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responses. Metabolic changes are real-world
end points, whereas gene expression changes
are not; they merely indicate the potential for
an end-point change. As such, metabonomics
provides a useful connection between the
‘omics’ platforms and actual tissue histology.

Post-genomic analytical technologies
To investigate the complex metabolic conse-
quences of disease processes, toxic reactions
and genetic manipulation, non-selective, but
specific, ‘information-rich’ analytical
approaches are required (BOX 1). Several spec-
troscopic methods in addition to NMR can
produce metabolic signatures of biomateri-
als, including mass spectrometry (MS)19,20,
gas chromatography/mass spectrometry
(GC/MS)21, high-performance liquid chro-
matography (HPLC)22,23 and optical spectro-
scopic techniques24. Bioanalytically, NMR
and MS are powerful means of generating
multivariate metabolic data. NMR has the
advantages of being non-destructive, applic-
able to intact biomaterials, and intrinsically
more information rich with respect to the
determination of molecular structures, espe-
cially in complex-mixture analyses. Further-
more, a technique known as magic angle
spinning (MAS)-NMR can be used to carry
out biochemical studies on intact tissues and
cells, which, if carefully conducted, can pre-
serve the samples for other studies and allow
abnormal molecular compartmentation and
interactions to be studied in intact tissues. MS
is analytically more sensitive than NMR, but
differential ionization suppression can make
pattern quantification difficult, and extraction
and derivatization might be necessary. The
choice between NMR and MS approaches is
ultimately matrix or problem dependent. Both
technologies require further development,
especially of high-throughput and data-pro-
cessing methods, to optimize their use in com-
plex metabolism studies. However, 1H-NMR
spectroscopy can be efficiently applied to

The later that a molecule or molecular class
is lost from the drug development pipeline,
the higher the financial cost. Minimizing
attrition is therefore one of the most
important aims of a pharmaceutical
discovery programme. Novel technologies
that increase the probability of making the
right choice early save resources, and
promote safety, efficacy and profitability.
Metabonomics is a systems approach for
studying in vivo metabolic profiles, which
promises to provide information on drug
toxicity, disease processes and gene
function at several stages in the discovery-
and-development process.

The ‘old’ testing paradigms often fail to prevent
many ‘doomed’ molecules from entering
development. There is a need for methodolo-
gies that can describe altered gene expression
and cellular protein profiles in terms of their
early metabolic consequences, and relate
these to developing, established or regressing
pathology. Studying the effects of drugs on
whole organisms by metabonomics relies on
multiparametric measurement of alterations
in metabolism over time in response to a
stressor or intervention1–10. This approach can
also be readily adapted to investigate the func-
tional consequences of genetic variation and
transgenesis3,11–13, which is potentially of great
importance in the creation and validation of
new models of human disease and efficacy.
There is considerable scope for the applica-
tion of metabonomic approaches in the phar-
maceutical industry, from discovery through
to clinical development and beyond. In the
discovery phase, these include early in vivo
toxicological testing, lead compound selec-
tion and pre-lead prioritization, and in vivo
efficacy screening in animal models. In the
development phase, applications include
finding new preclinical safety biomarkers and
mechanisms, metabotyping and the valida-
tion of animal models against human disease
profiles, and the discovery of new clinical
safety and efficacy biomarkers.

In this article, we will explore the relation-
ships between the findings of the new ‘omics’
sciences, describe analytical technologies for

measuring multiparametric metabolic
responses, with particular emphasis on NMR-
based approaches, discuss multivariate statis-
tical methods that optimize information
recovery from multivariate NMR data sets,
and consider the application of metabonomics
to drug discovery and development, partic-
ularly in minimizing attrition.

Metabonomics in pathophysiology 
The realization that obtaining the genome
sequence of humans or other species does not
in itself explain the fundamental nature of
many disease processes has triggered a
marked increase in interest in approaches that
relate gene expression to phenotypic
outcome1,2,14–16. Several technologies are being
developed to achieve this end, namely:
genomics and transcriptomics, which examine
genetic complement and gene expression,
respectively; proteomics, which involves the
analysis of protein synthesis and cell signalling;
metabolomics, which investigates metabolic
regulation and fluxes in individual cells or cell
types; and metabonomics  — the determina-
tion of systemic biochemical profiles and
regulation of function in whole organisms by
analysing biofluids and tissues.

