions. An important number resulting from this
analysis is the threshold of sequence identity that
guarantees 3D similarity. From the analysis of
homologous structures, Chothia & Lesk (1986)
established a sequence threshold of 30% and the
``twilight zone'' of sequence identities between 15
and 30%. Kabsch & Sander (1984) noticed that this
threshold should depend on the length of
sequences being compared: ®ve and even six resi-
due fragments with identical amino acid sequences
may adopt totally unrelated 3D folds. Recently the
six-residue record was broken by Minor & Kim
(1996), who designed a protein in which two 11
residue fragments with identical sequences
adopted different 3D folds. The idea of length-
dependent sequence identity threshold led to the

Abbreviations used: 3D, three-dimensional; HSSP,
homology-derived structure of proteins (Sander &
Schneider, 1991); ICM, internal coordinate mechanics;
SCOP, structural classi®cation of proteins (Murzin, et al.,
1995); ZEGA, zero end-gap global alignment.
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HSSP database (Sander & Schneider, 1991) and the
following dependence:

t�L� � 290:15Lÿ0:562 �m for 10 < L < 80 residues

t�L� � 25�m for L > 80 residues �1�
where t is the percentage identity, L is the align-
ment length and m is the safety margin parameter
(3% in HSSP).

Statistics of sequence comparisons depend on
the random model and on the alignment model.
Recent comparisons of a number of different
amino acid exchange matrices (Vogt et al., 1995)
showed good and similar performance of several
matrices, including those of Gonnet et al. (1992),
Henikoff & Henikoff (1992), Johnson et al. (1993),
and others. The best performers were positive
matrices in which a constant is added to make all
the elements greater than zero. Vogt et al. (1995)
analyzed the accuracy of sequence alignments as a
criterion of quality of the sequence comparison
procedure.

Local alignment algorithms and a number of
comparison matrices were carefully tested and
ranked according to their recognition ef®ciency in
searching 134 query sequences through 67 protein
superfamilies (Pearson, 1995).

Here we used the global Needleman & Wunsch
(1970) sequence alignment algorithm with zero end-
gap penalties (further referred to as ZEGA) in an
exhaustive cross-comparison of 2819 sequences of
protein domains of known 3D structures as de®ned
by the SCOP database (Murzin et al., 1995) to
answer the following questions. (a) What is the
probability that a sequence alignment is structurally
signi®cant at a given length, sequence identity,
sequence similarity and alignment score? (b) Which
of the three mentioned criteria provides the most
sensitive criterion of structural signi®cance? (c)
What residue substitution matrix and gap penalties
are optimal for the global alignment based fold rec-
ognition? To address these problems we derived a
family of analytical probability functions for eight

Figure 1. Distribution of sequence identities in 1,330,931 pairwise Needleman & Wunsch (1970) alignments with zero
end gap penalties between sequences of structurally unrelated protein domains (U-set) as a function of length of the
shorter sequence (L). Only alignments with sequence overlap greater than 50% were retained. Shading represents the
probability density (i.e. the fraction of alignments with the given number of identical residues and minimal sequence
length). White corresponds to zero density (no alignments). At low sequence identities, two sequences cannot be
aligned with the global alignment algorithm utilizing a non-positive comparison matrix. This explains the white zone
at very low identities. The upper continuous curve combined with the straight line shows the Sander & Schneider
(1991) dependence of sequence identity threshold (equation (1)) with the safety margin m � 3%, as used in the HSSP
database. The broken line is the 4s-level threshold for this comparison setup (equation (2)). The four continuous
curves represent the derived thresholds at the following levels: 1, 4, 10 and 20%, from top to bottom.
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different comparison matrices and a variety of gap
penalties. A subfamily of sequence identity distri-
bution functions resulted in an updated length-
dependence of the HSSP identity threshold. A rigor-
ous fold recognition performance test allowed rank-
ing matrices and gap penalties.

Results

How high can sequence identity be between
unrelated sequences?

All pairs of structurally unrelated domain
sequences were aligned using the HSSP matrix and
gap penalties (Sander & Schneider, 1991). Align-
ments with less than 50% sequence overlap were
discarded. Figure 1 contains the actual distribution
of sequence identities of over a million ZEGA
alignments of sequences with different SCOP folds.
The sequence identity percentile (I) is the most tra-
ditional measure of sequence similarity, because it
is easily determined and does not depend on resi-
due exchange matrix or gap parameters once the
alignment has been formed. The upper part of the
distribution is the border of the twilight zone. The
absence of alignments with identities below 5 to
10% is due to the fact that a global alignment pro-
cedure with non-positive comparison matrices can-
not align sequences that are so different that the
alignment becomes negative. The procedure pre-
fers to make the two sequences overlap over a
small fragment (less than 50% of the shortest
length) and push the rest into hanging ends.

The distribution shown in Figure 1 was statisti-
cally analyzed as described in Methods and par-
ameters of the analytical functions representing the
twilight zone of sequence identities were derived.
The distribution in the twilight zone at each length
L is described by a normal distribution with par-
ameters:

mI�L� � 31Lÿ0:124; sI�L� � 18:2Lÿ0:305

The analogue of the HSSP threshold dependence t
at the 4s level is:

t�L� � 31Lÿ0:124 � 4 � 18:2 � Lÿ0:305 �2�
leading to 41.2% at 50 residues, 35.4% at 100 resi-
dues, 30.5% at 200 residues and 28% at 300 resi-
dues. This dependence represents the identity
threshold better than the HSSP dependence and
speci®es the level of signi®cance. However, the
threshold does depend on the comparison matrix
and gap penalties, e.g. lower gap penalties may
result in higher identity for the same pair of
sequences.

Analytical functions for identity, similarity and
score in 64 comparison settings

Similar distributions were built and analyzed for
sequence identity (I) and for the complete align-
ment score (A) and the sequence similarity

measure (S) de®ned as the normalized alignments
score without gap penalties (see Methods for an
exact de®nition). For each criterion, eight residue
comparison matrices and eight sets of gap penal-
ties were tested. For each of the 64 settings an
exhaustive cross-comparison of the SCOP
sequences was performed. Analytical formulae for
m(L) and s(L) were carefully derived from the dis-
tributions using the weighted twilight zone ®tting
within each L-set (to derive mL and sL) as well as
®nal weighted ®tting to mL and sL (see Methods).
Twilight zone ®tting means that instead of just cal-
culating the mean and the standard deviation for
each L-set, which would be appropriate for a nor-
mal distribution, we ®tted the tail of the integrated
observed distribution to the integrated theoretical
distribution. The theoretical distribution was Gaus-
sian (normal) for the I and S-distributions (inte-
grated distribution being the complementary error

Figure 2. A sample distribution of (a) sequence identity
I, (b) sequence similarity S, and (c) alignment score A,
in the subset L � 153 residues. This distributions illus-
trates the calculation of probability distributions and the
overlap W between the U-set (black bars) and R-set
(gray bars), i.e. between a set of alignments of unrelated
and related sequences, respectively. Continuous lines
show the cumulative probability distribution for the U-
set. Comparison between (a), (b) and (c) illustrates the
superiority of the alignment score over other similarity
measures for this particular L-set.

