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Introduction to AutoDock

1. Introduction

The program AutoDock was developed to provide a procedure for predicting the interaction of
small molecules with macromolecular targets. The motivation for this work arises from problems
in the design of bioactive compounds, and in particular the field of computer aided drug design.
Progress in biomolecular x-ray crystallography has provided a number of important protein and
nucleic acid structures that could be targets for bioactive agents in the control of disease, or as
agricultural agents. The precise interaction of such agents or candidates is important in the devel-
opment process. Our goal has been to provide a computational tool to aid in this process.

In any docking scheme two conflicting requirements must be balanced: the desire for a robust and
accurate procedure, and the desire to keep the computational demands at a reasonable level. The
ideal procedure would find the global minimum in the interaction energy between the substrate
and the target protein, exploring all available degrees of freedom for the system. However, it
would also run on a laboratory workstation within an amount of time comparable to other compu-
tations that a structural researcher may undertake, such as a crystallographic refinement. In order
to meet these demands a number of docking techniques simplify the docking procedure. Probably
the most common technique in use today is manually assisted docking. Here, the internal and ori-
entational degrees of freedom in the substrate are under interactive control. While the energy eval-
uation for such techniques can be sophisticated, the exploration of configurational space is
limited. At the other end of the spectrum are automated methods such as exhaustive search and
distance geometry. These methods can explore configurational space, but at the cost of a much
simplified model for the energetic evaluation. The procedure developed for AutoDock uses a
Monte Carlo simulated annealing technique for configurational exploration with a rapid energy
evaluation using grid based molecular affinity potentials, thus combining the advantages of a large
search space and a robust energy evaluation. This has proven to be a powerful approach to the
problem of docking a flexible substrate into the binding site of a static protein. Input to the proce-
dure is minimal. The researcher specifies a volume around the protein, the rotatable bonds for the
substrate, and an arbitrary starting configuration, and the procedure produces a relatively unbiased
docking.

2. Overview of the Method

Rapid energy evaluation is achieved by precalculating atomic affinity potentials for each atom
type in the substrate molecule in the manner described by Goodford 1. In the AutoGrid procedure
the protein is embedded in a three-dimensional grid and a probe atom is placed at each grid point.

1. Goodford, P.J. (1985) “A Computational Procedure for Determining Energetically Favorable Binding 
Sites on Biologically Important Macromolecules” J. Med. Chem., 28, 849-857.
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The energy of interaction of this single atom with the protein is assigned to the grid point. An
affinity grid is calculated for each type of atom in the substrate, typically carbon, oxygen, nitrogen
and hydrogen, as well as a grid of electrostatic potential, either using a point charge of +1 as the
probe, or using a Poisson-Boltzmann finite difference method, such as DELPHI 2,3. The energetics
of a particular substrate configuration is then found by tri-linear interpolation of affinity values of
the eight grid points surrounding each of the atoms in the substrate. The electrostatic interaction is
evaluated similarly, by interpolating the values of the electrostatic potential and multiplying by
the charge on the atom (the electrostatic term is evaluated separately to allow finer control of the
substrate atomic charges). The energy calculation using the grids is proportional only to the num-
ber of atoms in the substrate, and not to any function of the number of atoms in the protein.

The docking simulation is carried out using the Metropolis method, also known as Monte Carlo
simulated annealing. With the protein static throughout the simulation, the substrate molecule
performs a random walk in the space around the protein. At each step in the simulation, a small
random displacement is applied to each of the degrees of freedom of the substrate: translation of
its center of gravity; orientation; and rotation around each of its flexible internal dihedral angles.
This displacement results in a new configuration, whose energy is evaluated using the grid inter-
polation procedure described above. This new energy is compared to the energy of the preceding
step. If the new energy is lower, the new configuration is immediately accepted. If the new energy
is higher, then the configuration is accepted or rejected based upon a probability expression
dependent on a user defined temperature, T. The probability of acceptance is given by:

where ∆E is the difference in energy from the previous step, and kB is the Boltzmann constant. At
high enough temperatures, almost all steps are accepted. At lower temperatures, fewer high
energy structures are accepted.

The simulation proceeds as a series of cycles, each at a specified temperature. Each cycle contains
a large number of individual steps, accepting or rejecting the steps based upon the current temper-
ature. After a specified number of acceptances or rejections, the next cycle begins with a tempera-
ture lowered by a specified schedule such as:

where Ti is the temperature at cycle i, and g is a constant between 0 and 1. 