In complex organisms, these levels of bio-
molecular organization and control are inter-
dependent, and are affected by environmental
events and stresses throughout life. Their
characterization, by appropriate analytical
methods, describes changes in biological
activity by using complex multivariate data
sets that can be analysed using various
chemometric and bioinformatic tools15,17,18.
The aim of such procedures is to extract latent
biochemical information that is of diagnostic
or prognostic value, and which reflects ‘actual’
biological events rather than the ‘potential’ for
disease or toxicity that is offered by the collec-
tion of gene expression and proteomic data
after exposure to a drug or stressor. It is there-
fore necessary to relate real-world or end-
point observations to the measurements that
are provided by the ‘omics’ technologies (FIG.

1). This allows an understanding of the rela-
tionships between the inputs that change
‘omics’ responses and the outputs of those
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An event must therefore be evaluated in rela-
tion to time at each level of biomolecular
organization if molecular responses are to be
accurately associated with their macroscopic
consequences in an organism. So, in meta-
bolic studies, it is of paramount importance to
measure time-dependent patterns of change
in response to stimuli, because metabolic
fluxes occur very rapidly, even in normal
homeostasis, and consideration of the
‘metabolite content’ at only a fixed point in
time can be misleading. The same considera-
tions also apply to proteomic and transcrip-
tomic data. Levels of messenger RNA and
associated protein products might correlate
poorly, even in carefully conducted studies on

also a powerful tool for investigating pheno-
typic abnormalities in mutant animals13 and
human diseases32,43-48, and in modelling phys-
iological variation in experimental animals
and man42,49.

Biochemical changes over time
In an integrated biosystem, it is axiomatic that
the initiation of functionally connected gene
expression events, cell signalling, protein-
synthesis changes and metabolic responses to
a stressor must be essentially sequential.
Maturation and persistence of changes in gene
expression, protein synthesis and post-transla-
tional modification, and subsequent effects on
metabolic processes, also differ significantly.

measure the metabolite profiles of biofluids
and tissues. NMR measurements, coupled with
multivariate statistical, chemometric methods
for the purpose of latent-information extrac-
tion and sample classification, offer a powerful
new approach to whole-system diagnostics
and metabolic function. The efficient applica-
tion of NMR-based metabonomics in toxico-
logical and clinical investigations has been
shown1,2,25–40, and we have recently shown its
fundamental value in characterizing the
metabolic consequences of genetic variation
in mammalian systems, and in identifying the
‘metabotypes’ or metabolic phenotypes that
result from a combination of genetic and envi-
ronmental factors3,11,12,41,42. Metabonomics is

Box 1 | Important techniques and procedures in metabonomics

NMR spectroscopy. Some atomic nuclei possess a non-zero magnetic moment. This property is quantized, and leads to discrete energy states in a
magnetic field. Nuclei such as 1H, 13C, 15N, 19F and 31P can undergo transitions between these states when radio-frequency pulses of appropriate
energy are applied. The exact frequency of a transition depends on the type of nucleus and its electronic environment in a molecule. For example,
1H nuclei in a molecule give NMR peaks at frequencies (chemical shifts) that are characteristic of their chemical environment. NMR spectroscopy is
used extensively as a structural tool, and information on isomers and molecular conformations can be obtained by interpretation of the chemical
shifts as well as the splitting patterns due to indirect nuclear interactions (J-couplings). In metabonomics, the patterns that occur with time when
many biochemical entities are detected simultaneously in the mixture by NMR are interpreted63,82.

Pattern-recognition methods. Pattern recognition and related multivariate statistical approaches can be used to discern significant patterns in
complex data sets, and are particularly appropriate in situations in which there are more variables than samples in the data set. The general aim of
pattern recognition is to classify objects  — in this case, 1H-NMR spectra — or to predict the origin of objects, by identifying inherent patterns in a
set of indirect measurements. Pattern-recognition methods can reduce the dimensionality of complex data sets by means of two- or three-
dimensional mapping procedures, thereby facilitating the visualization of inherent patterns in the data.