Do Aligned Sequences Share the Same Fold? 357



Table 1. Distribution parameters (the mean and the standard deviation) for sequence identity, sequence similarity
(m(L) � ALa, s(L) � BLb) and alignment score (mA(L) � D � L �sA(L) � E � L �e) derived from structurally insigni®cant
alignments

Matrix Normalized Identity Similarity Alignment score
(av.diag.a) gapOpen/Ext AI aI BI bI As as Bs bs D d E e

Blosums45 2.8/0.15 29.7 ÿ0.135 15.0 ÿ0.274 25.3 ÿ0.211 41.8 ÿ0.502 2.24 0.006 1.15 0.0014
(6.25) 2.8/0.1 28.4 ÿ0.116 16.6 ÿ0.298 23.6 ÿ0.169 45.1 ÿ0.513 2.26 0.008 1.14 0.0020

2.4/0.15 29.7 ÿ0.116 16.4 ÿ0.291 27.7 ÿ0.187 46.7 ÿ0.517 2.30 0.009 1.16 0.0023
2.4/0.1 28.7 ÿ0.099 18.5 ÿ0.320 26.1 ÿ0.149 50.4 ÿ0.529 2.26 0.014 1.15 0.0032
2.0/0.15 29.3 ÿ0.091 18.2 ÿ0.312 28.4 ÿ0.147 50.4 ÿ0.523 2.28 0.018 1.17 0.0039
2.0/0.1 29.1 ÿ0.079 20.8 ÿ0.341 28.7 ÿ0.124 54.9 ÿ0.537 2.09 0.027 1.18 0.0047
1.6/0.15 30.3 ÿ0.071 21.0 ÿ0.341 31.9 ÿ0.120 54.4 ÿ0.529 2.00 0.037 1.25 0.0055
1.6/0.1 30.5 ÿ0.062 23.9 ÿ0.365 32.8 ÿ0.103 60.2 ÿ0.544 1.75 0.049 1.29 0.0061

Blosum50 2.8/0.15 32.1 ÿ0.151 15.1 ÿ0.268 28.3 ÿ0.235 43.8 ÿ0.503 2.10 0.003 1.20 0.0002
(6.68) 2.8/0.1 30.3 ÿ0.128 17.1 ÿ0.301 25.6 ÿ0.185 49.0 ÿ0.526 2.15 0.004 1.19 0.007

2.4/0.15 30.7 ÿ0.122 16.5 ÿ0.285 28.1 ÿ0.193 49.9 ÿ0.525 2.25 0.005 1.21 0.0010
2.4/0.1 29.9 ÿ0.106 18.8 ÿ0.319 27.9 ÿ0.161 54.5 ÿ0.542 2.27 0.007 1.19 0.0019
2.0/0.15 30.9 ÿ0.101 17.9 ÿ0.302 31.2 ÿ0.165 52.4 ÿ0.526 2.36 0.010 1.21 0.0026
2.0/0.1 30.5 ÿ0.088 20.8 ÿ0.338 31.0 ÿ0.139 57.8 ÿ0.544 2.27 0.017 1.21 0.0038
1.6/0.15 31.5 ÿ0.078 20.5 ÿ0.329 34.1 ÿ0.131 55.8 ÿ0.528 2.24 0.027 1.26 0.0048
1.6/0.1 31.8 ÿ0.071 23.7 ÿ0.361 35.1 ÿ0.117 62.7 ÿ0.551 1.99 0.039 1.30 0.0056

Blosum62 2.8/0.15 33.5 ÿ0.157 15.4 ÿ0.266 23.3 ÿ0.200 35.3 ÿ0.455 1.78 0.003 1.08 0.007
(5.23) 2.8/0.1 31.6 ÿ0.134 17.5 ÿ0.301 21.7 ÿ0.154 39.8 ÿ0.483 1.82 0.004 1.08 0.009

2.4/0.15 32.4 ÿ0.129 16.4 ÿ0.278 25.2 ÿ0.170 40.1 ÿ0.477 1.89 0.004 1.09 0.0011
2.4/0.1 31.0 ÿ0.111 18.8 ÿ0.315 24.5 ÿ0.137 43.5 ÿ0.498 1.95 0.005 1.09 0.0017
2.0/0.15 31.8 ÿ0.102 17.4 ÿ0.290 27.5 ÿ0.140 41.3 ÿ0.476 2.08 0.007 1.11 0.0024
2.0/0.1 31.2 ÿ0.089 20.3 ÿ0.329 27.4 ÿ0.115 44.4 ÿ0.491 2.11 0.012 1.09 0.0035
1.6/0.15 32.2 ÿ0.079 19.2 ÿ0.311 30.6 ÿ0.112 42.2 ÿ0.471 2.16 0.020 1.13 0.0047
1.6/0.1 32.3 ÿ0.069 22.4 ÿ0.343 31.5 ÿ0.093 46.1 ÿ0.486 1.93 0.031 1.15 0.0058

Gonnet 2.8/0.15 23.3 ÿ0.093 24.0 ÿ0.396 36.5 ÿ0.165 72.4 ÿ0.568 3.08 0.031 1.51 0.0046
(4.51) 2.8/0.1 23.5 ÿ0.087 26.2 ÿ0.414 36.9 ÿ0.148 81.1 ÿ0.588 2.85 0.039 1.53 0.0053

2.4/0.15 23.9 ÿ0.081 26.6 ÿ0.416 38.9 ÿ0.145 81.5 ÿ0.587 2.82 0.046 1.57 0.0056
2.4/0.1 24.5 ÿ0.077 28.5 ÿ0.428 40.3 ÿ0.135 89.8 ÿ0.602 2.58 0.057 1.61 0.0062
2.0/0.15 24.9 ÿ0.070 29.4 ÿ0.433 42.2 ÿ0.127 91.0 ÿ0.604 2.52 0.067 1.67 0.0065
2.0/0.1 26.0 ÿ0.069 31.4 ÿ0.442 44.9 ÿ0.123 98.7 ÿ0.613 2.31 0.080 1.72 0.0072
1.6/0.15 26.8 ÿ0.061 32.9 ÿ0.451 47.2 ÿ0.113 102.6 ÿ0.620 2.24 0.096 1.81 0.0076
1.6/0.1 28.8 ÿ0.065 34.4 ÿ0.451 51.8 ÿ0.116 108.1 ÿ0.619 2.09 0.110 1.87 0.0085

HSSP 2.8/0.15 32.7 ÿ0.147 16.7 ÿ0.280 15.7 ÿ0.109 24.5 ÿ0.378 1.52 0.006 0.97 0.0019
(7.45) 2.8/0.1 31.0 ÿ0.124 18.2 ÿ0.305 14.6 ÿ0.064 27.3 ÿ0.402 1.57 0.006 0.98 0.0021