Simulated annealing allows an efficient exploration of the complex configurational space with
multiple minima that is typical of a docking problem. The separation of the calculation of the
molecular affinity grids from the docking simulation provides a modularity to the procedure,
allowing the exploration of a range of representations of molecular interactions, from constant
dielectrics to finite difference methods and from standard 12-6 potential functions to distributions

2. Sharp, K., Fine, R. & Honig, B. (1987) Science, 236, 1460-1463.
3. Allison, S.A., Bacquet, R.J., & McCammon, J. (1988) Biopolymers, 27, 251-269.

P ∆E( ) e
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based on observed binding sites.

3. Applications

AutoDock was initially tested on a number of protein-substrate complexes which had been char-
acterized by x-ray crystallography 4. These tests included phosphocholine binding in a antibody
combining site, N-formyltryptophan binding to chymotrypsin and N-acetylglucosamine binding
to Lysozyme. In almost all cases the results of the AutoDock simulations functionally reproduced
the crystallographic complexes. In further applications AutoDock was used to predict interactions
of substrates with aconitase prior to any crystallographic structures for complexes. In this work
we not only predicted the binding mode of isocitrate, but we demonstrated the utility of
AutoDock in generating substrate models during the early stages of crystallographic proteins
structure refinement 5. Citrate docking experiments showed two binding modes, one of which
approximated the experimental electron density determined for an aconitase-nitrocitrate complex.
The docking simulation results provided insight into the proposed reaction mechanism of the
enzyme.

The initial version of AutoDock has been distributed to over 35 sites around the world, and has
begun to be used in universities and research labs to help predict and design bioactive agents. One
novel and intriguing use of the software was reported from Koshland’s laboratory6. These investi-

gators used the known structures of the maltose-binding protein (MBP) and the ligand binding
domain of the aspartate receptor to predict the structure of the receptor-protein complex (see dia-

4. Goodsell, D.S. & Olson, A.J. (1990) “Automated Docking of Substrates to Proteins by Simulated Anneal-
ing” Proteins: Str. Func. Genet., 8, 195-202.
5. Goodsell, D.S., Lauble, H., Stout, C.D & Olson, A.J. (1993) “Automated Docking in Crystallography: 
Analysis of the Substrates of Aconitase” Proteins: Str. Func. Genet., 17, 1-10.

6. Stoddard, B.L. & Koshland, D.E. (1992) “Prediction of a receptor protein complex using a
binary docking method.” Nature, 358 (6389), 774-776.

MBPreceptor

?
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gram below). They used knowledge from mutational studies on MBP to select two octapeptides

on the protein known to be involved in the binding to the aspartate receptor,  which they docked

independently to the model of the receptor using our automated docking code (the backbones of
the peptides were fixed, but the side-chain conformations and overall orientations were unre-
strained).

The distance and orientation of the two peptides as docked to the receptor corresponded to that in
the intact MBP, thus enabling a reasonable prediction of the protein-receptor complex. This tech-
nique could be generally useful in situations where there are data on multi-site interactions.

MBP MBP  octapeptides

 

receptor AutoDock
receptor

AutoDock
receptor

 

superimpose

MBP MBP+

MBP/receptor complex

receptorMBP +
superimpose



AutoDock 2.4 User Guide

8

AutoDock, AutoGrid and AutoTors

This User Guide describes how to prepare, run and analyze an automated docking of a small mol-
ecule to a macromolecule, such as a protein, enzyme or oligomeric DNA, using AutoDock.

1. Background

AutoDock requires grid maps for each atom type present in the small molecule being docked.
They are calculated and produced by the AutoGrid program. A grid map consists of a three
dimensional array of regularly spaced points, centered (usually) on the active site of the protein or
macromolecule under study. Each point within the grid map stores the potential energy of a
‘probe’ atom or functional group at that particular position:

The user must specify an even number for nx, ny and nz, since AutoGrid adds a central point, and
AutoDock requires an odd number of grid points. The probe’s energy at each grid point is deter-
mined by the set of parameters supplied for that particular atom type, summed over all atoms of
the macromolecule, within a non-bonded radius. This potential energy, V(r), can be expressed as a

ny+1

nx+1

nz+1

grid spacing /Å

grid point

probe atom
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function of internuclear separation, r, as follows,

 Graphically, if reqm is the equilibrium internuclear separation, and ε is the well depth at reqm, then:

The exchange energy is often approximated thus,

Hence pairwise-atomic interaction energies can be approximated by the following general equa-
tion,

V r( ) Ae
br–

r
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r
6

------–=
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where m and n are integers, and Cn and Cm are constants whose values depend on the depth of the
energy well and the equilibrium separation of the two atoms’ nuclei. Typically the 12-6 Lennard-
Jones parameters (n=12, m=6) are used to model the Van der Waals’ forces1 experienced between
two instantaneous dipoles. However, the 12-10 form of this expression (n=12, m=10) can be used
to model hydrogen bonds (see “Modelling Hydrogen Bonds” below). Appendix 21 gives the
parameters which were distributed with the first (FORTRAN-77) version of AutoDock, and which
have been used in numerous published articles.