Supervised and unsupervised techniques. Methods such as principal components analysis (PCA) are termed ‘unsupervised’ techniques, in that no
a priori knowledge of the class of the samples is required, and they are based on the calculation of latent variables. Principal components are linear
combinations of the original descriptors, such that they are uncorrelated, and describe decreasing amounts of data variance (that is, PC1>PC2>PC3
and so on). Use of PCA enables the ‘best’ representation, in terms of biochemical variation in the data set, to be shown in two or three dimensions.
In addition, multiparametric data can be modelled, so that the class of a sample from an independent data set can be predicted on the basis of a
series of mathematical models that are derived from the original data or ‘training’ set. These methods are known as ‘supervised’ methods, and use
class information to maximize the separation between classes. Supervised methods, such as soft independent modelling of classification analogy
(SIMCA), partial least squares (PLS) analysis and PLS discriminant analysis (PLS-DA), can be used to predict objects that are unknown to the
system on the basis of their NMR spectral properties, and are therefore valuable for generating models for predicting drug toxicity83–86.

Strategy for metabonomic analysis. An NMR data-analysis procedure is shown in the figure. After spectra are accumulated and processed (panel a),
a primary data reduction is carried out that digitizes the one-dimensional spectrum into a series of typically 250–1,000 integrated regions 
(panel b)36,59. After removal of redundant signals and appropriate scaling, primary data analysis is used to map the samples according to their
biochemical composition, using methods such as PCA. Samples that are generated from animals that are in a similar pathophysiological state are
generally intrinsically similar in composition, and therefore occupy neighbouring positions in the PC space (panel c). Each class of samples is then
modelled separately, and class boundaries and confidence limits are calculated to construct a model for the prediction of independent data (panel d)11.
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protein and lipoprotein signals dominate sim-
ple one-dimensional 1H-NMR spectra, with
small-molecule fingerprints superimposed on
them65. Spin-echo experiments minimize the
broad signal contributions from proteins,
other macromolecules and micelles53,65.

An important challenge posed by NMR
spectroscopy of biofluids is how to efficiently
recover metabolic information that allows
diagnosis or classification of disease or toxicity.
The information that is needed for useful class-
ification of spectra from biological samples
can often be obtained without detailed struc-
tural chemical (spectroscopic) analyses. More
sophisticated interrogation involves the identi-
fication of the molecular species that differen-
tiate ‘pathological’ from ‘normal’ states, and a
statistical description of the biomarkers that
aid understanding of disease or toxic mecha-
nisms. So, NMR spectra of biofluids serve in
two distinct, but closely related, modes; that is,
as quantitative metabolic-fingerprinting tools,
and as a means of determining metabolite
(biomarker) structure63.

The detailed structural assignment of a
biofluid NMR spectrum can be a complex
procedure, involving the application of several

unicellular organisms, such as yeast50 and
bacteria51, or in higher organisms52. In fact, it
might not be appropriate to try to identify
simple correlations between transcriptomic
and proteomic data that are collected at single
time points after exposure to a stressor, as
these might not exist at all because of the non-
linearity of many gene expression and protein
synthesis relationships.

In multicellular organisms, these time dif-
ferentials will probably vary unpredictably
with gene and tissue, and modulation by
other external stressors in addition to, for
example, a drug, is possible. It is important,
therefore, to choose appropriate windows of
time to study transcriptomic and proteomic
responses to exposure to drug candidates. An
important potential role for metabonomics is
to direct the use and timing of proteomic and
genomic analyses in order to maximize the
probability of observing biological transitions
that predict functional outcomes; this prin-
ciple applies to human, animal and microbial
systems. In the case of a single exposure to a
toxic drug, there will be a response that takes
time to complete, and the patterns that are
observed in gene expression, proteins and
metabolites will therefore vary according to
when the measurements are made (FIG. 2a). If
the measurements are made long after dos-
ing, it is possible that the only profile
changes will be due to biomarkers of recovery
or cellular repair. In the case of a multi-dose
study (FIG. 2b), the second and subsequent
doses of a compound might arrive before the
effects of the first dose are cleared, complicat-
ing the profiles further. As the doses continue,
there might be a rising curve of toxicity (mea-
sured by whatever means), and there could
then be superimposed profile changes due to
cell death and regeneration.