2.4/0.15 32.4 ÿ0.123 17.4 ÿ0.286 17.3 ÿ0.085 28.1 ÿ0.402 1.64 0.007 1.00 0.0023
2.4/0.1 31.2 ÿ0.106 19.2 ÿ0.317 17.3 ÿ0.062 30.2 ÿ0.423 1.70 0.008 1.01 0.0028
2.0/0.15 32.3 ÿ0.102 17.8 ÿ0.292 20.0 ÿ0.073 28.8 ÿ0.404 1.80 0.010 1.03 0.0034
2.0/0.1 31.4 ÿ0.086 19.8 ÿ0.321 20.3 ÿ0.054 29.9 ÿ0.414 1.84 0.014 1.03 0.0044
1.6/0.15 32.6 ÿ0.078 18.7 ÿ0.302 22.9 ÿ0.053 28.6 ÿ0.396 1.85 0.021 1.07 0.0057
1.6/0.1 31.9 ÿ0.063 21.0 ÿ0.329 23.3 ÿ0.035 29.9 ÿ0.404 1.56 0.033 1.09 0.0068

McLachlan 2.8/0.15 25.2 ÿ0.161 16.8 ÿ0.385 44.7 ÿ0.013 10.5 ÿ0.325 1.42 0.394 1.04 0.0063
(8.07) 2.8/0.1 23.8 ÿ0.146 16.0 ÿ0.367 44.0 ÿ0.009 9.9 ÿ0.303 1.36 0.395 1.04 0.0064

2.4/0.15 22.9 ÿ0.130 17.1 ÿ0.378 43.8 ÿ0.005 11.3 ÿ0.329 1.27 0.397 1.04 0.0063
2.4/0.1 21.8 ÿ0.113 16.5 ÿ0.363 43.2 ÿ0.001 10.8 ÿ0.310 1.20 0.399 1.03 0.0065
2.0/0.15 21.3 ÿ0.099 18.1 ÿ0.379 43.2 0.002 12.6 ÿ0.340 1.10 0.402 1.03 0.0065
2.0/0.1 20.6 ÿ0.085 18.1 ÿ0.370 42.9 0.006 12.7 ÿ0.332 1.01 0.404 1.02 0.0068
1.6/0.15 21.1 ÿ0.077 20.4 ÿ0.390 43.6 0.006 14.8 ÿ0.363 0.90 0.409 1.02 0.0068
1.6/0.1 20.9 ÿ0.067 20.3 ÿ0.381 43.7 0.009 14.8 ÿ0.352 0.82 0.412 1.01 0.0073

Blosum50 p 2.8/0.15 25.4 ÿ0.162 16.7 ÿ0.384 50.9 ÿ0.048 8.6 ÿ0.295 2.15 0.372 0.84 0.0064
(11.65) 2.8/0.1 24.2 ÿ0.148 16.1 ÿ0.370 50.2 ÿ0.044 8.5 ÿ0.281 2.09 0.373 0.83 0.0065

2.4/0.15 23.5 ÿ0.134 17.5 ÿ0.385 50.0 ÿ0.041 10.4 ÿ0.322 2.01 0.376 0.84 0.0067
2.0/0.15 22.1 ÿ0.107 18.9 ÿ0.389 49.5 ÿ0.034 12.9 ÿ0.354 1.84 0.381 0.83 0.0066
2.0/0.1 21.5 ÿ0.093 19.1 ÿ0.382 49.2 ÿ0.030 13.5 ÿ0.352 1.76 0.383 0.82 0.0070
1.6/0.15 22.1 ÿ0.086 21.3 ÿ0.401 50.1 ÿ0.030 16.7 ÿ0.392 1.66 0.388 0.83 0.0069
1.6/0.1 22.0 ÿ0.076 21.5 ÿ0.392 50.3 ÿ0.027 17.1 ÿ0.384 1.58 0.391 0.81 0.0075

Gonnet p 2.8/0.15 21.5 ÿ0.155 22.4 ÿ0.449 64.6 ÿ0.038 8.7 ÿ0.308 2.21 0.506 0.78 0.0067
(9.68) 2.8/0.1 20.6 ÿ0.143 21.7 ÿ0.438 63.9 ÿ0.035 8.4 ÿ0.290 2.15 0.507 0.77 0.0068

2.4/0.15 20.0 ÿ0.131 22.4 ÿ0.441 63.6 ÿ0.033 10.0 ÿ0.324 2.07 0.509 0.78 0.0067
2.4/0.1 19.3 ÿ0.118 21.9 ÿ0.432 63.1 ÿ0.030 10.0 ÿ0.314 2.00 0.511 0.77 0.0069
2.0/0.15 19.1 ÿ0.108 23.4 ÿ0.441 63.2 ÿ0.028 12.6 ÿ0.361 1.91 0.514 0.77 0.0068
2.0/0.1 18.6 ÿ0.096 23.2 ÿ0.434 62.8 ÿ0.025 12.9 ÿ0.354 1.83 0.516 0.76 0.0072
1.6/0.15 19.0 ÿ0.090 25.2 ÿ0.446 63.6 ÿ0.025 16.3 ÿ0.402 1.72 0.520 0.76 0.0071
1.6/0.1 18.9 ÿ0.081 25.2 ÿ0.438 63.6 ÿ0.023 16.8 ÿ0.394 1.64 0.523 0.75 0.0076

Values of m and s can be transformed into threshold and probability distributions (see Results).
a Normalized gap penalties are calculated with respect to the amino acid frequency weighted average values of the diagonal ele-

ments of the comparison matrix.
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function erfc) and the extreme value distribution
(Gumbel, 1962) for the A-distribution. This deri-
vation gives a more accurate description of the twi-
light zone even for large deviations from the
theoretical distribution. A cross-section of the I-dis-
tribution at L � 153 residues (Figures 1 and 2)
shows a sample distribution from which intermedi-
ate parameters such as mean mI, standard devia-
tion sI and overlap WI were derived for L � 153.
Similar cross-sections were calculated for all L and
then smoothed with sample-size dependent
weights and combined into an analytical function
of L. I-distribution, S-distribution and A-distri-
butions were processed similarly.

The ®nal dependencies for the thresholds at a
given probability and length, as well as the

probability at a given criterion value and length
for I, S and A can be obtained from analytical
dependencies of parameters of theoretical distribu-
tion, m(L) and s(L), as functions of length. Each
distribution was described by four parameters A,
a, B, b for I and S-distributions or D, d, E, e for the
A-distribution, respectively. On the basis of visual
analysis and w2-goodness-of-®t test, dependencies -
mA(L) and sA(L) were represented by linear func-
tions rather than the power functions chosen for I
and S dependencies. The coef®cients for the for-
mulae are given in Table 1. The formulae read:

mI�L� � AIL
aI ; sI�L� � BIL

bI �3�

mS�L� � ASLaS ; sS�L� � BSLbS �4�

mA�L� � D� L � d; sA�L� � E� L � " �5�
The mean values and standard deviations for the
Blosum45 matrix and normalized gap penalties of
2.8 and 0.15 are shown in Figure 3 along with the
number of alignments in each L-subset. Other
dependencies can be calculated using coef®cients
from Table 1.