A revised set of parameters has been calculated, which are self-consistent. Here, the sum of the
Van der Waals radii of any given pair of atoms is consistent with that of any other pair. Likwise,
the well-depths are consistently related. Let reqm, XX be the equilibrium separation between two like
atoms X, and εXX be their potential energy in this configuration. The combining rules for the well
depth, ε, and the Van der Waals radius, reqm, for two different atoms X and Y are:

A derivation for the Lennard-Jones potential sometimes seen in text books invokes the parameter,
σ, thus,

Then the Lennard-Jones 12-6 potential becomes:

Hence, the coefficients C12 and C6 are given by:

We can derive a general relationship between the coefficients, equilibrium separation and well
depth as follows. At the equilibrium separation, reqm, the potential energy is a minimum: in other
words, V(reqm) = -ε. The derivative of the potential will be zero at the minimum:

1. van der Waals, J. H. (1908) Lehrbuch der Thermodynamik, Mass and Van Suchtelen, Leipzig, Part 1
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therefore:

so:

Substituting Cm into the original equation for V(r), at equilibrium, we obtain,

Rearranging:

Therefore, the coefficient Cn can be expressed in terms of n, m, ε and reqm thus:

and, substituting into original equation for V(r),

In summary, then:

Some example reqm and ε parameters for various AMBER atom types of carbon are shown in Table
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1.

Using the equations describing C12 and C6 above, the following new set of 12-6 parameters were
calculated (see Table 2). These parameters may be used with AutoDock version 2.4, or alterna-
tively, you may use or derive your own.

Table 1: AMBER parameters for carbon atom types.

AMBER atom type
reqm

_ --- / Å
ε

/ kcal mol -1

C, C*, CA, CB, CC, CD, CE, CF, CG, CH, CI, CJ, 
CM, CN, CP

1.85 0.12

C2 1.925 0.12

C3 2.00 0.15

CH 1.85 0.09

CT 1.80 0.06

Table 2: Self-consistent Lennard-Jones 12-6 parameters.

Atoms i-j reqm,ij 
----------/ Å 

εij

/ kcal mol-1  
C12

/ kcal mol-1Å12

C6

/ kcal mol-1Å6

C-C 4.00 0.150 2516582.400 1228.800000

C-N 3.75 0.155 1198066.249  861.634784

C-O 3.60 0.173  820711.722  754.059521

C-S 4.00 0.173 2905899.052 1418.896022

C-H 3.00 0.055   29108.222   79.857949

N-C 3.75 0.155 1198066.249  861.634784

N-N 3.50 0.160  540675.281  588.245000

N-O 3.35 0.179  357365.541  505.677729

N-S 3.75 0.179 1383407.742  994.930149

N-H 2.75 0.057   10581.989   48.932922

O-C 3.60 0.173  820711.722  754.059521

O-N 3.35 0.179  357365.541  505.677729

O-O 3.20 0.200  230584.301  429.496730

O-S 3.60 0.200  947676.268  870.712934

O-H 2.60 0.063    6035.457   39.075098

S-C 4.00 0.173 2905899.052 1418.896022

S-N 3.75 0.179 1383407.742  994.930149
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The above parameters yield the following graphs, for C, N, O and H atom types; the curves in
order of increasing well-depth are: HH << CH < NH < OH << CC < CN < CO < NN < NO < OO:-

Grid maps are required only for those atom types present in the small molecule being docked. For

S-O 3.60 0.200  947676.268  870.712934

S-S 4.00 0.200 3355443.200 1638.400000

S-H 3.00 0.063   33611.280   92.212017

H-C 3.00 0.055   29108.222   79.857949

H-N 2.75 0.057   10581.989   48.932922

H-O 2.60 0.063    6035.457   39.075098

H-S 3.00 0.063   33611.280   92.212017

H-H 2.00 0.020      81.920    2.560000

Table 2: Self-consistent Lennard-Jones 12-6 parameters.