1H-NMR spectroscopy of biomatrices
1H-NMR spectroscopy of biofluids such as
urine and plasma has been successfully
applied to investigate numerous diseases and
toxic processes53–62. Because biofluids fulfil
diverse biological purposes, their metabolic
composition varies with their role and the
functional integrity of the organ systems that
are communicating with them, and ultimately
with the physiological status of the whole
organism. So, each biofluid yields a character-
istic 1H-NMR spectroscopic fingerprint in
which the spectral intensity distribution is
determined by the relative concentrations of
solutes, and in some cases by their intermolec-
ular interactions61,63. High-frequency 1H-NMR
spectroscopy is particularly useful in biochem-
ical investigations, in that it is sensitive (low-
nanogram detection limits are possible with

appropriate instrumentation), and nearly all
metabolic intermediates have unique 1H-NMR
signatures61,63. Simple one-dimensional spectra
typically take only a few minutes to acquire,
with no sample preparation other than
buffering and addition of D

2
O to provide a

reference frequency. The large interfering sig-
nal that arises from water in all biofluids is
easily eliminated using appropriate solvent-
suppression methods61.

Metabolic profiles of biofluids such as
plasma, cerebrospinal fluid and urine reflect
both normal variation and the pathophysio-
logical impact of toxicity or disease on single or
multiple organ systems53,55,64,65. Urine and
plasma are obtained in a non- or minimally
invasive manner, and are therefore appropriate
for clinical-trial monitoring and disease diag-
nosis. Even a one-dimensional high-frequency
1H-NMR spectra (600 MHz or greater) of
urine typically contains many thousands of
sharp lines from hundreds or potentially thou-
sands of metabolites63. 1H-NMR spectra of
urine are dominated by low-molecular-weight
compounds, whereas plasma contains both
low- and high-molecular-weight components,
which give a wide range of signal line widths:
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spectrum of rat urine, with regions labelled by
the biological or functional changes in the
animal, is shown in FIG. 3, and contrasts with
the conventional way of labelling an NMR
spectrum according to molecular structure.
This diagram shows a series of ‘biomarker
windows’, in which there are combinations of
pattern and intensity changes according to the
site and mechanism of organ dysfunction.
Many such windows exist in NMR spectra of
biofluids, and diagnostic information on
hundreds of different types of disease or toxic
process can potentially be derived from a
simple NMR measurement, as shown in FIG. 4

using examples of liver and kidney toxicity.
Although toxins can affect gene regulation

or expression directly, significant responses
might be completely unrelated to gene
switching (for example, enzyme inhibitors).
In such cases, transcriptomic and proteomic
methods are likely to be unrevealing.
However, many drug-induced effects involve
disturbed endogenous metabolite concentra-
tion fluxes or ratios that result from direct
chemical reactions, altered binding to macro-
molecules, modified control mechanisms,
and induction or inhibition of enzymes, to
name but a few. If these disturbances over-
whelm compensatory or adaptive mecha-
nisms, consequences that are recognized as
toxicity occur. As metabolite concentrations
in several key body fluids relate to cell and
tissue processes, so toxin- or disease-induced
disequilibria are reflected in those fluids.

Using pattern-recognition methods, NMR
spectra can be used to: classify the sample as
being normal or abnormal (this is useful in
the control of spectrometer automation using
flow injection); classify target-organ toxicity
and the site and mechanism of action within
the organ; identify biomarkers of toxic effect;
and evaluate the time course of the effect;
for example, the onset, evolution and regres-
sion of toxicity. The information that is
derived from databases of NMR spectra can
be maximized using appropriate chemo-
metric and multivariate analytical strategies.
Preliminary analysis involves the application
of ‘unsupervised’ pattern-recognition meth-
ods, such as principal components analysis
(PCA) or cluster algorithms that assume no
previous knowledge of sample class. Specific
toxic challenges can be characterized by
PCA trajectories, in which clustering of
sample coordinates reflects an intrinsic sim-
ilarity in biochemical composition. Such tra-
jectories are shown in BOX 2 for a model liver
toxin and its metabolites. Having established
the presence of site- or mechanism-related
metabolic responses, more sophisticated
supervised algorithms can be applied to the