For a criterion Y, where Y is sequence identity,
similarity or alignment score, the threshold depen-
dence on length at a given sigma-level y can be
obtained as:

t�L� � mY�L� � y � sY�L� �6�
The probability that criterion I, S or A is higher
than t can be expressed by the normal (for I or S)
and the extreme value distribution (for A: see
Methods and Appendix):

PY�> t� � 1

2
erfc

y���
2
p
� �

;

where y � tÿmY�L�
sY�L� for Y � I or S �7�

PA�> t� � 1ÿ eÿeÿ1:618y

;

where y � tÿmA�L�
sA�L� for A �8�

The above family of functions can be used to
specify cutoff values in database searches as well
as to assign a probability of structural insigni®-
cance to an alignment on the bases of selected cri-
terion I, S or A. The alignment accuracy correlates
with probability (Figure 4).

Alignment score indicates structural
resemblance much better than sequence
identity or similarity

To ®nd the most indicative measure of structural
similarity we compared the integral overlap of
Y-values (Y � I,S,A) for alignments between
sequences with the same folds (R-set) and

Figure 3. Distribution of the derived median (mL,
squares) and standard deviation (sL, open circles) par-
ameters for all L-subsets for (a) sequence identity I, (b)
sequence similarity S, and (c) alignment score A, for Blo-
sum45 matrix and gap penalties 17.5 and 0.9 The
marked continuous lines show the interpolations of local
distributions for all sequence lengths the contributions
being weighted according to NL. Crosses represent the
value above which a 2.28% fraction of the U-set is
found (corresponding to the mL � 2sL value for the nor-
mal distribution). (d) The numbers NL of alignments in
L-subsets.
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sequences with different folds (U-set). Figure 2
gives an example of the separation of the sets at
L � 153. In this case the overlap and hence the rec-
ognition ef®ciency is worst for sequence identity
and best for alignment score. An integrated
measure, the total overlap value W, calculated as
described in Methods for all L-sets shows that with
Blosum45 matrix and normalized gap penalties of
2.8/0.15, ranking is the same, with the overlap
being 0.230, 0.194, 0.076 for sequence identity,
sequence similarity and alignment score, respect-
ively. Therefore for the above comparison setup
the score provided the best separation between the
R and U-sets.

Numerical optimization of function W(Y) was
performed to ®nd a linear combination of three
scores Y� fI I�fS S�(1 ÿ fI ÿ fS)A, minimizing the
overlap between the two sets in the space of par-
ameters fS and fI. If parameters fS and fI are
restricted to ranges [0,1], the best combination is
fS � 0 and fI � 0. The overlap function in this vicin-
ity has a shallow minimum and can be slightly
improved at fS and fI between 0 and ÿ0.3. How-
ever, the gain is not strong enough to justify the
usage of this combination.

The overlap value W could not be used to com-
pare I, S and A for all eight matrices and eight sets
of gap penalties because the number of formed
alignments satisfying the 50% criterion varied
strongly between settings. For example, the num-
ber of alignments in the U-set (unrelated
sequences) varied from 1,257,300 (100%) for all-
positive matrices to 121,958 (9.7%) for the HSSP
matrix with normalized penalties 2.8/0.15 (Table 2),
and the number of alignments in the R-set varied
from 73,631 (100%) to 58.7%, respectively, resulting
in different normalization of the overlap values.
Therefore, we used another performance criterion,
the total number of sequence pairs with the align-
ment criterion (I, S or A) higher than any false
positive at a given length (see Methods for the

exact de®nition). This performance test showed
that alignment score recognizes structural signi®-
cant alignments better than sequence identity or
similarity consistently in all 40 setups with non-
positive matrices. All-positive matrices had low
discriminating ability using all three criteria. The
performance of similarity was a little better than
that of identity (Table 2).

To further compare I, S and A, by identifying
dif®cult fold recognition cases and evaluating per-
formance in different alignment settings, we
divided all the meaningful alignments (i.e. align-
ments between sequences from the same SCOP
superfamily) into three categories (Figure 5). Each
alignment was considered to be recognized as sig-
ni®cant if its criterion was above the highest false
positive in its length category. Three criteria,
sequence identity, similarity or the alignment score
(I, S and A) were analyzed separately. For each cri-
terion, eight different gap penalty settings with
®ve non-positive comparison matrices, 40 settings
in total, were tested. The alignments recognized in
all the 40 settings were assigned to the obvious
zone, those not recognized with any setting were
assigned to the unresolved zone, and the rest con-
stituted the ambiguous zone. The success of recog-
nition in the ambiguous zone depended on the
choice of matrix and penalties. The size of the
ambiguous zone shows the number of alignments
recognized differently under different comparison
settings.

The location of the ambiguous zone for the three
criteria (I, S and A) again illustrates the difference
in performance (Figure 5). While using the
sequence identity with the best comparison setup,
54% of the alignments could not be recognized,
only 50.3% of the alignments were not recognized
using alignment score with even the worst matrix
and gap penalties. The similarity measure per-
formed somewhat better than sequence identity
but de®nitely worse than the alignment score.

Figure 4. Accuracy of alignments at different levels of similarity for (a) sequence identity I, (b) sequence similarity S,
and (c) alignment score. The y-axis shows the fraction of incorrect residue pairs. The comparison was made between
the structural alignment from a database of structurally aligned protein families (Johnson et al., 1993) and the
Needleman & Wunsch (1970) sequence alignment.
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Table 2. Fraction of structurally signi®cant alignments correctly recognized in the ambiguous zone (see Figure 5) for different matrices
and gap parameters

Residue Normalized to Fraction of alignments Total significant alignments over the 1st
comparison average formed with >50% overlap false positive Fraction of recognized
matrix diagonala Unnormalizeda significant alignments by
(average gapOpen/ gapOpen/ Unrelatedb Relatedc Alignment alignment score
diagonala) Extension Extension nU nR Identity Similarity score in the ambiguous zoned pA

Blosum45 2.8/0.15 17.5/0.94 37.3 73.1 31519 34528 39011 57.0
(6.25) 2.8/0.1 17.5/0.63 45.2 76.8 31168 33495 39130 59.8

2.4/0.15 15./0.94 52.4 82.5 31056 33077 39427 66.7**
2.4/0.1 15./0.63 61.9 84.5 30473 32108 39416 66.4**
2.0/0.15 12.5/0.94 71.0 88.3 30154 31614 39543 69.4**
2.0/0.1 12.5/0.63 78.6 90.3 29842 30629 39476 67.8**
1.6/0.15 10./0.94 86.4 95.0 29718 30371 39460 67.4**
1.6/0.1 10./0.63 90.3 97.0 29138 29708 39162 60.5*

