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Two major components are required for a successful prediction of the three-dimensional
structure of peptides and proteins: an efficient global optimization procedure which is
capable of finding an appropriate local minimum for the strongly anisotropic function of
hundreds of variables, and a set of free energy components for a protein molecule in solution
which are computationally inexpensive enough to be used in the search procedure, yet
sufficiently accurate to ensure the uniqueness of the native conformation. We here found an
efficient way to make a random step in a Monte Carlo procedure given knowledge of the
energy or statistical properties of conformational subspaces {e.g. ¢— zones or side-chain
torsion angles). This biased probability Monte Carlo {BPMC) procedure randomly selects the
subspace first, then makes a step to a new random position independent of the previous
position, but according to the predefined continuous probability distribution. The random
step is followed by a local minimization in torsion angle space. The positions, sizes and
preferences for high-probability zones on ¢— maps and y-angle maps were calculated for
different residue types from the representative set of 191 and 161 protein 3D-structures,
respectively. A fast and precise method to evaluate the electrostatic energy of a protein in
solution is developed and combined with the BPMC procedure. The method is based on the
modified spherical image charge approximation, efficiently projected onto a molecule of
arbitrary shape. Comparison with the finite-difference solutions of the Poisson—Boltzmann
equation shows high accuraecy for our approach. The BPMC procedure is applied successfully
to the structure prediction of 12- and 16-residue synthetic peptides and the determination of
protein structure from NMR data, with the immunoglobulin binding domain of
streptococcal protein G as an example. The BPMC runs display much better convergence
properties than the non-biased simulations. The advantage of a true global optimization
procedure for NMR structure determination is its ability to cope with local minima
originating from data errors and ambiguities in NMR data.

Keywords: Monte Carlo; conformational search; global energy minimization;
NMR structure determination; protein folding

1, Introduction

An efficient global optimization procedure and
appropriate energy terms are the most important,
yet still problematie, components of any procedure
aimed at structure prediction of proteins and
peptides. Many approaches can be used to sample
the conformational space: molecnlar dynamics in
Cartestan space (Bruccoleri & Karplus, 1990; van
Gunsteren & Berendsen, 1990; Briinger ef al., 1956)
or in torsion angle space {(Mazur ef al., 1991),
systematic search (Leach, 1991; Schaumann et al.,
1990), build-up procedures (Vazquez & Scheraga,
1985, Braun & Go, 1985; Vajda & Delisi, 1990,
Simon et af., 1991) and the Monte Carlo methods
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including simulated annealing (Kirkpatrick et al.,
1983; Kawai ef al., 1989; Wilson & Cui, 1990). The
Monte Carlo methods can be subdivided into local
step and non-local step procedures, the former
tending to make a random step in the vicinity of a
current local minimum and the latter trying to
jump to a different minimum (in general, not even
to the neighbouring one) at each step. Rather
sophisticated local step methods have been
developed (Noguti & Go, 1985; Vanderbilt & Louie,
1984; Shin & Jhon, 1991). They find the appropriate
search directions (related to the covariance matrix)
in an attempt to make a step along low-energy
valleys. However, these methods have limitations in
their global sampling capacity because they rely
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upon local harmonic approximation of the energy
surface which is valid only in the near vicinity of the
conformation, This feature makes them adequate
for sampling of the local environment of a certain
conformation, rather than for large-scale searches.

In the alternative appreach with non-local
random steps, the main problem is how to make the
step, so that both the fraction of accepted random
moves (so-called acceptance ratio) and the perform-
ance are sufficient. High-dimensionality of protein
systems clearly calls for much more efficient
sampling algorithms than the existing ones. Tt has
been established that a full local minimization after
each random step greatly improves the efficiency of
the procedure. As far as the random step itself is
concerned, it was concluded that changing one angle
at a time with 180° amplitude is better than
changing several angles or reducing the amplitude
{(Li & Scheraga, 1987; Abagyan & Argos, 1992}

To increase the samplimg efficiency of the Monte
Carlo procedure, we propose another type of
random step such that (1) knowledge about statis-
tical and/or energy properties of some smail frag-
ments is used in an optimal way, (2) the search still
continuously covers the conformational space, so
that any conformation may be achieved, and (3) the
acceptance ratio is sufficiently high. The method is
based on a theorem establishing the optimal prob-
ability distribution function used to generate a
random step in the conformational subspace. In this
paper we apply this general principle to the most
obvious conformational zones; namely, ¢—i zones
or side-chain torzion angle zones of individual
residues, although conformational clusters for more
extended fragments can be used in the same way.
The shape and size of the statistical probability
distributions for both the side-chain conformations
(Ponder & Richards, 1987) and the main-chain
torsion angles were calculated from a representative
set of protein domains {Heringa ef al., 1992),

The structure of a 12-residue synthetic peptide
(Hill ef al., 1990} was predicted by the biased prob-
ability Monte Carlo (BPMCT) simulation from the
extended state, in contrast to the non-hiased runs
which failed to find the minimum. Equivalent
o-helical conformations were found as the global
minimum for two sets of energy terms: the first, the
ECEPP energy supplemented with accessibility-
based solvation energy (Wesson & Eisenberg, 1992);
and the second with the solvation energy repre-
sented by the electrostatic reaction field energy as
well as hydrophobicity and side-chain entropic
terms evaluated wia accessibilities of reference
atoms. The structure of another 16-residue peptide
designed and characterized by Scholtz et . (1991)
was also successfully predicted by the BPMC
procedure.

T Abbreviations used: BPMC, biased probability
Monte Carlo procedure; ECEPP, empirical
eonformational energy program for peptides; MC, Monte
Carlo procedure; MDD, molecular dynamics; MTMEL,
modified image electrostatic approximation.

The BPMC procedure was also applied for deter-
mination of the three-dimensional structure of a
domain of streptococcal protein G using real NMR
data {GGronenborn et ol., 1991; Briinger, 1992). In
this case, in contrast to the variable target function
approach (Braun & Go, 1985}, all distance restraints
were imposed simultaneousty and the experimental
variable restraints were used as zones of biased
probability. The advantages of the BPMC method
over variable target function minimization are its
ability to bypass local minima and higher tolerance
to ambiguous or erroncous bits of experimental
data. The method operates in torsion angle space
and allows consideration of multimeric structures
{Abagyan et al., 1994).

The electrostatic free energy of a protein in solu-
tion is an important energy term that is often
missing or inadequately presented in MD or MC
calculations. Calculations including water molecules
explicitly are too computationally demanding and
have problems with a proper treatment of electron
polarizability (Gilson & Honig, 1991). There are
many implicit methods ranging from simple and
markedly inaccurate Coulomb or distance depen-
dent dielectric constant approximations
{(McCammon et al., 1979 (in existing molecular
dynamics/minimization methods), to sophisticated,
albeit computationally intensive, algorithms finding
the solution of the Poisson equation numerically
(for a review, see Davis & McCammon, 1990). The
methods of the first group are fast, but all of them,
even with an intricate distance dependence of the
dielectric constant (Mehler & Kichele, 1984}, lack an
important contribution; namely, self-energy of the
charge.

We have developed a method which may be
called modified image electrostatic approximation
(MIMEL). It is sufficiently accurate and fast to be
incorporated in the MC simulation. We found an
analytical correction term to the image approxima-
tion of the reaction field energy in a sphere. Tn the
spherical case the energy can be expressed vig inter-
charge distances and the charge depths {Imoto,
1984). The same formulae may be applied to
arbitrarily shaped proteins. Our algorithm takes
advantage of the fast surface calculation algorithm
{Abagyan ef al., 1994) and weak dependence of the
potential for deeply buried charges (Friedman,
1975). Comparison of the MIMEL reaction field
energies evaluated for a set of model objects as well
as for several proteins, with those calculated by the
DeiPhi program (Gilson & Honig, 1987; Nicholls &
Honig, 1991) solving the Poisson equation numeri-
cally, shows high accuracy of the MIMEL method.
MIMEL energics are used in the BPMC structure
prediction of the synthetic 12- and 16-residue
peptides.

2. Materials and Methods

(a) Biased probability Monte Carlo procedure

The global optimization method employed in this work
consists of the following basie procedures, repeated itera-
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tively: (1} random conformational change; (2} local
minimization of the ECEPP/2 energy function (Momany
et al., 1975; Nemethy ef al., 1983} using analytical deriva-
tives; (3) evaluation of additional energy terms weakly
dependent on the local conformational adjustments (e.g.
solvation energy, electrostatic free energy and entropy);
(4) acceptance decision based on the total energy
(criterion of Metropolis et el., 1953). The way step (1) is
effected. drastically influences the search -efficiency
(Abagyan & Argos, 1992). We attempted to design a more
rational random change.

The idea of the biased probability Monte Carlo pro-
cedure is to sample with larger probability those regions
of the conformational space which we know a priori are,
on the average, highly populated and to sample with less
probability regions known to be less populated. It is hard
to get this statistical or energy information for all com-
binations of variables. However, local probability distri-
butions of a small number of variables {e.g. ¢y
distributions. x-distributions, backbone conformations for
2, 3, 4 residue fragments, ete.) are either known or can be
evaluated. To be mathematically striet in justifying our
way of making a random step, let us consider the
following problem.