Metabonomics in drug toxicology
Although transcriptomic/genomic and pro-
teomic measurements respond to the
administration of toxic agents, it is difficult
to relate findings to classical toxicological
end points, and hence influence the drug
attrition rate. Metabonomics offers a com-
plementary approach that gives information
on whole-organism functional integrity over
time after drug exposure. Target tissues or
processes, and biomarkers, can be identified
by characteristic changes in the pattern of
concentrations of endogenous metabolites
in biofluids that relate to the site and mecha-
nism of toxicity.

1H-NMR analysis of biofluids has uncov-
ered novel metabolic markers of organ-specific
toxicity in the laboratory rodent, and this
‘exploratory’ role is one in which biofluid
NMR spectroscopy excels. For example, a
combination of changes in the urinary levels
of trimethylamine-N-oxide, N,N-dimethyl-
glycine, dimethylamine and succinate,
together indicate renal papillary damage, for
which no biochemical markers existed pre-
viously36,38. The biomarker information that
is present in the NMR spectra of biofluids is
potentially very rich, as hundreds of com-
pounds that represent a variety of metabolic
pathways are measured simultaneously61,63.
The NMR spectrum of a biofluid can be con-
veniently thought of as a series of ‘biomarker
windows’, which are spectral regions that con-
tain signals from metabolites that are associ-
ated with specific targets for toxicity. An NMR

NMR techniques, including 1H–1H and
1H–13C two-dimensional experiments65.
Diffusion-ordered and diffusion-edited NMR
spectra can also be of value, especially when
solutes cover a wide range of molecular
weights, as with blood plasma66. Directly
coupled chromatography–NMR spectro-
scopic methods can be used, especially for
determining the structure of drug metabolites
— the most powerful of these ‘hyphenated’
approaches is HPLC–NMR–MS67. Complete
assignment of NMR spectra of biofluids is
extremely difficult, because NMR-detectable
metabolite concentrations (excluding water)
vary over six orders of magnitude. This causes
difficulties in the interpretation of two-dimen-
sional spectra of minor components in the
presence of peaks from compounds at much
higher concentrations. Furthermore, unlike
single proteins, which also give complex spec-
tra, it is not possible to uniformly enrich
biofluid metabolite mixtures with 13C or 15N
labels, limiting the range of heteronuclear-
correlation NMR methods that can be used.
In practice, however, neither issue markedly
limits the usefulness of 1H-NMR spectroscopy
of biofluids as a diagnostic and biomarker-
identification tool. Biofluid NMR is useful for
rapid screening, especially when carried out
using flow-injection methods68. However,
target-organ toxicity or disease fingerprints
can also be investigated by using MAS-NMR of
intact tissues69–76, and this can give deep insight
into toxic mechanisms, such as cadmium-
induced nephrotoxicity26,77.
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Figure 3 | A functional NMR spectrum of rat urine. A 600-MHz 1H-NMR spectrum of rat urine is
shown, which is colour-coded to indicate spectral biomarker windows that are diagnostic for a subset of
diverse pathophysiological conditions. One NMR spectrum can carry information on a wide range of
pathological or toxic processes (potentially hundreds of disease classes in a single spectral measurement).
AcylCoADH, acyl coenzyme A dehydrogenase dysfunction; RTA, renal tubular acidosis.
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recovery of biological information. In the
case of toxicity assessment, it is possible to
generate false-positive data in situations in
which the compound of interest causes sig-
nificant metabolic changes without associ-
ated toxicity, because of marked physiological

data, in which the sample class can be used
to optimize the differentiation between
classes. Information that relates to biomarkers
of toxicity or recovery can be extracted from
the analysis with a view to furthering our
understanding of the mechanisms of toxicity78.

Time-resolved metabonomic experiments can
also be used to deconvolve the overlapping bio-
chemical effects of drugs and their metabolites,
which might have different toxicities.