Blosum50 2.8/0.15 18.7/1 22.7 65.0 31877 34650 39338 64.6*
(6.68) 2.8/0.1 18.7/0.67 28.7 68.3 31326 33307 39398 66.0**

2.4/0.15 16./1. 33.9 70.7 31177 33240 39590 70.5***
2.4/0.1 16./0.67 45.1 78.0 30620 32381 39582 70.3***
2.0/0.15 13.4/1. 56.2 82.8 30171 31645 39655 72.0***
2.0/0.1 13.4/0.67 67.9 87.9 29815 30743 39477 67.8**
1.6/0.15 10.7/1 79.8 91.6 29554 30352 39493 68.2**
1.6/0.1 10.7/0.67 86.1 96.0 29137 29666 39179 60.9*

Blosum62 2.8/0.15 14.6/0.78 13.6 60.1 32510 34939 38959 55.8
(5.23) 2.8/0.1 14.6/0.52 17.5 62.5 31955 33930 39095 59.0

2.4/0.15 12.6/0.78 21.5 64.4 31444 32865 39386 65.7**
2.4/0.1 12.6/0.52 29.9 70.3 30688 31980 39409 66.3**
2.0/0.15 10.5/0.78 39.9 74.3 30140 31513 39511 68.6**
2.0/0.1 10.5/0.52 54.1 83.6 29818 30677 39397 66.0**
1.6/0.15 8.4/0.78 69.8 90.9 29581 30154 39313 64.0*
1.6/0.1 8.4/0.52 79.7 94.9 29068 29482 39071 58.4

Gonnet 2.8/0.15 12.6/0.68 84.3 90.1 31770 32778 39738 73.9**
(4.51) 2.8/0.1 12.6/0.45 87.9 91.3 31405 31420 39589 70.4***

2.4/0.15 10.8/0.68 90.9 92.1 31371 31377 39799 75.3***
2.4/0.1 10.8/0.45 93.1 94.0 30826 30561 39522 68.9**
2.0/0.15 9./0.68 95.3 94.4 30726 30516 39678 72.5***
2.0/0.1 9./0.45 96.5 98.8 30065 29713 39291 63.5*
1.6/0.15 7.2/0.68 97.9 99.7 29727 29419 39279 63.2*
1.6/0.1 7.2/0.45 98.4 99.8 29433 28551 38726 50.4

HSSP 2.8/0.15 20.9/1.12 9.7 58.7 31853 34066 37842 29.9
(7.45) 2.8/0.1 20.9/0.75 12.9 60.7 31319 32926 37941 32.2

2.4/0.15 17.9/1.12 16.2 62.0 31102 32468 38417 43.3
2.4/0.1 17.9/0.75 23.4 66.1 30508 31672 38400 42.9
2.0/0.15 14.9/1.12 32.1 72.2 30155 31040 38709 50.0
2.0/0.1 14.9/0.75 45.3 84.1 29779 30289 38571 46.8
1.6/0.15 11.9/1.12 61.1 90.2 29436 29885 38621 48.0
1.6/0.1 11.9/0.75 72.3 94.0 28990 29349 38265 39.7

McLachlan 2.8/0.15 22.6/1.21 100 100 33897 35833 34996 n/ae

(8.07) 2.8/0.1 22.6/0.81 100 100 33508 35569 35241 n/a
2.4/0.15 19.4/1.21 100 100 33864 36241 35868 n/a
2.4/0.1 19.4/0.81 100 100 33576 35844 36145 n/a
2.0/0.15 16.1/1.21 100 100 33727 36209 36933 n/a
2.0/0.1 16.1/0.81 100 100 32892 35619 37162 n/a
1.6/0.15 12.9/1.21 100 100 32738 35796 38037 n/a
1.6/0.1 12.9/0.81 100 100 31864 34325 38161 n/a

Blosum50 p 2.8/0.15 32.6/1.75 100 100 33633 36532 35179 n/a
(11.65) 2.8/0.1 32.6/1.17 100 100 33507 36075 35410 n/a

2.4/0.15 28/1.75 100 100 33625 36961 36068 n/a
2.4/0.1 28/1.17 100 100 33223 35743 36335 n/a
2.0/0.15 23.3/1.75 100 100 33481 36342 37215 n/a
2.0/0.1 23.3/1.17 100 100 32536 35285 37539 n/a
1.6/0.15 18.6/1.75 100 100 32124 34772 38317 n/a
1.6/0.1 18.6/1.17 100 100 31393 33345 38522 n/a

Gonnet p 2.8/0.15 27.1/1.45 100 100 34235 35829 34296 n/a
(9.68) 2.8/0.1 27.1/0.97 100 100 33983 35543 34420 n/a

2.4/0.15 23.2/1.45 100 100 34481 36531 34864 n/a
2.4/0.1 23.2/0.97 100 100 34322 35853 35068 n/a
2.0/0.15 19.4/1.45 100 100 34194 35896 35694 n/a
2.0/0.1 19.4/0.97 100 100 33898 35378 35917 n/a
1.6/0.15 15.5/1.45 100 100 33750 35351 36863 n/a
1.6/0.1 15.5/0.97 100 100 33170 34396 37136 n/a

a Normalized gap penalties are calculated with respect to the amino acid frequency weighted average values of the diagonal elements of the compari-
son matrix indicated in parentheses.

b The maximal number of possible alignments between unrelated sequences was 1,257,300 (100%)
c The maximal number of possible alignments between structurally related sequences was 73,631 (100%)
d The number of asterisks denotes the surplus over 60% value in 5% steps.
e All-positive matrices McLachlan, Blosum50 p and Gonnet p produced substantially smaller number of signi®cant alignments and were not taken

into account in determination of the ambiguous zone. They would have had negative pA values in this scale.



Ranking of comparison matrices and gap
penalties in a fold recognition test

The above analysis shows that alignment score
is a good indicator of structural similarity. How-
ever, identi®cation of structurally signi®cant align-
ments is affected by the choice of comparison
matrix and gap penalties for the 4365 alignments
(5.9% of all alignments in the R-set) belonging to
the ``ambiguous'' zone. To rank matrices and gap
penalties by their performance in fold recognition,
we de®ne the performance criterion pA of a given
alignment setup as the relative number of the
ambiguous alignments that were recognized.

Table 2 contains pA values for 64 different set-
ups. Positive matrices were clearly the worst per-
formers. The HSSP matrix reached performance of
50.2% with normalized penalties of 2.0 and 0.15.
Four best matrices, Gonnet, Blosum50, Blosum45 and
Blosum62, had close performance of 75.3, 71.7, 69.4
and 68.3%, respectively. The performance criterion
shows that the optimal value of gap opening pen-
alty is within the tested interval [1.6:2.8] for non-
positive matrices. The three Blosum matrices

showed best performance with normalized gap
penalties of 2.0/0.15, and the Gonnet matrix with
2.4/0.15.