Imagine we have a function of N, variables which are
divided into N, subsets of n,= Ny/N, variables. For
example, if each subset is a pair of the backbone torsion
angles (¢, ), then N, is a number of residues and =, is 2.
Let us consider a step of the simplified MC prediction
procedure consisting of a random selection of the subset v
(a residue in the above example) and a random choice of
n, new values of variables in this subset. The choice is
effected according to some probability function f(x),
where x is an n,-dimensional vector 8y, .. .. & {f(¢, ¥} in
the example). Suppose that the final average distribution
p(x) of n, angles in all N, subsets is known (e.g. from
statistics or energy precalculations of the corresponding
short fragments). The question is what is the optimal
random step distribution function f{x)? In Appendix 1 it
is proven that the f(x) which maximizes the probability of
correct predietion is equal to p(x). This result can be
easily generalized to the situation where all variables are
divided into several types of subsets with different
numbers of variables and different statistical
distributions,

In our example all -y angles are divided into N, ;4.
pairs and a random move is made by selection of a residue
and a change of both angles by some values. Correctly
predicted residues are somehow recognized and kept. The
theorem says that, in the fastest way to predict all the
correct @—y angles, the optimal change for each ¢—iff pair
should be made according to the expected average distri-
bution of ¢—y angles.

The implication of this theorem is clear, random steps
chosen according to the expected probability distribution
should be preferred over any other way to make a random
move. Another question is how to divide all variables into
subsets of associated variables? Firstly, variables in a
subset should be correlated. Secondly, using subsets with
larger number of variables would increase the efficiency.
For example, considering combined distributions of
¢—y—y variables of different residues would improve the
search compared to separate zones for the backbone
torsion angles and the side-chain angles. However, for
large n, values it is more difficult to eollect enough statis-
tics (if statistical distributions are used) and also to
describe the distribution. Two ways for the desecription
could be proposed. One is the grid description of the
distribution combined with some interpolation rules. The
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Figure 1. A random move in the biased probability
Monte Carlo procedure. After a subspace is chosen (in the
example shown, it consists of 2 variables, 8, and ), a
preferred zone is selected and a normally distributed
move in the vicinity of the zone is performed. Parameters
of the probability distributions are taken from the statis-
tical analysis of the known 3-dimensional structures.

second is identifying high probability zones and approxi-
mating the distribution around the zone by a bell-shaped
analytical function with positions, sizes and the heights of
the bells as parameters,

In the current implementation of the BPMC procedure,
we describe the probability distribution by a set of
Gaussian distributions (Fig. 1). The random move is
effected by the following procedures: (1) randomly select
an internal variable (normally a torsion angle);
(2) identify all high-probability zones vy, v,, ..., v,, asso-
ciated with the variable (e.g. all side-chain rotamers for a
particular residue type if a y-angle is picked, or all ¢-y
zones if a backbone torsion is picked); (3) select one zone
v, according to the probability P, ; (4) make a normally
distributed step in the vicinity of v,th zone, i.e. the
displacement from the centre of the zone by a random
vector having components distributed with the prob-
ability density p (Fig. 1):
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(b) Statistical analysis of local conformational preferences

The local conformational preferences are represented by
multidimensional ellipsoidal zones in subspaces of asso-
ciated internal variables. To evaluate the positions, sizes
and probabilities of preferred zones in ¢— and y sub-
spaces, we carried out statistical analysis for a representa-
tive set of known protein structures. Both ¢ maps and
x-maps were divided into regions (Fig. 2). The division of
maps into regions was done either from visual ingpection
or aceording to a maxima of the torsion potential (e.g. ¥,
of Lys with 3-fold torsion potential had 3 regions
(—120°,0%), (0°, 120°) and (120°, —120°)}. The division is
somewhat arbitrary; however, it is not critical since we
use the continuous distribution rather than fixed
rotamers. Each region corresponds to a preferred zone,
which was approximated by an ellipse with the centre
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Figure 2. Torsion angle distributions and the houndaries of 163 zones (Table RSTY) used for variable restraints, for
biasing random steps in the BPMC procedure and for the evaluation of side-chain entropies. (a) The distribution of the
¢—i torsion angles in all residues but Gly and Pro. Gly and Pro distributions are shown separately in (b) and {c),
respectively. The main-chain statistics come from 191 protein domains with sequence identity less than 309, and
resolution better than 24 A, (d) to (p) x1-x2 distributions for 13 residue types collected from 166 protein domains
{identity <509, resolution <20 A). Zones containing less than 19 of the points have no label and were ignored.
Identically marked pairs of rectangles on the Asn and Trp maps should be connected at 32 =0°. y2 angles of Tyr, Phe,
Asp having periodicity of 180° are reduced to (0°, 180°) range ((—90°, 90°) for Asp), so that there are only 3 labelled
zones. (q) to (t) y1 distributions, n is relative number of cases. Three zones are M (—60160°), P (60+60°) and
T (180° + 60°).
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and probability #/N, where ¢ is a variable contributing to
the zone, p is an index of a point, # is & number of pointa
in the region and N is a total number of points,

For the ¢-\ atatistics, we selected 191 protein chaing
which is the largest possible subset of protein chains with
the pairwise sequence identities less than 369%,, resolution
less than 24 A and sequence length greater than 30
residues. The list was calculated by an algorithm of
Heringa et al. (1992). The protein codes (Bernstein e al.,
1977) and chain specifiers -X (when necessary) were the
following: ACT1-A, ACT1-D, ROP2-B, 280D-Y, ZIF1-C,
1AAP-B, 1ACX, 1ALC, 1ALD, 1BBP-D, 1CHO-I, 1CLA,
1COX, 1CRN, 3CRO-A, 1C8C, 1CTF, 1DTX, 1ECD,
IFDX, 1FNR, 1FX1, IFXI-C, 1GCR, 1GDI1-P, 1GOX,
1GP1-B, 1HDS-B, 1HIP, 1HNE-E, 1HOE, 1HRH-A,
111B, 1IFB, 1L67, 1LH2, IMBO, IMSB-A, IMVP-A,
IPHH, 1PPT, 1PRC-C, 1PRC-L, 1PRC-M, 1PRC-H,
1R69, IRBP, IRDG, 18GC, 18GT, 18N3, 1TAB-I, 1UBQ,
1YCC, 256B-A, 2AZA-B, 2CAB, 2CCY-A, 2CD4, 2CDV,
2CYP, 2ZERS6-E, 2FB4-L, 2FBJ-H, 2FCR, 2FGF, 2FXB,
2GBP, 2GN5, 2LBP, 2LHB, 2LTN-A, 2MBA, 2MHR,
2PAB-B, 2PAL, 2PAZ, 2PCY, 2PKA-A, 2PKA-B, 2RNT,
28DH-B, 2SNI-I, 250D-B, 2TRX-A, 2TS1, 2UTG-B,
2YHX, 351C, 3ADK, 3B5C, 3BCL, 3BLM, 3C2C, 3CNA,
3DFR, 3FAB-H, 3FXN, 3PEP, 3RN3, 3RP2-A, 3TEC-E,
3TEC-I, 3SWRP, 4FDI1, 4GR1, 4HHB-C, 4INS-B, 4P2P,
4PFK, 48GB-I, 5ACN, 5APR-E, 5RUB-B, 5TLN, 5§TNC,
6CPA, 6GCH, 6LDH, 6XIA, 7ICD, 8ADH, 8CPP, 8DFR,
9ABP, 1BBH-B, 1BBQ-B, 1BIA, 1BOV-D, 1CGJ-I,
1COL-A, ICWG-A, 1IDFN-B, 1DRB-B, 1END, 1F3B,
IFKB, 1FXD, 1GKY. I1GLY, 1GMF-B, 1GST-B,
IHSA-A, 1HSA-B, 1IPD, 1LFG, 1LMB-A, 1LPE,
ILTS-A, ILTS-C, 1LTT-F, INPX, 1NSB-A, 1PES,
1PGX, 1PII, 1RNB, 1TGI, 1TPK-C, 1TRB, 2CTX,
2LPR-A, 2MAD-L, 2MCM-A, 2PFi, 2POR, 2REB,
2RN2, 28AR-B, 28CP-B, 28NM, 2TPR-A, 2ZTA-B,
3CHY, 3MT2, 3PRK-E, 4FIS-A, 4ICB, 4PHV-B, 581C-1,
6EBX-A, 6FAB-L, 6TIM-B, 7AAT-A, 8EST-E, 8GPB,
INRD, 10VA-A, 2LHM, 3ENL, 1AKE-B.

The ¢— maps were divided into 5 regions for a glycine
(Fig. 2(b)}, 3 regions for a proline (Fig. 2(c)), and 5 regions
for all other residue types (Fig. 2(a)). The low-populated
areas (referred to as “‘others”) which are not explicitly
represented by any zone, may be still achieved by the
BPMC procedure from the neighbouring zones because of
the tails of the Gaussian probability distribution of the
random step. The average backbone dihedral angles and
their root-mean-square deviations are presented in
Table 1.