Atoms i-j reqm,ij 
----------/ Å 

εij

/ kcal mol-1  
C12

/ kcal mol-1Å12

C6

/ kcal mol-1Å6
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example, if the small molecule being docked is a hydrocarbon, then only carbon and hydrogen
grid maps would be required. In practice, however, non-polar hydrogens would not be modelled
explicitly, so just the carbon grid map would be needed, for ‘united atom’ carbons. This saves
both disk space and computational time.

2. Electrostatic Potential Grid Maps

In addition to the atomic affinity grid maps, AutoDock requires an electrostatic potential grid
map. Polar hydrogens must be added, if hydrogen-bonds are being modelled explicitly. Partial
atomic charges must be assigned to the macromolecule. The electrostatic grid can be generated by
AutoGrid, or by other programs such as MEAD2 or DELPHI3, which solve the linearized Pois-
son-Boltzmann equation. AutoGrid calculates Coulombic interactions between the macromole-
cule and a probe of charge e, +1.60219

 

x10-19 C; there is no distance cuttoff used for electrostatic
interactions. A sigmoidal distance-dependent dielectric function is used to model solvent screen-
ing, based on the work of Mehler and Solmajer4, 

where: B = ε0 - A; ε0 = the dielectric constant of bulk water at 25˚C = 78.4; A = -8.5525, λ =
0.003627 and k = 7.7839 are parameters.

Charges must be stored in PDBQ format in order for AutoGrid to read them. PDBQ is an aug-
mented form of the standard PDB format, in which an extra column is used to store the partial
atomic charges (hence the “Q” in “PDBQ”). Columns 71-76 of the PDB file hold the partial
atomic charge (the older form of PDBQ contains charges in columns 55-61). 

Charges can be assigned using a molecular modelling program. Unix shell scripts are provided to
convert from InsightII5 “.car” files (“cartopdbq”) and SYBYL6 “.mol2” files (“

 

mol2topdbq”).
See also “q.amber” and “q.kollua”, in the appendices. 

2. Bashford, D. and Gerwert, K. (1992) “Electrostatic calculations of the pKa values of ionizable groups in 
bacteriorhodopsin”, J. Mol. Biol., 224, 473-486; Bashford, D. and Karplus, M. (1990) “pKas of ionizable 
groups in proteins - atomic detail from a continuum electrostatic model.”, Biochemistry, 29, 10219-10225; 
MEAD is available from Donald E. Bashford, Dept. Molecular Biology, Mail Drop MB1, The Scripps 
Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037.
3. Gilson, M.K. and Honig, B. (1987) Nature, 330, 84-86; DELPHI is available from Biosym Technologies, 
9685 Scranton Road, San Diego, CA 92121-2777, USA.
4. Mehler, E.L. and Solmajer, T. (1991) “Electrostatic effects in proteins: comparison of dielectric and 
charge models” Protein Engineering, 4, 903-910.
5. Biosym Technologies, 9685 Scranton Road, San Diego, CA 92121-2777, USA.
6. Tripos Associates, Inc., 1699 South Hanley Road, Suite 303, St. Louis, Missouri 63144-2913, USA.

ε r( ) A
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λBr–

+
--------------------------+=



AutoDock 2.4 User Guide

15

3. Simulated Annealing in AutoDock

As already described in the Introduction, AutoDock uses Monte Carlo simulated annealing to
explore a wide range of conformational states. A “job” consists of a number of independent runs,
each of which begins with the same initial conditions. A run is a sequence of constant temperature
annealing cycles. Each job can be seeded with a user-defined or a time-dependent random-number
generator seed.

When using the Monte Carlo approach, it is important to consider the algorithm for random num-
ber generation. Ideally, the samples are uniform and uncorrelated in hyperdimensions; and the
period is longer than the number of random values called for in a given simulation. 

During each constant temperature cycle, random changes are made to the ligand’s current posi-
tion, orientation, and conformation if flexibiliy was defined. The resulting new state is then com-
pared to its predecessor; if the new energy is lower than the last, this new state is accepted.
However, if the new state’s energy is higher than the last, this state is accepted probabilistically.
This probability depends upon the energy and cycle temperature (see the first equation on page 3).
Generally speaking, at high temperatures, many states will be accepted, while at low tempera-
tures, the majority of these probabilistic moves will be rejected. The user can select the minimum
energy state found during a cycle to be used as the initial state for the next cycle, or the last state
can be used.  The best results tend to be achieved by selecting the minimum energy state from the
previous cycle.