Discussion

Here, we derived analytical functions (equations
(3) to (8)) for the structural signi®cance of three
measures of global sequence alignment (ZEGA) by
exhaustive comparison between sequences of pro-
tein domains with known 3D structure (Murzin
et al., 1995). This approach is complementary to a
well-established method of evaluating the statisti-
cal signi®cance of an alignment on the basis of ran-
domly generated sequences (Needleman &
Wunsch, 1970; Fish, 1983; Altschul & Gish, 1996;
Bryant & Altschul, 1995), since de®nition of the
random model exactly according to the goal,
which is discrimination between protein folds, is
preferable. Automatic compilation of domain
assignments for all the PDB structures is not a tri-
vial task (e.g. see Orengo et al., 1993; Siddiqui &
Barton, 1995; Sowdhamini & Blundell, 1995), since
both domain de®nition and clustering procedures
have adjustable parameters and it is dif®cult to
tune them so that decisions for all different struc-
tures are equally satisfactory. The interactively
assigned fold and superfamily categories of the
SCOP database (Murzin et al., 1995) determine a
level of 3D similarity appropriate for our analysis.
It is essential that we test a global alignment pro-
cedure with zero end gaps. In contrast to local
alignment procedures such as Smith & Waterman
(1981), FASTA, and BLAST, this procedure will not
be ef®cient if two multidomain sequences are com-
pared or if a domain sequence is interrupted by a
long insertion, however the ZEGA procedure is
quite ef®cient in comparison of continuous
domains.

In our derivation of smooth functions from a set
of about a million data points we had to deal with
the problem of deviation from both normal and
extreme value distribution and sparse statistics in
L-sets. Bryant & Altschul (1995) note that ``there is
no reason to believe that the random score distri-
bution is normal''. This is equally true for the dis-
tribution of identities, similarities and alignment
scores in our U-set, i.e. gapped global alignments
with zero end penalties between sequences with
different folds. The extreme value distribution was
previously used to describe distribution of scores
of ungapped local alignments (Karlin & Altschul,
1990, 1993; Altschul & Gish, 1996) and local align-
ments with high gap penalties (Waterman &
Vingron, 1994a). We found the alignment scores to
be distributed close to the extreme value distri-
bution, as one might expect for a value that is
maximized by the alignment procedure, while the
sequence similarity S and especially sequence iden-
tity I were distributed rather normally, since they
are not directly maximized by the procedure.
Furthermore, we attempted to ®nd an accurate

Figure 5. Separation of 73,631 alignments between struc-
turally related sequences into three zones: the obvious
(above false positives in all 40 non-positive alignment
setups), the ambiguous (recognition depends on the
setup) and the unresolved (below false positives in all
40 non-positive alignment setups).
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representation of the twilight zone (upper gray
area in Figure 1). To achieve this, we ®tted the tail
of the integrated distribution (Figures 2 and 6)
rather than all the points. In this way, deviations
from the theoretical distribution in the uninterest-
ing range of low similarities did not affect the
probability functions.

The probability of structural signi®cance for an
alignment as a function of sequence identity was

meant to replace the previously derived HSSP
dependence (Sander & Schneider, 1991) shown in
Figure 1. This type of function is of general import-
ance, since one can simply count sequence identi-
ties and easily evaluate the signi®cance of an
alignment using a plot or a pocket calculator. The
downside of this convenience is a low level of
accuracy, since other indicators, especially the
alignment score, are more powerful, and the iden-
tity statistics depend on the substitution matrix
and gap penalties. The new curve (Figure 1)
mI � 4sI derived with the HSSP comparison par-
ameters is drawn at the P level of 1/31,000 to guar-
antee the signi®cance of alignments with identities
above the curve in a Swissprot search. One can see
that the HSSP curve seriously underestimates the
identity requirements for lengths between 80 and
170 residues even at the safety margin of 3%.
Therefore a larger ``safety'' margin was frequently
used. The HSSP curve was a function of the length
of the sequence of the parent PDB entry, referred
to as an alignment length. Insertions in found hom-
ologous sequences were ignored. In this work we
used a close but more symmetric de®nition of the
alignment length, as the length of the shortest
sequence (L). It is quite appropriate for a global
alignment with zero end gap penalties. The two
differences are quite close and the same formulae
can still be used, especially given the weak depen-
dence on length for average-size proteins. Two
other possible de®nitions of the alignment length,
as the number of alignment residue pairs (4L) and
the alignment length with gaps ( 5 L), can also be
used with some length correction factors depend-
ing on the gap penalties (about 20% on the aver-
age).

The HSSP statistics were extended in this work
in the following directions: (i) the dependence was
more rigorously derived from a larger data set; (ii)
instead of one threshold dependence, general for-
mulae were found to determine a threshold at any
probability level; (iii) the inverse functions were
also obtained; (iv) the functions were calculated for
eight different matrices and eight sets of gap penal-
ties.

Functions for sequence similarity and alignment
score (equations (3) to (8) and Table 1) are actually
more important for the evaluation of structural sig-
ni®cance, but they directly depend on the residue
exchange matrix and gap penalties. The exchange
matrices were normalized (see Methods) to make
the dependences more universal. The formulae for
the most sensitive signi®cance criterion, the align-
ment score, are the most useful, since they allow
evaluation of structural signi®cance for the align-
ment in terms of probability.

Comparison between the discrimination ability
of sequence identity, sequence similarity and align-
ment score demonstrated clearly that (i) all-positive
matrices performed poorly and (ii) the alignment
score is the most powerful discriminator between
true and false positives for all 40 non-positive
alignment setups analyzed (Figure 5 and Table 2).