As with all ‘omics’ platforms, metabon-
omics has certain limitations in terms of the
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There are obvious limitations in terms of
choice of biofluid; for instance, urine might
not be as appropriate as cerebrospinal fluid
for studying neuropathology. There is also the
potential for confusion with mixed-toxicity
drugs that, for example, affect both liver and
kidney, as the biomarkers of toxicity will be a
complex combination that relates to both
sites and possibly to multiple mechanisms.
However, this is offset by the fact that mixed
toxicities often have different timescales, and

ment does not occur until there is significant
tissue damage. In the case of low-potency
compounds, there might be particular diffi-
culties in separating toxicological from physi-
ological effects. However, in previous
dose–response studies, NMR-based metabo-
nomic methods were at least as sensitive as
conventional methods for detecting lesions at
the ‘threshold-dose’ level26,27,56,61, and even
minor physiological changes were detected in
normal animals41,42,49.

or pharmacological effects. For example,
acetazolamide is a renal carbonic anhydrase
inhibitor that massively reduces the excretion
of intermediates in the citric-acid cycle.
Misinterpretation can, however, be mini-
mized by using supervised methods that
include models of such effects — such models
are now under construction in our labora-
tory. Conversely, certain pathologies, such as
liver fibrosis, are associated with negligible
effects on biofluids, as metabolic derange-

Box 2 | Convolution of biochemical and molecular events caused by drug metabolism

Most drugs are extensively biotransformed to
metabolites with markedly different toxicological
properties. Such biotransformations take variable
times in different tissues and in different species,
convolving the cellular toxicological effects.
Drug/metabolite proportions also change with time as
the parent drug becomes absorbed, distributed and
cleared by metabolism and excretion (panel a). This is
an important problem, as snapshots of net toxic effect
using any ‘omics’ approach cannot be readily
interpreted, and this is illustrated with respect to the
hepatotoxin α-naphthylisothiocyanate, which
undergoes the changes shown in panel b.

When administered separately to rats, these
compounds produce markedly different metabolic
trajectories, as they act by different mechanisms36.
Trajectory plots map the metabolic response, show the
extent and type of the lesion, and indicate whether
there is functional recovery36,59. A three-dimensional
principal components analysis (PCA) stereo pair plot,
which consists of two images that are designed to be
viewed with stereo glasses to give a three-dimensional
effect, shows trajectories for each compound (panel c).
Each connected point represents the mean metabolic
position of five animals at given time points
(numbered 1–9 in the diagram) after dosing. The 
α-naphthylisothiocyanate (ANIT) trajectory
represents the aggregate biochemical effects of the
metabolic flux (ANIT to α-naphthylisocyanate
(ANIC) to α-naphthylamine (ANA)). There is no
functional recovery of the ANIT-induced lesion over
the seven-day course of the experiment (the trajectory
does not return to origin). The ANIC trajectory is
simpler, and is convolved only by its primary
metabolite, ANA — there is functional recovery. The
first metabolic direction of the ANA-dosed animals is
in the third principal component (PC3). For ANIC, the
second direction is in PC3, as it takes time for ANA to
be produced. For ANIT, the PC3 direction change
takes longer, as ANA is formed after ANIC. This
approach, termed ‘metabolic trajectory deconvolution’,
allows effects of drugs and their metabolites to be
separated for mechanistic purposes. Endogenous
metabolic changes that are caused by the effects of
successive drug metabolites must also mirror complex
time-related changes in the transcriptomic and
proteomic patterns, thus limiting the value of single-
time-point measurements of genes and proteins.
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indication for the use of metabonomics in
the phenotyping of mutant or transgenic
animals and the investigation of the conse-
quences of transgenesis. In a recent study, we
have shown that the transfection process itself
can cause marked metabolic differences in
hepatoma cell lines due to the disruption of
host cell membranes 81. It is important to dif-
ferentiate such unintended consequences of
the genetic engineering process from the
intended result, as these can potentially con-
fuse the interpretation of the function of
particular genes or gene classes when the cell
system or organism is examined for the physi-
cal effects of the intervention. This is impor-
tant to pharmaceutical companies that are
trying to genetically engineer new animal
models of disease using biochemically inva-
sive transfection procedures. Furthermore,
metabonomic approaches can give deep
insight into the metabolic similarities or dif-
ferences between mutant or transgenic ani-
mals, and the human disease processes that
they are actually intended to simulate. If the
veracity of an animal model can be estab-
lished using metabolic criteria — that is, bio-
markers of the disease process — then it
might also be possible to monitor the efficacy
of novel therapeutic agents (normalization of
the biochemical profile) using metabonomic
criteria. Such approaches might be of great
future value to the pharmaceutical industry in
the quest for discovering safe and efficacious
new drugs.