Quaternion rotations7 have been implemented in handling the rigid body rotation of the small
molecule. It was found that this gave finer control over the movement of the small molecule, and
gave better docked conformations than the alternative Eulerian rotations.

It is advisable to do a short run to check the setup first. The initial annealing temperature should
be of the order of the average ∆E found during the first cycle. This ensures that the ratio of
accepted to rejected steps is high near the start. A typical automated docking or ‘job’ may have an
initial annealing temperature of 500 and a temperature reduction factor of 0.85-0.95 /cycle. Grad-
ual cooling is recommended, so as to avoid “simulated quenching”, which tends to trap systems in
local minima. A relatively thorough search is given by 50 Monte Carlo cycles, and a maximum of
30,000 steps rejected or 30,000 steps accepted. 10 runs give a feel for the possible binding modes,
and also an idea of their relative energies. When more than one run is carried out in a given job,
cluster analysis or ‘structure binning’ will be performed, based on structural rms difference, rank-
ing the resulting families of docked conformations in order of increasing energy.  The default
method for structure binning allows for symmetry rotations, as in a tertiary butyl which can be
rotated by +/-120˚, but in other cases it may be desirable to bypass this similar atom type checking
and calculate the rms on a one-for-one basis.  A schedule of 100 runs, 50 cycles, 3,000 steps
accepted, 3,000 steps rejected will provide more highly populated clusters, hinting at the “density
of states” for a given conformation. A short test job would be: 1 run, 50 cycles, 100 accepted, 100

7. Shoemake, K. (1985) “Animating Rotation with Quaternion Curves” SIGGRAPH ‘85, 19, 245-254.
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rejected steps. 

The user must specify the maximum jump a state variable can make in one Monte Carlo step. The
default values are: translation, 0.2 Å; rigid-body rotation, 5˚; and torsion angle rotation, 5˚. Fur-
thermore, these can be adjusted from cycle to cycle during each run, if the reduction factor for
translations and rotations is given a (positive, non-zero) value less than one. At the start of each
cycle, this constant is multiplied onto the current jump-maxima to give the new maxima.

If desired, the states visited during a docking simulation can be sampled and output to a trajectory
file. This file contains all the state variables required to define each sampled conformation, posi-
tion and orientation of the small molecule. The user can specify the range of cycles to be sampled.
This allows the selection of the last few cycles when the docking will be nearing the final docked
conformation, or the selection of the whole run.

4. Setting Up AutoGrid and AutoDock Jobs

Let us suppose that the user wishes to test AutoDock by trying to reproduce an x-ray crystallo-
graphic structure of a small molecule-enzyme complex taken from the Brookhaven Protein Data
Bank. The first step is to create two PDB files, one containing all the heavy atoms of the enzyme,
the second containing those of the small molecule. Both files should retain the extension ‘.pdb’. 

Note: Care should be taken when the PDB file contains disordered residues, in which alternate
location indicators (column 17) have been assigned; for each such residue, the user must select
only one of the possible alternate locations (preferably that with the highest occupancy value).

We will discuss in the next sections, the steps needed to prepare the parameter files for AutoGrid
and AutoDock. If desired the user can specify rotatable bonds in the small molecule (receptor
flexibility is not allowed). To help in the definition of rotatable bonds in the small molecule, there
is a tool called AutoTors, which prepares the small molecule input file for AutoDock, defining the
‘root’, ‘branches’ and ‘torsions’ automatically.

5. Preparing the Small Molecule

Initially you must add hydrogens to all the heavy atoms in the small molecule, ensuring their
valences are completed. This can be done using a molecular modelling package. Make sure that
the atom types are correct before adding hydrogens.

Next, assign partial atomic charges to the molecule. AMPAC or MOPAC can be used to generate
partial atomic charges for the small molecule. Write these charges out in PDBQ format (see
‘cartopdbq’ and ‘mol2topdbq’ in Appendix 20).
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6. Modelling Hydrogen Bonds

Hydrogen bonds are often important in ligand binding. These interactions can be modelled explic-
itly in AutoDock. Polar hydrogens can be allowed to rotate freely. 

The partial atomic charges of non-polar hydrogens need to be united with their heavy atom’s. This
saves having two types of hydrogen grids, thus conserving disk space and computational time. To
‘unite’ a non-polar hydrogen’s partial charge, the latter is added to that of the heavy atom to which
it is bonded. The hydrogen can then be deleted from the small molecule. This is repeated for all
non-polar hydrogens. AutoTors has a flag ‘-h’, which will unite non-polar hydrogens for you,
automatically.