For side-chain statistics another set of 161 protein
chains having higher resolution (<20 A} and higher
sequence identity threshold {509;) was constructed with
the same algorithm (Heringa ef al., 1992). The resolution
requirement was enforced to ensure sufficient aceuracy of
the side-chain torsion angles (backbone torsion angles
have comparable accuracy at lower resolution), whereas
the identity threshold was raised to increase the number
of proteins in the data set, taking advantage of greater
diversity of the side-chain angles as compared to the
main-chain angles in the distantly related proteins. The
protein codes and chain specifiers were the following:
ACTI1-A, ACTI-D, ROP1-A, SODO-R, TIM2, ZIF1-C,
1AAP-A, 1ACX, 1AK3-A, 1ALC, 1ALD, 1BBP-B, 1COX,
ICRN, 1CSE-I, ICTF, IECN, 1ERS-E, 1FDX, 1GCR,
IGDI1-R, 1GOX, 1GPI-B, 1HIP, 1HMO-D, 1HNE-E,
1HOE, 1IFB, 1L06, 10MD, 1PAZ, 1PPD, 1PPT, 1R69,
IRBP, IRNS, 1SAR-B, 1SGC, ISGT, ISIC-I, 18N3,
ITGL, 1'TGS8-1, 1THB-C, ITMN-E, 1UBQ, 1UTG, 1YCC,
1YPI-B, 256B-B, 2ACT, 2ALP, 2APR, 2AZA-B,

2BLM-A, 2CCY-B, 2CDV, 2CI2-1, 2CNA, 2C8C, 2CYP,
2FBJ-L, 2FBJ-H, 2FCR, 2GBF, 2HHB-B, 2LH7, 2LHB,
2LTN-B, 2LTN-C, 2MCG-2, 2MHR, 20V0, 2PAB-A,
2PCY, 2PKA-A, 2PKA-Y, 2PRK, 2RS8P-A, 250D-Y,
2TEC-E, 2TRX-B, 2TSC-B, 2WRP-R, 31BI, 351C, 3B5C,
3BCL, 3BLM, 3C2C, 3CBH, 3CLA, 3DFR, 3FAB-H,
3FGF, 3GRS, 3RP2-B, 4BP2, 4CPV, 4ENL, 4FD1,
4FXN, 4INS-D, 4LYZ, 4MBA, 4MBN, 4PEP, 4PTI,
4PTP, 5EBX, 5HVP-A, 5P21, 5RUB-B, 6RXN, 5TNC,
6CHA-A, 6CPA, 6CPP, 6LDH, 6RXN, 7XIA, 8DFR,
1AKE-A, 1APT, 1BBH-B, 1C533, 1CWG-A, 1DFN-B,
IDRB-B, 1END, IFIA-A, IFKB, 1FXD, 1GKY, 1GPB,
1IMM, 1LMB-B, ILTE, 1LTS-H, 1LTS-A, ILTS-C,
IMEE-A, 10VA-D, 1PGX, 1PII, 1PK4, 1RNB, 1TRB,
2CBC, 2FX2, 2MCM-A, 2POR, 2RN2, 28CP-A, 28NM,
2ZTA-A, 3CHY, 3MT2, 4ICB, 5ABP, 5EST-E, 5PAL,
6FAB-H, 6RNT, TAAT-A, TACN.

Division of y-maps intc rotamer regions was done
according to the observed statistical distributions and in
most cases was in accordance with the rotamers of Ponder
& Richards (1987) from a smaller dataset of 19 proteins.
Figure 2 shows the zones and Table 2 the appropriate
parameters.

(¢) Side-chain entropies

The statistical distribution of side-chain conformations
may also be wsed to calculate the side-chain entropy
changes upon folding. The underlying assumption is that
the observed probability distribution is close to that of
the unfolded state, whereas in the folded atate the con-
formation of the buried side-chain is confined to 1 zone
only and hence its entropy is assumed to be 0. Considering
every preferred y-zone listed in Table 2 as 1 state with
probability P,, one can evaluate the side-chain entropy
Syt 18ing the Boltzmann formula:

Sstlt =_RZP\! In (Pv)s (2)

where the summation is over all preferred conformational
zones of a particular residue type, and R is the gas
constant. Since some of the y-angles were ignored in the
rotamer list, the contributions from these angles should be
added. The additional entropy can be estimated as:

840 = BIn (N ), (3)

where N,;y is the additional number of states for the
angles missing, agsuming that all atates have equal prob-
abilities. We took the following additional N, 4, values: 9
for ¥3 and x4 of Lys and Arg, 25 for x2 of Cys, Thr and
Ser, 2 for y6 of Tyr, 3 for 3 of Glu and Met, and 6 for x3
of Gin. In Lys, Arg, Met, Cys, Ser and Thr cases the
additional number of states chosen results from the
energy barriers, for the 3 of Gln and Glu the number
originates from the assumed 60° fluctuation range in the
buried state, versus 360° (180° for Glu because of the
symmetry) in the unrestricted accessible state. The
numbers of y2-states for Cys, Thr and Ser were taken as
2-5 because, depending on the y1 and v angles of the same
residue, the number of accessible states is either 3 or 2.
Table 3 shows the entropic contributions to the free
energy difference between the exposed and buried states,

The entropic effects can be incorporated into energy
calculations by relating the entropy with accessible
surface. The solvation energy surface densities can he
modified to make them represent the entropic term, using
the observation that the accessibility of some reference
atoms at the tip of a side-chain may reflect the number of
reachable states for the side-chain. Division of the
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Table 1 Table 1 (continued )
Probabilities, average positions and sizes of the
preferred zomes for main-chain torsion angles Residue ({total number)
Zone Pt dIY  AS(CTY I ()Y ALY
Residue (total number) Isoleucine (1273)
o o o o ;
Zone P 90 A80) vi() A8O) ] 062 —1082  (221) 1322 (158)
Alanine (2232) o 0-39 —658  {108)  —424 (100
« 054 —632  (06)  —385  (102) [ 007 —1018  {155) —96 {192)
8 031 —1078  (356) lddd  (166) 5 00z —ll74 {162 88 (215)
" 008 _o26  (181) C51 0 (140) Left 001 417 201 4680 (04)
3 003 —1087 (317 721 (197 _ _
Left 002 sl (187) 439 (197 Leucine {1881)
Others 003 P 0-4% —646  (90)  —400  (101)
- i 038 —1015  (264) 1366 (162)
Arginine (974) ¥ 009 —852 (154 —T4  (165)
o 0-50 —64-0 o) —40r4 {106) 8 003 1077 (233) 63 (199
B 033 —1114 (291 1422 {179) Left 0-01 580 (9-8) 377 (20:5)
¥ 010 —987  (I178) —58  (161)
) 04 —1190  (255) 20 (210 Lysine (1407)
Left 0-02 613  (87) 353 (167) o a4 637 (101 301 (106)
Others 001 B 035 —1052  (304) 1400 (176)
Asparagine (1027) ¥ 012 —883  (176) —89 (165}
029 1086 (30°1) 140:0 (24-4) Left 0-03 652 91 417 (£3:5)
& 029 —§50 (1 — 386 {130y 0 0-02 — 1081 (23-9) 72:4 (198}
¥ 19 —1004  (193) 32 (164) Others 001
b o1l —1128  (259) 2 (196) .
Left 011 557 (110) 401 (155) Methionine (428)
Others 003 « 0-52 — 655 86y  —3%3%  (99)
B 035  —1183  (288) 1412 (173)
Aspartic acid (1448) ¥ 007 — 931 {13:1) -30 {154)
a 038 —636  (116)  —385 (122 3 0-04 —946  (214) 66 (163)
i 32 —9%4 (314 1381 (244) Ledt 0-02 542 (12:6) 402 (22:9)
y 016 —986  (180) —I'1 167N
& 07 —1052 (27-4) 742 (21-6) Phenylalanine (896)
Teft 005 560 (11°7) 426 (178) B 046 —1104  {298) 1414 (177)
Others 0-03 p 035 —628 (95 —425  (108)
_ 7 012 —1023 {164 —44 (7D
Cysteine (319) 5 005 —l162  {219) 5 (190)
B 049 1084  (32:3) 1387 (190 Left 001 651 o7 206 (102)
x 031 —63-2 (1148 —383  (I05)
¥ o1 =995  (20-5) —R%2  (20rB) Proline (966)
é 005 =221 (238) 80-8  (171) Ji 51 —665  (104) 1464 {148)
Ledt 0-02 602 (10:3) 37T (197 @ 044 —626 (122}  —274  {I5H)
Others 001 Others 004
Glutamine (806) Serine (1487)
x 048 —04:2 i§9'4) —387  (96) B 42 —1078 (341 1488 (178)
p g}?’g - _1‘3;:3 (ﬁ:g} '_4?; ( :;';) u 035 —649  (11§)  —368  (132)
¥ ' i (176} b (t7l) 3 015 —969  (191) —47  (162)
Left 003 576 (120} 887 (201 s 003 —1237 (282 717 (221)
4 002 —113.2 (28:6) 752 {139 Left 00l 582 (12:6) 274 (20-8)
Others 002 Others 003
Glutamic acid (1425) . .
« 055 —647  (95)  —38T  (104) Threonine (1243) o _ (
] 020 —1055  (290) 1377 (ITD) B 049 —HL7 @259 1452 (198
y @11 —965  (196) —7T6  (152) * 031 —662 (126)  —do2 (1D
5 02 —1067  (254) 17 (189} X ¢15 - —1039 (177 —&1 (164
Left 002 601 (J0-6) 373 (218) 002 —1207  (178) brd (206)
Othors 001 Left 001 483 (143 354 (32:9)
Others 0-02
Glyecine (1944}
B 041 —1841  (TT9) 1781 (303) Tryptophan (320)
P 022 925 (14-T) 02 (139 B 043 —105-8 (29-8) 139-6 (189}
% 017 —628  (10-6) —308  (12-8) & 0-42 —640 (111} —408 (107
s 011 686 (120 214 (13:9) ¥ 0-11 — 1001 (187} —34 (20-2}
7 005 —998  (207) —34  (195) é 003 —960 (172 07 (176)
Others 004 Left 0-02 635 (93) 288 (128)
Histidine {450) Tyrosine (790)
038 —1123  (324) 1441 (209 B 048 —1140 {291 1425 (180)
a 0-31 —650 (97 —397  (113) @ 0-33 —635  (96)  —423  (104)
y 018 -993  (182) —20  (15:6) ¥ 012 —103.0 (168 -28  (162)
5 007 —1222 (196 649  (185) 3 003 —1149  (21'9) 786 (14-8)
Left 0-05 583 (9:3) 431 (152) Left 0-03 618 (11-6) 328 (167)