Conclusions
Metabonomics is now recognized as an
independent and widely used technique for
evaluating the toxicity of drug-candidate
compounds, and has been adopted by several
pharmaceutical companies into their drug
development protocols. It is possible to identify
the target organ of the toxicity, derive the bio-
chemical mechanism of the toxicity, and
determine the combination of biochemical
biomarkers for the onset, progression and
regression of the lesion. Furthermore, the

such effects can therefore be deconvolved by
making repeated sequential measurements in
individual animals. The distinction between
adaptive and toxic effects remains a challenge
with all the ‘omics’ platforms. This applies to
the variables that change due to the initial
adverse (mechanism-related) interactions, the
homeostatic response to the cellular derange-
ment (which could reflect entirely positive
reactions of a healthy cell or tissue), and the
changes due to cell death. Although it is possi-
ble that these responses might all occur at the
same time in a complex organism, there will
be a progressive change in their contributions
over time, which could hold the key to their
future deconvolution.

MAS-NMR spectroscopic measurements
on intact tissues allow the direct correlation of
tissue biomarkers with histological change.
The development of a renal papillary lesion,
as observed by MAS-NMR analysis of intact
renal papilla samples after the administration
of 2-bromoethanamine to rats79, revealed a
consistent response over time, with the excep-
tion of a few rats that were deemed to be
either ‘fast’ or ‘slow’ responders to the treat-
ment79 (FIG. 5). Indeed, the metabonomic
determination of individual differences in
response to drug therapies offers great poten-
tial. We have recently shown the value of
obtaining several NMR data sets from
biofluid samples and tissues of the same ani-

mals collected at different time points. This
procedure is termed ‘integrated metabo-
nomics’80, and can be used to describe the
changes in metabolic chemistry in different
body compartments that are caused by expo-
sure to toxic drugs. Such timed profiles in
multiple compartments are themselves char-
acteristic of particular types and mechanisms
of toxicity, and can be used to give a more
complete description of the consequences of
toxicity than can be obtained from one fluid or
tissue alone. The use of integrated metabo-
nomics in relation to the conventional screen-
ing procedures that are now used in drug dis-
covery is illustrated in FIG. 6.

Metabonomics in functional genomics 
Metabonomics can be used to separate
classes of experimental animals, such as mice
and rats, according to their strain on the basis
of the endogenous metabolite patterns in
their biofluids3,11–13. This is possible because
differences in ‘silent-gene’ function between
strains can influence the fluxes of metabolites
through many key intermediary pathways,
resulting in distinct animal ‘metabotypes’11,12.
Such differences might help to explain the
differential toxicity of drugs between strains
in which the metabolic fate and receptor
populations, and hence potential toxicity of
the drug itself, is linked to the activity of
endogenous pathways. There is also a strong
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magic angle spinning (MAS)-NMR) after the administration of 2-bromoethanamine. Some animals respond
to the intoxication faster than others, even though they are of uniform age and sex and were raised under
the same conditions. This is a typical type of response, with ‘slow’ and ‘fast’ responders being
characteristic of many drugs and toxins. The coloured boxes refer to the sampling time point after
treatment. PC, principal component; p.d., post-dosing.

“…integration of data 
types will also pave the 
way to understanding the
relationships between gene
function and metabolic
control in health and
disease.”
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functional genomics — and hence has appli-
cations in the design of drug clinical trials and
the evaluation of genetically modified animals
as disease models. Finally, using metabo-
nomics, it has proved possible to derive new
biochemically based assays for disease diag-
nosis, and to identify combination biomark-
ers for disease, which can then be used to
monitor the efficacy of drugs in clinical trials.
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entirely supplant, conventional methods,
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