The user must specify the appropriate 12-10 parameters in the AutoGrid parameter file, and on
the correct lines. Pairwise atomic interaction energy parameters are always given in blocks of 7
lines, in the order: C, N, O, S, H, X, M. X and M are “spare” atom types: If there were phosphorus
atoms in the receptor, X could be used as P. For example, to model donor hydrogens in the small
molecule, 12-10 parameters would be needed in the hydrogen parameter block, but only for H-
bond acceptors, N,O and S (second, third and fourth lines in the H-parameters). The other param-
eters remain as 12-6 Lennard-Jones values (C,H,X and M). In order to keep the symmetry of pair-
wise energetics (H-O is the same as O-H), the user must specify 12-10 parameters for H (fifth
line) in the N, O and S-parameter blocks.

AutoGrid detects hydrogen bond parameters in the grid parameter file, if either n is not 12 or m is
not 6. If so, the pairwise interaction is modulated by a function of the cosine of the hydrogen bond
angle. This takes into account the directionality of hydrogen-bonds.

7. Small Molecule Flexibility and Constraints

To allow flexibility in the small molecule, it is necessary to assign the rotatable bonds. It is a good
idea to have a plot of the small molecule, labelled by atom name, and a second labelled by atom
serial number or “ID”. AutoDock can handle up to MAX_TORS rotatable bonds. This parameter is
defined in ‘autodock.h’, and is ordinarily set to 32.

Table 3: Self-consistent Hydrogen bonding 12-10 parameters.

Atoms i-j reqm,ij 
----------/ Å 

εij

/ kcal mol-1  
C12

/ kcal mol-1Å12

C10

/ kcal mol-1Å6

N-H 1.90 5.00 55332.873 18393.199

O-H 1.90 5.00 55332.873 18393.199

S-H 2.50 1.00 298023.224 57220.459
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Torsions are defined in the PDBQ file using a number of keywords. These keywords use the meta-
phor of a tree. See the diagram below for an example. The ‘root’ is defined as the fixed portion of
the small molecule, off which rotatable ‘branches’ sprout. Branches within branches are possible,
and torsions are a special case of branches, where the two atoms at either end of the rotatable bond
have only two nearest neighbours (unlike branches which can have three or more). Rotatable frag-
ments are moved in order from leaves to root. 

The PDBQ keywords must be carefully placed, and the order of  the ATOM or HETATM records
may need to be changed in order to fit into the correct branches. The following keywords are rec-
ognized by the AutoDock PDBQ file parser:

 

ROOT, ENDROOT
BRANCH, ENDBRANCH
TORSION, ENDTORSION
CONSTRAIN

They can be abbreviated to no less than the first 4 letters. To assist the user in correctly placing
these keywords, and in re-ordering the ATOM or HETATM records in the small molecule PDBQ
file, there is an interactive program called AutoTors to do this (see below). 

Note: AutoTors, AutoGrid and AutoDock do not recognize PDB “CONECT”, neither do they
write out “CONECT” records.

“CONSTRAIN” definesa single distance constraint, between two flexible parts of the small mole-
cule. This retains only those conformations where this distance is within a certain range of values.
In docking, a conformation which violates this constraint is instantly rejected; it does not incre-
ment the rejections-counter, its energy is not evaluated, nor is the steps-counter incremented. The
command has the following syntax:

CONSTRAIN atom1 atom2 lower upper

The first two parameters are the atom serial numbers of the two atoms to be constrained, and the
last two are the lower and upper bounds for this distance, in Angstroms.  This can be particularly
useful when docking say two proteins: a loop from one protein can be cut out and the ends con-
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strained to have roughly the same value as in the original protein.

The next sections describe the input needed for AutoTors, and how to run it.

8. Input for AutoTors

This section describes input and output files used and generated by AutoTors. Input consists of
one or two files, depending on whether the small molecule is in our “AutoDock-standard” PDBQ-
format, or in Sybyl’s mol2-format. PDBQ-format is the default; mol2-format is allowed with the
“-m” flag (see below). 