Others 002 Others 0-01
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Table 1 (continued ) Table 2 (continued )
Residue (total number) Residue (total number)
Zone Pt 1) ALY I AS) Rotamer () ANy x (P (A)
Valine (1603) Iscleucine (3G14)
055 —1127  (234) 1355 (164) MT 0-58 —642  {10-]) 1684 (144)
@ 036 —650 (9-4) —419 (@9) PT 013 622 {124) 1690 (14:4)
¥ 0086 —1065  (18-5) 110 (199 MM 013 =576 (106) —624  (154)
3 002 —1081 (24'1) 8155 (199 TT 007 —-1753  (206) 1677 (160)
Left 01 360 (215) 420 (173} MP 004 —704  (203) 728 (313)
TP 003 —1653  (26:5) T4 (163)
Rotamer abbreviations are shown in Fig. 2. Others 003
T Fraction of points within a given zone. N
1 Average backbone angle. Leucine (2277) ) s )
§ Standard deviation from the average backbone angle. ¥g‘ ggé —_lggg ::fg; ](‘)gg E}igg
MP 010 —906  {193) 443 (258)
T 006 ~ 1598 (190)  —1793  (30-6)
MM 0-05 — 1044 (40-3) — 565 (300
Others 002
Table 2 . ..
gy .. . Lysine (1762)
Probabilities, average positions and sizes of preferred WT 039 —689 (&8 —1783  (214)
zones for the side-chain torsion angles TT 026 1733 (17T4) 1786 (21-9)
MM 012 —641 (170 711 (233)
Residue (total number) PT 007 624 (188) —17%9 (219}
Rotamer P X (%) (AL £24%) {AL) (%) TP 007 —174-3 {204} 766 (19-2)
MP 004 —87-6 (19-7) 756 (27-8)
Arginine (1140} Others 004
MT r43 — 675 (154) —1766 (20-1)
TT 024 —1743 (171 1799 (183) Methionine (545)
MM 012 —637  (181) —I35  (207) MT 034 —689  {136) 1780  (159)
PT 0-09 637 (172) 174-8 (21-1) MM 024 —64-0 {11- — 665 (16-4)
TP 007 1739 (2005) 9 (187) TT 019 —1736  (171) 1780 (17-8)
Others 005 TP 009 — 1707 (13-4) 761 (18-7)
PT 0-08 627 (170) —1752 (L77)
Asparagine (1302) Others 006
MN: 33 B ?02 (14-4) —402 {324} Phenylalanine (1142)
,{;\F 33? N lgg'; (169) 390 (387) MR 0-52 —668 (119 987 (30-0)
h — 60 (16:6) 136:1  (388) . - : il
PN 016 629  (130) —301 (8I5) TR O34 —EiTd - (124) 69 (190
PR 013 631 {114) Ol (132)
Aspartic acid (1754) Tryptophan (126)
MN 0-51 =701 (142) 1591 (33:5) MR 037 —670 (114 984 (159}
TN 031 =170 (160) 1734 (427) TR 0-20 —1794 (114 714 (248
PN 18 625 (137) 1749 (400 ML 016 —600  (132) — 385  (475)
TL 12 1796 (144) —101'1  {140)
Glutamine (1029 PL 010 620 {126) —879 52)
MT 036 —677  (58) 1789 (17]) PR 005 610 {145) 83 (139)
TT 021 —1730 (181} 1786 (190
MM o015 —648  {158) —668  (195) Tyrosine (1086)
TP 011 —1728 (212 684 (168) MR 053 —661  (119) 98 (266)
PT 007 643 (206) — 1799 (2005) TR 035 1797 (11-8) 76-3 (20-6)
ME 005 — 736 (22'8) w11 (19-9) PR 012 643 (12:3) 87-4 (157)
Others 004
Cysteine (hb4)
Glutamic acid {1620) T oae g:gg;
MT 035 —675  (163) 1793 (184) M 054 _648 (137)
TT 024 —174-1 (197 —=179%  (189) ’
MM 015 —666  (206) —664  (20:2) L
PT 007 508 (233) —17%1  (215) 'ff“““ (2058) s a6 061
MP 007 668 (217) 767 (181 T N E] 9.9;
P 006 —166:3  (20:4) 659  (182) M 033 _648 (187)
PM 003 a5l (226) —8246 (159 >
Others 02 Threonine (1807)
P 042 627 (134)
Histidine (629} T 010 —1792  (253)
ML 030 —651  (14:3) —B20 (310 M 0-48 —605  (142)
MR 024 —658  (121) 1098 (348)
TR 019 =176 (11 w3 (319) Valine (2108)
TL 015 —17¢:1 (139  —101'6  (336) P 010 617 {26:5)
PL 007 627 (120 —869  (20:2) T 067 1747 {11'7)
PR 005 587 (150) 961 (31 M 023 —60:9  (166)
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Table 3
Conformational entropy differences between free and buried states of amino acid
side-chains
) Sual T‘Smt Sud.d. TSldd- TS
Residue angles {kcalfmole} angles Noaa (kcal/mole)  (keal/mole)
Alanine 000
Glycine 0-00
Proline 000
Cysteine xl 0-59 x2 25 055 1-14
Serine x1 0-64 ¥2 2-5 055 1119
Threcnine ¥l 057 2,1 25 55 112
Valine 1l 0-50 1 0 0-50
Asparagine yL, 2 081 1 0 0-81
Aspartic acid xl, x2 0-61 1 0 0-61
Histidine ¥l ¥2 100 1 0 099
Isoleucine xl, x2 075 1 0 075
Leucine x1, x2 075 1 0 075
Phenylalanine xl, x2 058 1 0 0-58
Tryptophan xl, x2 ouy 1 0 097
Tyrosine xl, x2 058 16 2 0-42 099
Glutamine ¥1, 12 094 3 6 108 202
Glutamic acid xl, x2 100 13 3 066 1-65
Methionine xl, x2 0-87 x3 3 066 1-53
Arginine xl, x2 0-82 ¥3, yd 9 1-32 213
Lysine xL, ¥2 089 ¥3, yd 9 1-32 2-21

8 =8 +8.4a, the first term is calculated by the Boltzmann formula from the statistical
distribittions observed in 161 protein domains. T' = 300 K.

entropic part of the free energy (T'8) at T =300 K over
the solvent-accessible surface of the reference atom in the
extended residue surrounded by glycimes gives the
following corrected surface energy densities to be used
with MIMEL electrostatics: —16:0 for N° of Lys; 0-0 for
N™ and N*2 of Arg; 7-0 for N*? and 0** of Asn; 6-0 for N**
and O¢! of Gln; — 180 for N*! of Trp; 1-0 for 0*! and 0%
of Glu; —20-0 for 8 of Met and 20-0 calories per mole/A?
for all other heavy atoms. These parameters were used in
the BPMC simuiations of the 12- and 16-residue peptides
when electrostatic energy was calculated with the MIMEL
approximation.

(d) Modified image electrostatics

Here we shall find the approximate solution of the
electrostatic free energy of an arbitrarily shaped body
{e.g. & protein molecule) with low dielectric constant ¢,
containing fixed charges ¢; ({ =1, n), which is surrounded
by high dielectric media (g,). The approximation consists
of two components: (1} a compact analyfieal solution of
the problem when the body has an exact spherical shape;
and (2) a fast method projecting the spherical solution
onto the non-spherical body without building explicit
image charges. An important feature of the projection
method is its stable behaviour ‘and ability to achieve a
reagonable accuracy for wide ranges of shapes. The goal of
this development is to incorporate the electrostatic free
energy term into the global optimization procedure, a
development which might be of principal importance for
suceesaful structure prediction.

(iy Compact solution for a sphere

Consider a sphere of radius R and dielectric constant &,
embedded in a homogeneous, isotropic medium of dielec-
tric constant e, (Fig. 3(a})). A potential ®(r, #) created by
a charge ¢ residing at distance z from the centre of the
sphere at any point inside the sphere consists of a stan-

dard Coulomb part and a reaction field potential
{(Friedman, 1975):

C Cqle,—¢
m(r,3)=£—i——-—f—g( : )

P P
i n+1 z'"
rso \EpntEg(nt+1) ) RPH

where C is & constant (C =332, if charges are in electron
units, distances in A and energy in keal/mole}; P, {cos (8))
is the Legendre polynomial. The term (n41)/
(e,n+8,(n+1)) may be expanded in a Taylor series.
There may be two ways t¢ do the expansion based on the
following rearrangements:

_ m+l 2_1_ 1+
g,n+e,{n+1) B
or

-1
n+1 _ 1 1— &y (6)
en4e,(n+1) (€T 8p) ey +g)n+1)

These expressions, when expanded into an infinite series,
lead to 2 ways of representing the reaction potential
R=B(0)+B{1}+B(2)+ ... or R=NRO)+ R+
R(2)+ ..., respectively. The first has been used by
Kirkwood {1934} and the second by Friedman (1975). The
zero and first order terms of these series can be analytic-
ally summed. B(0} and R(0) give the image approxima-
tion with the image charges of
. (sw_sg) E g or
€ x

w

P cos(B)), (4

[ ) -1
%WHJ ®)

_m) R

(6ate,) x
respectively, located at the point r = R?/x, 8=0.