Figure 6. A diagram illustrating how the median (mL)
and standard deviation (sL) were derived to only ®t the
tail of the twilight zone distribution and reduce the
impact of the deviation from the normality (``skewness'')
at lower values of the alignment criterion Y distribution.
(a) A histogram of the Y-distribution at a certain length.
(b) The same distribution integrated and normalized to
1. (c) The integral distribution transformed to become
linear. The Z-function transforming the normalized inte-
grated distribution (b) into a linear function is the
inverse of the theoretical distribution function. Points
with negative Z values (®lled triangles) are discarded in
the ®tting and contributions are weighted according to
the transformed expected errors. The intersection with
the y-axis and the slope of the ®tted line give mL and sL,
respectively. The broken curve in (b) and the line in (c)
represent the same cumulative theoretical distribution.
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Any linear combination of I, A and S is also less
ef®cient than the score alone. It is possible, though,
that linear combination logP values rather than the
actual scores, further combination of the score with
threading scores (Jones & Thornton, 1996; Abagyan
et al., 1994) and, possibly, introduction corrections,
e.g. the residue composition correction (for
reviews, see Bryant & Altschul, 1995; Pearson,
1996) or ln()-correction (Pearson, 1996) will result
in a better separation. Here, we did not introduce
the length correction because we used a global
alignment algorithm and with the intention of
using it in comparison of a domain sequence
with a much longer sequence of a multidomain
protein. This would be the case if a domain
sequence were searched against a sequence data-
base, or if a full unknown sequence were
searched against a database of domain sequences.
Local comparison methods (e.g. Smith &
Waterman (1981); FASTA, Pearson & Lipman,
(1988); and BLAST, Altschul et al. (1990)) do not
have this problem and can ef®ciently compare
two multidomain protein sequences. However,
even for a global alignment with zero end gap
penalties, the length of the aligned fragment of
the longer sequence can still be used in a log-cor-
rection term. The derived functions are essential
for evaluating the similarity between a query
sequence and a known 3D fold through a multi-
link chain of pairwise comparisons (Abagyan
et al., 1997). In this approach the folds are ranked
according to a product of probabilities ...(1
ÿ p(i)

A ) � (1 ÿ p(i � 1)
A )... in the best chain of sequential

pairwise alignments bridging the query sequence
with the fold sequence.

The fold recognition performance criterion
allowed us to compare different residue compari-
son matrices and gap penalties used for the global
alignment procedure with zero end gaps. It is quite
clear that ranking of matrices and gap penalties
depends strongly on the performance criterion. The
accuracy of the alignment criterion used by Vogt
et al. (1995) leads to different values than the cor-
rect database ranking criterion (Pearson, 1995). By
reducing gap opening penalty, for example, the
noise level of a database search is increased, but
the alignment accuracy may improve. Also, sur-
prisingly, the positive matrices that were the best
in the alignment test by Vogt et al. (1995) were the
poorest in the fold recognition test (Table 2). The
best matrices were Gonnet (Gonnet et al., 19922
pA � 75.3%) and Blosum50 (Henikoff & Henikoff
(1992) pA � 72.0%). Blosum45 and Blosum62 with
optimized gap penalties were very close. Several
interesting observations result. First, the Gonnet
matrix aligns many more unrelated sequences
(almost as many as the inef®cient all-positive
matrices) than the best Blosum matrix (90.9% ver-
sus 56.2%, respectively, Table 2) but the increased
noise level does not result in bad performance. The
second interesting fact is that the best performing
Gonnet matrix predicts only 75.3% (rather than
100%) of the alignments in the ambiguous zone,

i.e. 24.7% of the alignments were not recognized
by the Gonnet matrix but were recognized by other
less ef®cient matrices. This implies that the usage
of several different matrices and gap penalties,
rather than a single best performing matrix, might
be preferable. This work makes a multi-matrix
approach possible, since probability distributions
were derived for 64 different comparison settings.

As the alignment parameters approach the twi-
light zone the positional accuracy of the alignment
deteriorates (Vogt et al., 1995). Figure 4 shows that
at 30% of sequence identity the mean fraction of
misaligned residues is 20% with standard devi-
ation of 10%. However, as we saw above matrices
and penalties that are optimal for fold recognition
are not necessarily optimal from the alignment
accuracy point of view.

Methods

Database and alignment

The 7849 protein sequences of continuous pro-
tein domains as de®ned in the SCOP database
(Murzin, et al., 1995), summer 1996 release, were
extracted from the Protein Data Bank (Abola et al.,
1987) and 2819 unique protein sequences with
length greater than 12 residues were retained. Each
of these 2819 sequences was assigned a protein
fold tag according to the second category of the
SCOP classi®cation (class � fold). Pairs of
sequences with the same fold were assigned to the
set of related sequence (R-set), while sequences
with different fold tags were assigned to the unre-
lated set (U-set).

Global Needleman & Wunsch (1970) sequence
alignment was performed with the ICM program
(Molsoft, 1996). The ZEGA alignment procedure
employed zero end gap penalties. Only alignments
in which the number of aligned residues was great-
er than one half of the length of the shorter
sequence were retained for further analysis.

Residue substitution matrices

Eight residue substitution matrices were used. A
family of three Blosum matrices (Henikoff &
Henikoff, 1992), Blosum45, Blosum50 and Blosum62,
were derived from blocks of alignments extracted
from several hundred protein families. These
matrices contain negative elements. The Gonnet
matrix (Gonnet et al., 1992) was built from exhaus-
tive cross-comparison of sequences in a sequence
database. The McLachlan (1971) matrix was
derived from 89 pairwise alignments from 16 pro-
tein families. The HSSP matrix (Sander &
Schneider, 1991) was built from the McLachlan
matrix by scaling to the range ÿ0.7:1.0. All positive
matrices Blosum50-p and Gonnet-p are described in
Vogt et al. (1995). The residue exchange matrices
were normalized by multiplication of all the num-
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bers by a factor such that the sum of occurrence-
weighted diagonal elements (identities) of the
matrix was 1.0. The following residue frequencies
were used (A 7.85, C 2.55, D 5.17, E 6.95, F 4., G
6.52, H 2.12, I 5.45, K 5.66, L 8.86, M 2.51, N 4.59, P
4.67, Q 4.09, R 5.17, S 7.1, T 5.48, V 6.2, W 1.46, Y
3.05%).

Definitions of alignment significance criteria

Three signi®cance criteria Y were analyzed.
Sequence identity, I, was de®ned as the number of
identical residues divided by the length of the
shortest sequence (L) and multiplied by 100%.
Sequence similarity, S, was calculated as the sum
of similarity values from the normalized residue
exchange matrix for all aligned residue pairs
divided by L and multiplied by 100%. Since the
residue exchange matrix is normalized so that
the weighted average of a diagonal element is 1.0,
the expected range of the similarity measure is
comparable to the sequence identity measure.
Alignment score, A, was de®ned as the sum of
similarity values for the aligned residue pairs
minus the sum of O � Elgap, where O is gap open-
ing penalty, E is gap extension penalty and lgap is
the gap length, for all but the terminal gaps.

Both S and A measures depend on normalization
of the comparison matrix. To calculate probability
and threshold dependencies (see equations (3) to
(8) and Table 1) for an original unnormalized
matrix, coef®cients AS, BS, D, d, E, e from Table 1
must be multiplied by the average diagonal value
from the same Table.

Derivation of probability distributions

To derive the probability functions and the rec-
ognition for a given criterion Y, the following steps
were performed.

(1) The whole data set of alignments was
divided into L-subsets, each of which had the same
minimal length (L) of the sequences constituting
alignments and contained NL alignments. Each
L-subset was divided into an R-set of alignments
between structurally related sequences (having the
same class/fold tag from SCOP classi®cation) and
a U-set of alignments between structurally unre-
lated sequences (different class/fold tags).

(2) For each subset L a histogram p(Y) was calcu-
lated for the U-sets (Figure 6a).