PDBQ-format:
When using PDBQ format, AutoTors also needs a bond file. In this example, the bond file is
“oligo.bnd”, and “oligo.pdbq” is the input PDBQ file; “oligo.out.pdbq” is created and contains all
the ROOT, BRANCH and TORS keywords needed to define the torsions selected by the user.

autotors oligo.bnd oligo.pdbq oligo.out.pdbq

The “.bnd” file, contains information about the covalent bonds in the small molecule. The bonds
are described by the serial numbers of the atoms in the input PDBQ file, with one line per bond.
For example, if C10 is the atom appearing on the first “ATOM” line in the PDBQ file, and it is
bonded to N18 which appears on the 17th line in the PDBQ file, this information appears as a dis-
crete line in the “.bnd” file as: “1 17”. The output of the script “pdbtoatm” is an “atm” file; this
can be converted to a “bnd” file, using “atmtobnd”. For example, to generate a “bnd” file, use
something like this command:

+

O1

N2

N1

O3

O2
H2

H21

H22

H12

H11

C1

C2 C3

C4

C5
C6

C7

C8

C9

C10

H1

ROOT

BR
AN
CH

TORS
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pdbtoatm vitc.pdbq | atmtobnd > vitc.bnd

Mol2-format:
When using SYBYL-mol2 format, only one input file is required, in addition to -m flag. This is
because the mol2 file contains both atom coordinates and bonding information. So, for eample the
following command would read in the “lead.mol2” file and after interactively requesting which
torsions to rotate, AutoTors would write out “lead.out.pdbq”:

autotors -m lead.mol2 lead.out.pdbq

AutoTors Output:
The output filename is defined by the last AutoTors command-line argument. Output consists of
PDBQ-formatted lines, rearranged as required by AutoDock, according to the user’s specification
of the fixed ROOT portion of the molecule, and the allowed rotatable bonds in the rest of the mol-
ecule. AutoTors inserts the ROOT, ENDROOT, BRANCH, ENDBRANCH, TORS, and END-
TORS lines in the necessary places. 

AutoTors Flags:
-m

as described under “Mol2-format” above, this tells AutoTors to read in coordinates, partial
charges and bond information from a SYBYL-mol2 formatted file.

-h

‘merge’ or add the charges of non-polar hydrogen atoms to that of the carbon atom to which they
are bonded, and then delete these hydrogens from the molecule. In other words, the molecule is
converted from an “all atom” representation to a “united atom” representation. The net charge on
the molecule remains the same.

-o

read partial atomic charges from column 55 onwards (i.e. the older PDBQ format). The default is
the new PDBQ format which has the charge data in the 71-st to 76-th columns.

-a

disallows torsions in amide bonds. This should normally be used, because amide bonds are par-
tially conjugated and therefore cannot rotate freely.

-c

tells AutoTors to add a column at the end of each ATOM line, showing the number of bonded
nearest neighbours to each atom. If the “-h” flag is used as well, then the atoms with non-polar
hydrogens are merged first, then the resulting merged structure is used to obtain this column of
atom connectivities.

The -m, -h and -a flag may appear in any order. The -o flag must be given after the -h flag.
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Placement of these flags should follow these two examples. Square brackets denote optional flags: 

autotors [-h][-o][-a][-c] peptid.bnd peptid.pdbq peptid.out.pdbq

For SYBYL-mol2 input:

autotors -m [-h][-o][-a][-c] drug.mol2 drug.out.pdbq

9. Running AutoTors

There are two interactive phases in running AutoTors:

1) Root selection: After all the bonding data is read in and any cycles detected in the small mole-
cule, the user designates which (adjacent) atoms are to be considered the ROOT. If cycles are
detected in the molecule, the first part of designating the ROOT is to select a cycle for the ROOT
by number or no cycle by entering 0. In either case the user next has the opportunity of entering
specific atoms by number (after entering ‘a’ on a menu provided) or quitting (selection ‘q’) when
all the desired root atoms are entered. (At this point it is not necessary to specify all of the root
atoms desired because the root will be expanded to include all atoms not in a BRANCH or
TORS.)

2) Torsion selection: After the root has been specified, the program goes through the data and
makes a list of possible torsions. These are listed as “possible torsions” and the user next must edit
this list as desired. For example, if all the possible torsions detected are to be used, the user simply
selects ‘q’ and quits the torsions selection section. If a small number of the possible torsions are to
be eliminated, the user selects ‘d’ and deletes the unwanted torsions. He stops deleting by entering
‘q’. If only a few of the possible torsions are desired, it is possible to select only these few
(instead of eliminating a large number of them) by selecting ‘s’ from the menu. This selection
process is also ended by entering ‘q’.

Once either phase is ended by entering ‘q’, it is not possible to change what has been selected.
Instead, the user should abort the program with <Ctrl>-C and start again.