The RO)+R(1}+R(2)+ ... series converges more
rapidly and provides a better approximation of the reac-
tion potential than the Kirkwood expansion B{0)+B(1)+
B(2)+ .... However, using only the %(0) and R{1) terms,
for which a compact analytical form was found



Protein Structure Prediction 991

(b)

boundary at the
accessible surfoce
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correction

boundary closer to the
molecular surface
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Figure 3. (a) Spherical hody of radius R in a dielectric
medium. The charge and its image as well as the point of
observation O are shown. Accessible surface A of a probe
sphere can be used to define depth d of the charge.
{b} Protein in water. Atom ¢ has van der Waals radius #J*.
To caleculate the protein solvent-accessible surface,
increased radii r, = #]¥ ++*"*" are used. Accessible surface
A; of the probe sphere is used to assess the depth &, by
eqn (9). Distances d; are later corrected to move the
effective dielectric boundary from the protein solvent-
accessible surface closer to the molecular surface.
(¢) Derivation of the final set of distances d; between the
charge and the effective dielectric boundary in order to
satisfy 2 conditions: for large positive d; the distance
should be decreased by dr, whereas for negative distances

(Friedman, 1975), provides insufficient accuracy. For
example, when x tends to zero so that charge is located in
the centre of the sphere, the reaction field energy based on
the {0} potential does not reproduce the Born formula.

We have found an approximation which is more
accurate and less computationslly intensive than
R =R(0)+R(1). It exploits the progressively weaker
dependence of W{m) on the charge position & inside the
sphere and uses the z-independent part of the whole series
R(1)+R(2)+R(3)+ ... rather than the exact expression
for (1) as a correction term which is added to the image
charge approximation R(0). The electrostatic free energy
of charges g, in & sphere in the modified image approxima-
tion (MIMEL) is given by a formula consisting of a
Coulomb image term and a correction term {see Appendix
1), the last two terms approximating the reaction field
energy:

Cag I ¢ Caa” _ 10" (en—2) 0
gi-ani<i def.i 2 qu g™ de‘ik 2 REw(Ew"'%’ ’

where r;; is the distance between charges i and j, the
image charge

im (e.—¢,) B
i == ' fi
(8w+ep) T

(8)

is located at the inverse point, and g™ is the net charge
of all real charges in the system.

To caleulate the electrostatic free energy for a real
protein, the interaction energy between 2 charges 7 and j
and 2 corresponding image charges should be expressed in
terms of 2 depths d; and d, of the charges from the protein
surface and their interatomic distance r;; (Imoto, 1983).
Different methods to estimate the distance d; between
charge and dielectric boundary have been proposed.
Schacfer & Froemmel (1990) define the planar dielectric
boundary from homogenecus redistribution of solute
atoms inside the probe sphere. Tanford & Roxby (1972)
and Imoto (1983) related d; with accessible areas of
charged atoms, which makes their method position-
sensitive only for the surface atoms, whereas many partial
charges like peptide group N and O atoms are not access-
ible, even though they play an important role in the
electrostatic effect (Yang ef al., 1992).

Let us notice that the distance between the charge and
the spherical dielectric boundary can be exactly expressed
as a function of the accessible area of an artificial probe
sphere of sufficiently large radius, centred at the charge.
For an ideal sphere of radius B and probe radius ¢ the
distance d; (Fig. 3(a)) may be exactly caleulated as:

d; = R(1+x(1—2a)—/1—x*(1—(1—-2a)%), (9

where a; is the exposed surface A, of the probe sphere
divided by its total surface and x=¢/RE. The same
formula can be applied to proteins. We evaluate an effec-
tive distance d; between a charge and a dielectric
boundary from the accessible surface of a probe sphere of
increased radius &= kR, which is set to be half of the
effective molecular radius B (i.e. x =0-5; Fig. 3(b)). The

the agymptotic value of d; should be such that interaction
with the image charge reproduces the Born energy of the
charge of r—dr radius. Simple linear functions satisfying
the above conditions for the initial dielectric boundary
{bold dotted line) and the corrected one {bold solid line}
are shown. &r=r"""" brings the effective dielectric
boundary close to the molecular surface.



992 Protein Structure Prediction

molecular radius is estimated as

B=3[2 (175N, 0),

where 1756 A* is the average volume of non-hydrogen
atoms in proteins. Values of & greater than (-5 result in
problems for proteins of remarkably non-spherical shape,
because for atoms near the centre of the molecule the
prabe sphere may have too many exposed patches leading
to unrealistic estimates of the depth. The chosen value of
K provides a reasonable estimate of charge depths, in spite
of some inaccuracies for centrally located charges, since
(1) d; may be evaluated for about 7/8th fraction of
molecular volume (in the worst case of spherical protein,
the centrally located sphere where d; is uncertain occupies
(1—1)"*=1/8th fraction of the total volume); {(2) the
remaining part contains on the average fewer charges; and
(3) the electrostatic energy depends weakly on d; for
deeply buried charges.

The distances calculated from egn (9), however, should
be further corrected (1} to modify the position of the
dielectric boundary (Fig. 3(b), (¢)), and (2} to ensure
correct. asymptotic behaviour for the exposed charges
having very small or negative d; values. To calculate the
accessible surface A; of the probe sphere (Fig. 3(h}), all
van der Waals radii are increased by the radius of a water
molecule to exclude intramolecular cavities smaller than
one water molecule sphere. Therefore distances d; initially
corregpond to the effective dielectric boundary placed at
the protein solvent-accessible surface. Although there is
no consensus on the optimal atom radii and hence
position of the dielectric boundary (Davis & McCammon,
1890), it might be necessary to move the boundary by
decreasing distances d;. The correction procedure, moving
the dielectric boundary by & towards the molecular
surface, is shown in Fig. 3(b). To place the effective
boundary at the van der Waals distance from the centres
of surface atoms, the correction displacement dr should he
set to ¥, The second requirement mentioned above (2)
stems from the overexposed probe spheres (which could
be the case for atoms at protruding protein regions)
resulting in values d; calculated by eqn (9) which are
smaller than #;—&r or even negative. These values should
be transformed so that the corrected distances d; tend to
the half of the corrected atom radii r,—dr to ensure that
the self-energy of the charge (the second term in eqn (7))
tends to the Born energy of isolated ion of the same
radius. The actual o, to d, transformation is shown in
Fig. 3(c). We used the following van der Waals radii:
H, 1A C 1'64A: O, 1135 A, N, 1-45 A; the water molecule
radius was set to 16 A,

(e) Energy calculations

The basic description of the molecular system and fast
algorithms to calculate energy terms and their derivatives
with respect to the internal variables as implemented in
the Internal Coordinate Mechanics (ICM) program are
given elsewhere (Abagyan et al., 1994). In the BPMC
simulations, the following energy terms were calculated:
(1} in the course of local minimization following every
random step, the objective function consisted of
ECEPP/2 energy potentials (Momany et al., 1975;
Nemethy ef al., 1983) with the distance-dependent dielec-
tric constant &€ =4r (MeCammon et al., 1979; Pickersgill,
1988), and these energy terms were calculated along with
their analytical derivatives; (2) for the evaluation of the
trial conformation in the Metropolis selection eriterion

(Metropolis ef al.. 1953) 2 sets of energy terms have been
tried, the 1st one consisted of the ECEPP/2 energy
without Coulomb electrostatics, the MIMEL energy and
the hydrophobic energy with the entropic correction (see
section (c)), while the 2nd one consisted of the terms used
in the local minimization supplemented with the solvation
energy of Wesson & Eisenberg (1992). The hydrophobic
energy density before entropic correction was assumed to
be 20 cal/mole per A%, This number is a subject of some
controversy (16 to 31 cal/mole per A? for the microscopic
surface energy density according to Sharp ef al. (1991))
and was chosen somewhat arbitrarily, bearing in mind the
future optimization of all the solvation and electrostatic
parameters involved. Using two different energies for the
minimization and the final evaluation at every MCM step
{Abagyan ef al., 1994) was justified by the relatively weak
dependence of the solvation and electrostatic terms on
small conformational changes in the local minimization
compared to the van der Waals term, and allowed an
efficient local minimization using analytical energy
derivatives.

3. Results

(a) Accuracy of the modified image
electrosiatic calculations

To evaluate the accuracy of MIMEL and
R+ R(1) approximations, we calculated the
electrostatic reaction field energy with the DelPhi
program which implements the finite-difference
algorithm (Gilson & Honig, 1987; Nicholls & Honig,
1991). The DelPhi reaction field energy was calcu-
lated with the grid size 1 A, ionic strength set to 0,
£, =80, and g,=4. The default DelPhi van der
Waals radii, increased by the water molecule radius,
were used. The first comparison was made for the
artificial quasi-spherical randomly charged “pro-
tein” (Fig. 4{a)). Atoms of van der Waals radius
1'6 A were placed in the nodes of a three-
dimensional cubic grid within the 10 A sphere. Tn
each comparison, 20 of them were randomly
selected and charged by +1 or —1 electron charge
unit (e.n.), to provide certain net charge of the
globule. Forty different charge distributions were
generated for the net charge of 0, 2, 4, 6, 8 and
10 e.u.

Three approximations were tested. The first one is
the pure spherical image charge approximation
(term R(0)). Comparison of this approximation with
the DelPhi energies gives the regression line EM™MEL
= 0-952EPPhi_1.775 with the standard deviation
of points from the regression line of 2:26. The 59,
error in the slope is caused by the stepwise jumps
between the sets corresponding to the different net
charges. Addition of (1) logarithmic terms to the
pure image approximation almost eliminates these
jumps and improves the gradient up to the value of
0-995. However, when the net charge and corre-
sponding electrostatic energies are small, the error is
quite large since the intercept becomes +7-37 keal/
mole. The MIMEL approximation which corre-
gponds to R(0) + R reaction potential solves both
problems, as it brings the gradient to 10 and the
intercept to less than 1 kcal/mole. Figure 4(b)
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Figure 4. (a) Model quasi spherical protein containing
485 atoms. 240 randomly charged sets having net charge
between 0 and 10e.n, were generated. In each ses, 20
randomly selected atoms were charged with either | or
—1 e.u. (b) Comparison of the electrostatic reaction field
energies calculated by the DelPhi program and the modi-
fied image approximation.
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demonstrates the high precision of the MIMEL
approximation. The exact linear regression line is
EMMEL — 997 EPPh 1 0-614 (the standard devia-
tion of points from the regression line is 1-99).