(3) Each p(Y) was integrated (summated) into
the integral distribution P(Y) representing the rela-
tive number of alignments with the criterion value
exceeding Y (Figure 6b).

(4) For each subset L we performed the optimal
®t of the tail of the integrated distribution P(Y) to
the tail of the integrated theoretical distribution
(the so-called complementary error function erfc
for I and S, and extreme value distribution for A)
with parameters mL and sL. To allow linear ®tting

P(Y) was transformed (Figure 6c) with a certain
function Z, which is a computable non-analytical
function inverse to the integrated theoretical distri-
bution function. In the case of normal distribution,
the slope of the ®tted line is

���
2
p � sLand the intersec-

tion with the abscissa gives mL, which is the
median of the distribution. The median coincides
with the mean for a normal distribution but differs
for skewed distributions. To calculate the ®tting
weights of points upon transformation, the uncer-
tainties of the individual points were taken:

"Z � "P
dZ

dP
� "P

dP

dZ

� �ÿ1

� C0eZ2

since:

P�Z� � erfc�Z� � C

�1
Z

eÿt2

dt

where the constants C, C0 and eP are of no interest.
In the case of the extreme value distribution the
uncertainties can be calculated as:

"Z � "P
dZ

dP
� C00

P ln P

since:

P�z� � 1ÿ eÿeÿxz

;Z�P� � 1

x
ln�ÿ ln P�

The weights of points were then calculated as 1/e2
z.

(5) All mL and sL values were then used to
derive two smooth, interpolated functions for m(L)
and sL) (Figure 3). (i) The alignment score distri-
bution parameters were well approximated by
simple linear functions (Figure 3c): mA(L) � D � d �L
and sA(L) � E � e �L. Parameters of the linear func-
tions were derived by linear ®tting to the mL and
sL points with the uncertainties of each data point
taken as 1=

������
NL

p
and weight being NL (see Numeri-

cal Recipes in C, 1992). (ii) Identity and similarity
measures could not be approximated by the linear
function and the power function ALa was used
instead (Figure 3a and b and see also Sander &
Schneider, 1991). Parameters A and a of the ALa

function were found by best-linear ®t of log mL

values versus. log L, uncertainties and weights of
each point being 1=mL

������
NL

p
and NLmL

2 respectively,
because:

"log m � "m
d log m

dm
� "m

m
� 1

m
������
NL

p

Parameters B and b for sL were derived by the
same procedure.

Comparison of the alignment criteria for
fold recognition

To ®nd the optimal criterion Y, we analyzed the
linear combination of the above three measures:

Y � fII � fSS� �1ÿ fI ÿ fS�A �9�
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To derive the discrimination ef®ciency for a given
criterion Y, we evaluated the total overlap between
U-set and R-set through the following procedures.
(1) The whole data set of alignments was divided
into L-subsets, each of which had the same mini-
mal length (L) of the sequences constituting align-
ments and contained NL alignments. Each L-subset
was divided into an R-set of alignments (NR align-
ments) between structurally related sequences
(having the same class/fold tag from SCOP classi-
®cation) and a U-set of alignments (NU alignments)
between structurally unrelated sequences (different
class/fold tags). (2) For each subset L, the overlap
WL between R-set (i � 1,NR) and U-set ( j � 1,NU)
distributions characterizing the discrimination abil-
ity of a given Y-criterion was calculated as:

WL � 1ÿ 1

NUNR

X
i�1;NR

X
j�1;NU

d�YUi
;YRj
�

������
������; �10�

where d(a,b) equals 1 if a is greater than b, 0 it they
are equal, and ÿ1 otherwise. The overlap de®ned
in this way equals 0, if the distributions are
divided apart, and reaches the maximum value of
1 if the distributions cover each other's range uni-
formly.

(3) to obtain the ®nal WY, all WL contributions
were averaged with the weight of NL, similarly to
the above section:

WY �
P

L WLNLP
L NL

Performance test

Each sequence alignment between structurally
related protein domains was marked as correctly
recognized if its alignment criterion (I, S or A) was
greater than the smoothed threshold TL, or other-
wise marked as unrecognized. This division was
used in Figure 5 and Table 2. The smoothed
threshold with the following procedures: (i) the
highest false positives (the greatest criterion values
for alignments from the U-set) were collected for
each L-subset; (ii) highly ¯uctuating values of high-
est false positives were averaged within a sliding
window [L-3 : L � 3]. The performance criterion pA

for given alignment settings is de®ned as the num-
ber of correctly recognized alignments from the
ambiguous zone divided by the total number of
alignments in the ambiguous zone.
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Appendix

Probability of a given value of sequence
identity or similarity: approximation of the
complementary error function erfc

The complementary error function erfc(x) is a
cumulative probability of the normal (Gaussian)

distribution with the mean value equal to 0 and
standard deviation equal to

���
2
p

. It represents
doubled probability for the normally distributed
random to have a value higher than x

���
2
p

standard
deviations over the mean value and has the follow-
ing integral representation:

erfc�x� � 2���
p
p

�1
x

eÿt2

dt

It is illustrated by Figure 6b (broken line) of the
main text.

The probability of structural signi®cance at a
given value of alignment criterion Y can be calcu-
lated in two steps. First, calculate a normalized
value y:

y � YÿmY�L�
sY�L�

where m(L) and s(L) are given by equations (3) to
(5) with coef®cients from Table 1 of the main text.

Second, calculate probability PY as:

P�y� � 1

2
erfc

y���
2
p
� �

The erfc function can be approximated at positive
y values as:

erfc�y� � 1

1� y=2
� eÿy2ÿ 0:774y

1�0:617y; y > 0

Therefore the probability can be calculated as:

P�y� � 1

2� 0:7y
� eÿy2

2ÿ
0:547y

1�0:436y; y > 0:

Note that the erfc function descends faster than
exponentially and this approximation is quite accu-
rate; in the most useful range y > 3 the relative
inaccuracy is less than 1% and in the range
0 < y < 3 it is less than 4%.

Probability of a given global alignment score:
the extreme value distribution

The probability that criterion A is higher than t
can be approximated by the extreme value distri-
bution:

PA�> t� � 1ÿ eÿeÿxy

where:

y � tÿmA�L�
sA�L� and x � 1:618 �A1�

It is known that for the extreme value distri-
bution the ®rst and the second moments (the
mean and the standard deviation) are expressed
through the parameters u and l of the
distribution: u � h x i ÿ 0.4500 �s, l � 1.2825/s.
We found that the A-distributions could
approximately be described by the extreme

Do Aligned Sequences Share the Same Fold? 367



value distribution (A1) with z � 1.618 at y > 0.
Parameter x was derived only for scores higher
than the average (y > 0), the interesting part of
the distribution, and hence is slightly different

from the expected coef®cient of 1.2825. For
scores lower than the average (y < 0), the devi-
ations from the extreme value distribution were
substantial.
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