The MIMEL approximation turned out to be also
rather accurate for proteins of rather different
shapes and sizes. Four proteins were taken from the
PDRB data base and regularized in full-atom repre-
sentation by a standard TCM  procedure
(Eisenmenger ef af., 1993). These proteins are:
catabolite gene activator (3GAP, Weber & Steitz,
1987), glycoprotein G (Gronenborn et af., 1991},
avian pancreatic polypeptide (IPPT, Blundell et al.,

1981) and a trypsin inhibitor from squash seeds
{2CTI, Holak et af., 1989).

To test the accuracy of the electrostatic calcula-
tion for the intermediate protein conformations we
also generated a set of low-energy conformations for
the trypsin inhibitor. We started from a random
conformation and six different low-energy con-
formations were accumulated during 5000 steps of
the BPMC procedure. One of them is shown in
Figure 5(c). The correspondence between reaction
field energies, calculated by our method and by
DelPhi, for the proteins and intermediate conforma-
tions of the trypsin inhibitor is less aceurate than
for the guasi-spherical protein model, but is still
rather high (Fig. 5(a)). The linear regression line for
energies spanning about 200 kcal/mole is EMME
=0-93EP®h _1.53 with the standard deviation of
points from the regression line of 2:47.

In previous calculations we used van der Waals
radii increased by the water molecule radius to
define the dielectric boundary. So far, no consensus
on what is the optimal set of radii has been reached.
To test the influence of the radii on the agreement,
we recalculated the energies with effective atomic
radii equal to the van der Waals radii (see Materials
and Methods, end of section {d)). The regression line
in this case reads: EMMEL =091 EPFM _84 with a
standard deviation of 74 (Fig. 5(b)). The corre-
spondence is still good, although worse than with
the increased radii, when a protein looks more
“spherical”.

(b} Structure prediction of 12-residue
synthetic peptide

The protein folding problem remains the main
challenge of structural biology. In this section we
demonstrate the efficiency of the BPMC procedure
as a global search method, We also analyse what
energy terms are necessary for a successful predic-
tion. The 12-residue synthetic peptide Acetyl-Glu-
Leu-FLeu-Lys-Lys- Leu-Leu-Glu-Glu-Leu- Lys-Gly-
COOH was crystallized and solved by Hill et al.
(1990). The monomer forms an a-helix which is
associated into higher order structures such as
tetramers and hexamers. We tried to predict the
eonformation of the monomer in solution, believing
that the a«-helical conformation is a quasi-stable
intermediate on the way to the ultimate higher
order structure formation,

The BPMC simulation started from a random
conformation. The preferred angular zones used to
modify the probability distribution for a random
step, were those listed in Tables 1 and 2. The
parameters for van der Waals, hydrogen bonding,
torsion energy terms and electric charges were taken
from the ECEPP/2 potential (Momany et al., 1975;
Nemethy et al., 1983). The electrostatic energy was
calculated with a distance dependent dielectric
constant (McCammon ef al., 1979). Additionally,
solvation energy was caleulated from the accessible
surface using the atom parameters of Wesson &
Eisenberg (1992). To speed up the calculations, the



994 Protein Structure Prediction

+80 7 F

nonblaved
simulatlons

Energy (kcal/mole)

+140 7

-180
] 100000 200000 300000 400000 500008
Number af function evaluations

Figure 6. Energy profiles for the biased probability as
well as non-biaged Monte Carlo minimization simulations
of the 12-residue peptide. The energy value plotted is the
best energy achieved for a given number of function
evaluations, The non-biased simulations did not converge
over 500,000 energy evaluations.
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Figure 5. (a) Comparison of the MIMEL approximation
with the DelPhi reaction field energies for 3 proteins (open
circles} and generated intermediate conformations of
trypsin inhibitor from squash geeds (open squares); (b} the
same graph caleulated with the dielectric boundary at the
molecular surface. (¢} Example of the trypsin inhibitor
- conformation.

solvation energy was not included in the local
minimization, instead, it was added to other terms
to decide whether & new conformation should be
accepted (this procedure is described in detail by
Abagyan et al. (1994)). Up to 35 low-energy con-
formations with a pairwise ¢—t¢¢ r.m.s. deviation
greater than 25° were accumulated in a so-called
conformational stack {a special data structure
designed to keep track of different low-energy
conformational families met during simulation,
Abagyan & Argos (1992)). The maximum number of
energy evaluations in every local minimization was
get: to 200. The simulation temperature was set to
600 K. All dihedral angles, including ¢, were used as
minimization variables. A non-biased (evenly distri-
buted) random step was applied to angles not
included in the preferred variable zones. The back-
hone w angles were modified only during the local
minimization.

To compare the efficiency of the BPMC procedure
with the non-biased Monte Carlo minimization pro-
cedure (Li & Scheraga, 1987), we performed four
simulations of each type starting from different
random conformations. Typically, 500,000 energy
evaluations are sufficient for the BPMC procedure
to converge to the a-helical conformation, which
corresponds to the global energy minimum for the
energy terms described above. This is not the case
for some other sets of energy terms (see below).
Figure 6 shows the progression of the best energy
achieved with the time of simulation for both evenly
distributed random steps (Li & Scheraga, 1987) and
the biased ones. None of the non-biased simulations
converged over 500,000 energy evaluations, The
best energy conformations achieved in these four
runs had an energy ranging from —147 to
—149 keal/mole with conformations ranging from
f-hairpins to assorted coils, often with o-helical
fragments. In contrast, four BPMC runs achieved
conformations with much lower energies between
—155 and —158 keal/mole, all of them being
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Figure 7. Stereo diagram of the superimposed low-energy conformations of the 12-residue peptide achieved in four
BPMC runs. The C*, N and C atoms of residues 3-10 were used for the superposition.

a-helices and differing mainly in their side-chain
orientation. The best-fit superposition of 11 low-
energy conformations accumulated in the BPMC
simulations is shown on Figure 7. Two conforma-
tions with the lowest energies (—157'5 and
— 1580 kcal/mole) are basically identical with a
backbone r.m.s. deviation of only 0-05 A. The back-
bone and all heavy atom r.m.g. deviations from the
X-ray structure are 0-46 A and 1-25 A, respectively
(disordered in the crystailographic structure Lys
side-chains, and two C-terminal residues are
omitted}. The average pairwise coordinate r.m.s.
deviation of the 11 conformations is 0-43 A for the
(*, N and C atoms and 1-36 A for all non-hydrogen
atoms.

The correct conformation also appears to be the
global energy minimum, if the electrostatic free
energy in the MIMEL approximation and the
surface tension with entropic correction {see section
(¢} of Materials and Methods) substitute for the
Coulomb electrostatics with the distance-dependent
dielectric constant and for the Wesson & Eisenberg
(1992) solvation energy. However, the globally
optimal conformation is different, when the solva-
tion energy is left out and the calculation is carried
out in vacuo, eg. with ECEPP/2 potentials
including the Coulomb electrostatics with e =4. The
BPMC procedure easily finds non-helical conforma-
tions with lower energies. Typical features of these
conformations are (1) clustering of positively and
negatively charged atoms and (2) reduced
compactness.

A possible criticism of the prediction described
above would be that either the potentials or the
global optimization method are biased towards
a-helices. Ta check this, we carried out another
series of simulations with the modified sequence
Acetyl-Asp-Leu-Val-Lys-Lys-Val-Val-Asp- Asp-Val-
Lys-Gly-COOH, where aspartic acid residues replace

all glutamic acid residues and valines replace
Jeucines at positions 3, 6 and 10. Such a modifica-
tion preserves both the hydrophobicity pattern and
the charge distribution, yet could possibly modify
the conformational behaviour of the peptide, i.e.
potentially disrupt the helix. Seven simulations of
1 million energy evaluations each resulted in 15
low-energy conformations having energies between
— 134 keal/mole and —137 keal/mole. In contrast to
the original peptide where all low-energy conforma-

" tions within 3 kcalfmole from the lowest one

contained similar o-helices, low-energy conforma-
tions of the modified peptide were quite different
and none of them contained more than one turn of
a-helix. The lowest energy conformation had a
B-turn at Asp8 and Asp9. The second best one forms
a f-hairpin conformation (fragment ILeu2-Val6
interacting with Asp8-Glyl2 in an antiparallel
manner). Inaccuracy in the potential functions (we
observe many hydrogen bonds O-H; ,, which
might be an artefact of the non-directional hydro-
gen honding potential in ECEPP/2) and incomplete
treatment of the free energy (the backbone entropic
term is missing) do not allow us to predict whether
the conformation found will be sufficiently stable in
solution. However, this conformation is certainly
preferred over the a-helical one.

{¢) Structure prediciion of the neutral water-soluble
16-residue peptide

Following a suggestion of one of the referees, we
also made a prediction for the neutral water-soluble
z-helical peptide, described by Scholtz et al. (1991).
The peptide sequence is Ac-{AAQAA),Y(NH,). The
peptide was shown to be helical and monomeric in
solution, We applied the same BPMC protocol as in
the previous case. The following energy terms were
used: ECEPP/2 potentials plus electrostatic free



996

Protetn Structure Prediction

Enargy (kcal/mola)

Energy,

kealimol 7
=562 T

-564

|

|

N- and/or C-

regular helix

a variety of
pariially
helical
structures

| termini disordered

helices broken
in two halves

-500

-520

-540

-560

-580 -7
0

T T T T
100000 200300 300000 400060

Number of function evaluations

(b}

§00000

(

(d)

Figure 8. Structure prediction of 16-residue peptide
(Scholtz et al., 1991} by the BPMC procedure with
MIMEL electrostatics and surface energy with entropic
correction. (a) Filtered energy spectrum of low-energy
conformations accumulated in 4 simulations, The filtering
procedure was the following. All the low-energy conforma-
tions in the conformational stacks were sorted by energy.
Then, for each conformation, starting from the lowest
energy, all similar conformations (backbone r.m.s. devia-
tion <1A) with higher energies were removed.
(b} Energy profiles of 4 simulations. The best energy
achieved over the specified number of energy evalua-
tions is shown. (¢) The lowest energy conformation.
{d) A broken helix having energy 4 kcal/mole higher than
the lowest one.

energy n the MIMEL approximation with the
dielectric boundary at the van der Waals distance
from the surface atom centres (ér=r""""}, the
surface tension with entropic correction (see sections
{c), {d) and (e) of Materials and Methods).

Figure 8(a) shows a filtered spectrum of con-
formations retained in the conformational stacks by
four BPMC simulations (Fig. 8(b)). The simulations
show rather good convergence, all of them achieved
the completely 2-helical conformation, having ener-
gies of about —570 keal/mole. The spectrum shows
relative stability of the a-helical conformation
(Fig. 8(a}). The lowest energy structure is shown in
Figure 8(c). The lowest energy conformation in the
spectrum is followed by a group of conformations
with partial N- or C-terminal fragment rearrange-
ments, and only after that does a topologically
different. - conformation  (Figure 8(d)) appear,
containing two interacting a-helical fragments. The
use of ECEPP/2 energies with the solvation energy
as parameterized by Wesson & Hisenberg (1992)
gives similar results, since most of the polar atoms
were exposed so that solvation parameters account
for the electrostatic polarization effects.

(d) NMR structure determination

Twa families of methods are currently used for
structure determination from NMR data: restrained
molecular dynamics in Cartesian coordinate space
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Figure 9. Stereo views of the 7 superimposed protein G conformations determined by the straightforward BPMC

procedure with all restraints imposed simultaneousty.

{Kaptein et al., 1985; Clore et al., 1985; Briinger &t
al., 1986) and variable target function minimization
in torsion angle space (Braun & Go, 1985). The
advantage of methods operating in torsion angle
space ig a considerable reduction in the number of
free variables, which is achieved by preserving the
covalent geometry. The size of the search hyper-
space depends exponentially on the number of free
variables, which becomes important for medium
and large proteins, The simplest approach would be
just a minimization with all restraints super-
imposed, but this does not work because of local
minima. The idea of the variable target algorithm,
therefore, is to start minimization in small frag-
ments and then gradually increase the window size,
However, as pointed out by Giintert & Wiithrich
(1991), the method has convergence problems, parti-
cularly for f-proteins. That is why those authors
proposed a more sophisticated algorithm, accumu-
lating and applying the dihedral angle restraints
derived from preliminary variable target funetion
calculations.

We tried to return to the simplest approach of
imposing all restraints simultaneously while solving
the local minima problem radically, by using the
biased probability Monte Carlo minimization pro-
cedure instead of only minimization. A true glohal
optimization procedure could be important not only
for ff-proteins and/or complex topologies. Tt is also
much more stable with respect to data inaccuracies
and ambiguities often inherent in NMR data.
Ambiguous assignment of distance restraints can
create multiple minima such that the total numher
of combinations may be much larger than any feas-
ible number of random start conformations in the
variable target function minimization procedure,
and it is only the global search method which may
approach the conformation with the lowest energy/
penalty function.

To test the ability of the BPMC method to find
the solution in a single simulation with all restraints
imposed simultaneously, we took the immuno-
globulin binding domain of streptococeal protein G

solved by Gronenborn et el. (1991). The original
experimental data, namely, 922 distance restraints
and 105 dihedral angle restraints, are available as a
test part of the X-PLOR program {Briinger, 1992}
The preceding heavy atoms were used instead of
pseudo-atoms where stereospecific assignments were
not available. The functional form of distance
restraints was biquadratic with upper and lower
boundaries (Braun & Go, 1985). The variable
restraints were imposed in the form described
above. The same variable ranges were nsed in the
BPMC procedure to make a random step if a
restrained variable is selected. Apart from the vari-
able and distance restraints, the penalty function
also contained a soft van der Waals term and a
torsion energy term (Momany ef af., 1975). A maxi-
mum of 250 function calls were allowed for the
minimization part of the random step.

In seven of nine BPMC simulations starting from
random conformations, the procedure converged to
the solution over less than 100,000 function calls.
The two unsuccessful simulations resulted in basie-
ally correet conformations with one or two local
defects. The average pairwise r.m.s. deviation for
the backbone N, (* and C atoms is 0-7 A, and for all
heavy atoms 1-6 A, The average r.m.s, deviations
from the average structure determined originally by
sronenborn et al. (1991) are 10 A and 1-8 A, respec-
tively. The best-fit superposition is shown in
Figure 9.

4. Discussion

Available techniques of global energy optimiza-
tion have not yet solved the protein folding
problem. The reason 1is twofold: insufficient
accuracy of the energy function, which should
ideally represent the true free energy of a protein in
solution, as well as insufficient efficiency of the
optimization procedure. This paper makes a step
towards solution of both problems.

Since it was realized that the empirical energy



998 Protein Structure Prediction

functions in vacuo are not capable of distinguishing
between correct and incorrect folds {Novotny et al.,
1984), several methods incorporating the solvation
effects into structure prediction simulations have
been proposed (Vila ef al., 1991; Wesson &
Eisenberg, 1992; Williams et al., 1992; Perrot & al.,
1992). In these models the free energy of solvation is
related to the atomic accessible surface. However,
the solvation energy consists of hydrophobic energy
which can be reasonably related to the atomie
accessibilities, and the electrostatic polarization
energy which can not, because of the physical
nature of electrostatic effect {Davis & McCammon,
1990). For small molecules, where most of the
charges are exposed, the problem is not that acute;
however, in globular proteins, contribution from the
buried charges is significant {(Yang et al., 1992). The
Coulomb formula with the distance-dependent
dielectric constant is another frequently used alter-
native accounting for the electrostatic polarization
(McCammon ef al., 1979; Mehler & FEichele, 1984;
Pickersgill, 1988). This method may give reasonable
results if the charge—charge interaction energy
change upon a small conformational rearrangement
or a point mutation is to be evaluated. We used this
kind of energy term (Pickersgill, 1988) for the local
energy minimization which is a part of one random
step of the BPMC procedure. However, the lack of
physical justification in general and of the self-
energy in particular would lead to unacceptable
inaccuracies in large-scale structure prediction
simulations where the total free energies of rather
different conformations are compared.

Our goal was to decouple the hydrophobic and
the electrostatic parts of the solvation energy and to
develop a computationally efficient algorithm for
the electrostatic free energy calculations which can
be incorporated in the extensive MC simulation. The
approach to the energy function can be summarized
as follows: (1) all-atom representation, including
hydrogen atoms, is used to provide sufficient
accuracy; (2) solvation free energy is represented by
the surface-based hydrophobic energy; (3) electro-
static free energy is evaluated by the MIMEL
approximation; and (4) the side-chain entropy is
taken into account. Kmpirical parameters such as
the surface free energy densities, effective atomic
radii used to define the dielectric boundary, relative
permittivity g, etc., were not optimized in this
work. They can be substantially improved by a
comparison of all the free energy terms with the
experimental free energies.

The MIMEL approximation belongs to the family
of methods based on analytical expressions for the
electrostatic free energy of a gystem of charges in a
gpherical cavity surrounded by a dielectric medium
{Kirkwood, 1934; Friedman, 1975). To apply this
theory to a real protein, two steps must be taken;
the infinite series representing the analytical solu-
tion has to be approximated by a simpler analytical
expression (e.g. a classical image approximation,
Friedman, 1975), and the effective distances d|
between the charge and the spherical boundary

have to be evaluated {Imoto, 1983; Schaeffer &
Froemmel, 1990). Neither task is trivial and they
influence the accuracy greatly. As far as the first
task is concerned, the expansion used in this work
{Friedman, 1975} has better convergence properties
than the frequently used Kirkwood expansion
{1934) (Imoto, 1975) and the analytical correction
term derived here (eqn (7))} improves the aceuracy
of the image approximation. The second task, as it
is implemented here {Fig. 3(b}, {(¢)}, has the advan-
tages of being stable with respect to the surface
irregularities and, more importantly, the definition
of the effective distances for the charges close to the
protein surface (Fig. 3(c)) ensures the correct
asymptotic behaviour. The comparison with the
finite-difference method (Nicholls & Honig, 1991)
illustrates the accuracy of the MIMEL method. The
method is sufficiently fast and simple to be used in
the MC simulations.

Estimates of the side-chain entropies {Tabie 3)
underline the importance of the inclusion of the
entropic free energy term in the structure prediction
simulations. Indeed, the exposure of one CH; group
of a long side-chain to the solvent, accompanied by
liheration of three additional rotameric states
results in an estimated entropic gain of about
—Rn 3~ —066 kcal/mole, which 13 comparable
with a hydrophobic energy loss of about (88 keal/
mole (Yang et al., 1992). Relating the entropic term
to the accessible surface of certain reference atoms is
a simple, albeit not very accurate, way to incor-
porate this term in the energy calculations.
However, in the examples considered {12-residue
and 16-residue peptides}, the accuracy appeared to
be sufficient to uniquely identify the native three-
dimensional structure.

The efficiency of the global optimization pro-
cedure is perhaps an even more important com-
ponent of the structure prediction problem.
Mentioning an astronomical time, which a system-
atic search procedure would require to find the
global minimum, has become a commonplace. The
Meonte Carlo method has a large potential as a global
optimization method; however, in its straight-
forward implementation, it is clearly unable to solve
the problem. The difference between the BPMC and
other methods from the MC family lies in the way
the random conformational change (MC-step) is
made. Two principal ideas aimed at an improved
MC-step for protein modelling have been proposed
and successfully implemented so far. The first one
relies on the harmonic approximation of the energy
surface near its minimum. The idea of Noguti & Go
(1985) was to bypass a step size limitation, imposed
by a strong anisotropy of the energy surface, by
using collective variables corresponding to eigen-
vectors of the second derivative matrix of the
energy function. Explicit calculation of the matrix
of second derivatives as well as eigenvectors and
eigenvalues can also be avoided in an approxima-
tion proposed by Vanderbilt & Louie (1984).
However, both methods improve the quality of only
the local MC-steps, which become redundant when a
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local minimization follows the random change (Li &
Scheraga, 1987). The second idea was to direct the
movements of permanent protein dipoles by the
local electrostatic field created by the whole
molecule (Ripoll & Scheraga, 1988). Such a driving
force may increase the performance of the global
search; however, it is not clear whether the electro-
static forces in particular, calculated in wacuo,
always steer the search trajectory in the correct
direction rather than mislead it by neglecting other
components of the energy function. The electro-
statically driven conformational changes, consisting
of the local rotation of the peptide plane, do not
change the overall topology, thus restricting the
sampling power of the procedure.

The BPMC procedure introduces a different basis
for the random change, which now uses knowledge
about local conformational preferences. These
preferences, in the form of continuous probability
distributions, can be either deduced from energy
calculations or taken from known three-dimensional
structures. Currently, the probability distributions
of the main-chain and side-chain torsion angles in
representative protein structures are taken directly
as a distribution function of a random conforma-
tional change. The optimality of such a choice can
be proven mathematically under some simplifying
conditions. The comparison between the biased and
non-biased simulations of the 12-residue peptide
demonstrates the greatly increased sampling effi-
ciency of the BPMC procedure.

Two important factors of any non-local-step-MC
procedure are the number of angles changed
simultaneously and the fraction of accepted trial
conformations (acceptance ratio). Tncreasing the
first would improve the coverage of conformational
space, whereas increasing the second would reduce
the fraction of wasted trials. These two parameters
are conflicting, i.e. increased humber of angles leads
to a decreased acceptance ratio. Changing only one
angle at a time was proven to be optimum for the
“non-biased” Monte Carlo-minimization procedure
{(li & Scheraga, 1987). The BPMC-step allows
changing of several torsion angles simultaneously
while still keeping the acceptance ratio rather high
(about 50:9,).

In this work, a relatively rough approximation to
the observed probability distribution, a set of
Gaussian distributions, was used. We assume that
local energy minimization of trial conformations, as
well as restricted accuracy of the data-base derived
preferences as applied to a particular peptide, make
more complex and detailed description of the distri-
bution unnecessary. In the current implementation,
variables within the zone (e.g. y-angle values in
conformations corresponding to a certain side-chain
rotamer) are considered as wuncorrelated. This
simplifies the zone deseription and generation of the
random step. For most of the y-zones, as well as for
the fB-zone of the main-chain, the shape of the
distribution (Fig. 2) suggests the absence of strong
correlation between angles. The a-zone, where the
correlation is strong, was divided into two roughly

round subzones to cover the slanting ellipsoid of the
o-zone. However, as noted above, the procedure is
rather stable with respect to inaccuracies in the
representation of the actual  probability
distribution.

The concept of the BPMC is general, and not
restricted to a particular division of the conforma-
tional space into subspaces. The cbvious extension
would be use of a joint probability distribution of
the backbone and the side-chain torsion angles for
each residue type. Congidering several residue frag-
ments could become another step towards greater
efficiency of the BPMC procedure.

Appendix I: Optimal Probability Distribution
for a Random Step in the Monte
Carlo Procedure

Theorem

Suppose we want to find a global minimum of an
objective function dependent on variables, which
can be divided into n m-dimensional subspaces of
similar type. The target variable set is:
(x9,x9,...,x%,...,x%), where x is a point in
m-dimensional space of one zone. For example, x
may be a pair of (¢, ), so that x9, ..., x? describe
the backbone conformation of an n-residue peptide.
Let us consider a simplified prediction procedure
congisting of a series of random selections of
Xy, X5, ..., X;, and x, generated with a probability
function f(x), which is the same for all subspaces.
We consider the prediction for subspace ¢ as being
successful if x gets sufficiently close to the target
point x? so that it can be further refined. We assume
that a subsequent refinement procedure brings the x
to x? with the probability A(x, x%), which is a certain
bell-shaped function centred at x?. Let S(x) be the

known distribution function of  points
0 .0 0 0
(X7, X5, Xpy 0 Xy )

We want to prove the following statement: for
fix) and S(x) belonging to the class 3 of smooth
functions with respect to the bell function A(x, x%),
so that;

J. R(x. xM)g(x)dx & const g{x°) (A1.1)

for any g(x} <3, the optimal function f(x) maxi-
mizing the probability of successful prediction is

equal to S(x).
Proof

The probability of successful prediction is given
by a product of » integrals:

"

r=1] -[h.(x,x?)f(x) dx.

i=1

(A1.2)

To find a maximum (stationary) value of this
product we shali consider variations of the function

Jx). That is, we vary f(x) to f(x)+Af(x), where
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fi(x} is an arbitrary function obeying the condition:
~j‘fl(x) dx=10 (AlL.3)

which results from two normalization conditions for
the original and the varied probability functions:

ff(x) dx =1 and j(f(x)+ﬂvf1(x))(lx =1. (Al4)

We search for the stationary value of F as a fune-
tion of the parameter A. The condition for this is the
vanishing of the derivative with respect to A
Inserting the varied function into the expression for
P and differentiating with respect to A, we obtain:

i {J x, x7) (x)de....
Jh(x, xpfi(x) dx
-[k(x x0)f(x )dx} 0.

Rearranging the sum after multiplication and divi-
sion of each summand by jh(x, x{) f(x) dx:

([_‘[ jh(x x? )dx)

'[h(x: x?}fl (x) dx

(A1.5)

1=

=0. (Al.6)

! jh(x, x2f(x) dx

Using the ahove-formulated condition (Al.1) for
smoothness of functions f(x) and f,(x) with respect
to the bell-shaped functions A(x, x°), one can get rid
of the integrals in numerator and denominator of
the last multiplicand and simplify the optimality
condition:

0
X

n
Z 0 =
= l

(AL.7)

This sum ma,y be approximated by an integral using
the observed probability distribution S{x):

S g = ({5 _
.[S(x) f‘(x) dx = J(f(x))fl{x) dx = 0. (A1.8)
Condition (A1.3) for f,(x) leads to: &) _
or Jix}
fix) = 8(x) (A1.9)

because of the normalization condition for the prob-
ability distributions.

Appendix II: Formula for the Modified Image
Approximation of the Electrostatic Free Energy

Let us consider a sphere with one charge in the
dielectric media (Fig. 3(a)). The reaction pofential
in the sphere reads:

= n+1
Rir, 0) = . ; (s n+£w(n+]))
x R;E:Tr:—lpn(cos(ﬂ)). (A2.1)

The factor (n+ 1){(e;n+&,(n+1)) can be rearranged
and expanded in  increasing powers of
g, fle, +e)nt+1)« 1:

n+t _ 1 . £,
gnt+iin+1) ] (g, &) +(8w+£p)(n+l)

(&t )(n+1) )

(A2.2)

Substituting this formula into the reaction potential
and noting that the zero-th term contains the
expansion of 1/#™ in spherical harmonics, progres-
sively decreaging contributions to the reaction
potential are obtained:

Y

Rir, 0) = ‘(3‘"* p

TP ﬁ+9?(l)+ﬂi'( o

(A2.3)

where (! is a constant of proportionality, and r'™ is
the distance between the position of image charge
and the point of observation inside the sphere. The
reaction field energy caused by this potential is:

1 Cq*R(e, —¢,)

pim — q‘_R(O)( X, 0) 2 e (8 +gp)1‘1’

- (AZ4)
Substituting #™ by (R%/x—x) and letting = tend to
zero gives the image approximation of the reaction
field energy for a charge in the centre of the sphere:
1 qu(gw — 82)

Fm = .
x=0 2 Ep(e, T, R

(A2.5)
However, for this particular case, the exact electro-
static reaction field energy is known and given by
the Born formula:
1Cq2e, —¢,)
gBorm — _ — 2w P A2.6
2 g, R ( )
Using the increasingly weaker dependence of R(1),
R(2), R(3),... on x, we propose an approximation
where, instead of an exact expression for (1), we
use the position independent addition M(corr) to the
reaction potential, which represents the position
independent part of all the terms R(1), R(2),
R(3), ..., so that for the particular case of charges
in the centre one gets the exact solution. The addi-
tional term ME™ can be computed as:
(P —F0) _ Calew—y)

ichrr ~ o TE=07

q T Relegtey) (A2.7)
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For a system of charges ¢;, i =1, ..., n, the reaction
field energy in the MIMEL approximation is:

BMNEL = 1Y S R+ R (A28)
4 ae

where R and RE™ are the image and the correc-

tion reaction potentials produced by atom & at the

position of atom 7. Substituting the expressions for

these terms, noting that

Fyn-(3e)

total

(A2.9)

and defining ¢'** as } g;, we obtain the following
expression for the reaction field energy:

e _ L G 1 C@ e 2y)
w + )

2 2  Re,le - (A210)
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