MAX_TORS: AutoDock is set up to allow a maximum number of torsions. If AutoTors detects
more torsions than are permitted, a warning to that effect is given and it is up to the user to reduce
the number of torsions, either by deleting or selecting the appropriate number of torsions.
MAX_TORS is defined in the file “autodock.h”; if this definition is changed, the autodock-
executable must be re-made, using the appropriate Makefile.

10. Adding Polar Hydrogens to the Macromolecule

When modelling hydrogen bonds explicitly, it is necessary to add polar hydrogens to the macro-
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molecule also. Then the appropriate partial atomic charges can be assigned. This can be achieved
by the user’s preferred method, e.g. using InsightII, Quanta, Sybyl, AMBER or CHARMm.
Alternatively, one of the shell scripts described in the Appendix can be used. The charged macro-
molecule must be converted to PDBQ format so that AutoGrid can read it.

Note that most modelling systems add polar hydrogens in a default orientation, typically assum-
ing each new torsion angle is 0˚ or 180˚. Without some form of refinement, this can lead to spuri-
ous locations for hydrogen-bonds. One option is to relax the hydrogens and perform a molecular
mechanics minization on the structure. Another is to use a program like “pol_h” which takes as
input the default-added polar hydrogen structure, samples favourable locations for each movable
proton, and selects the best position for each. This “intelligent” placement of movable polar
hydrogens can be particularly important for tyrosines, serines and threonines.

11. Getting Started...

There are several Unix scripts available to help prepare default AutoGrid and AutoDock parame-
ter files. They are described in more detail in the Appendix; see “prepare”, “prepareII”, “prepare-
gpf+dpf” and “prepare-dpf”. The user must check these defaults, to ensure they look reasonable.
The user can adjust the default parameters according to what is required. Each parameter is
described in the sections “AutoGrid Parameter File Format” and “AutoDock Parameter File For-
mat”. 

12. AutoGrid Parameter File Format

The input file is often referred to as a “grid parameter file” or “GPF” for short. The scripts
described in the appendices give these files the extension “.gpf”. In the grid parameter file, the
user must specify the following spatial attributes of the grid maps:

1. the center of the grid map;
2. the number of grid points in each of the x-, y- and z-directions; and
3. the separation or spacing of each grid point.

In addition, the pairwise-atomic interaction energy parameters must be specified. The following
lines are required for each small molecule atom type, Y:

4. the grid map filename for atom type Y;
5. seven lines containing the non-bonded parameters for each pairwise-atomic interaction, in
the following order: Y-C, Y-N, Y-O, Y-S, Y-H, Y-X, (X is any other atom type) and Y-M (M is a metal,
say). 
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Using coefficients Cn, Cm, n and m, the pairwise interaction energy, V(r) is given by:

Alternatively, the user can specify reqm, ε, n and m. By default, the Y-X and Y-M lines are copies of
the Y-H line. But in some systems, such as receptors which consist of DNA/protein complexes,
both sulphur and phosphorus can be present. In this scenario, the Y-X line can be used for model-
ling interactions with receptor-phosphorus atoms. A very rough approximation for phosphorus
parameters is to borrow those of carbon.

The “elecmap” line in the grid parameter file is the filename of the electrostatic potential grid
map. The following parameter, “dielectric”, if negative, indicates that the distance-dependent
dielectric function of Mehler and Solmajer3 will be used. If positive, however, the value of that
number will be used as a constant dielectric. For example, if the value were 40.0, then a constant
dielectric of 40 would be used.

The AutoGrid parameter file format is described below. The type of each argument is described
using C-style, “%s” = a character string; “%d” = a (decimal) integer; and, “%f” = a floating point
or real number.

AutoGrid Keywords
receptor %s

Macromolecule filename, in PDBQ format.

gridfld %s

The grid field filename, which will be written in a format readable by AutoDock and AVS8. The
filename extension must be ‘.fld’.

npts %d %d%d

Number of x-, y- and z-grid points. Each must be an even integer number. When added to the cen-
tral grid point, there will be an odd number of points in each dimension. The number of x-, y- and
z-grid points need not be equal.

spacing %f 

The grid point spacing, in Å (see the diagram on page 8). Grid points must be uniformly spaced in
AutoDock: this value is used in each dimension.

gridcenter %f %f %f
gridcenter auto

8. “AVS” stands for “Application Visualization System”; AVS is a trademark of Advanced Visual Systems 
Inc., 300 Fifth Avenue, Waltham, MA 02154.
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The user can explicitly define the center of the grid maps, respectively the x, y and z coordinates of
the center of the grid maps (units: Å, Å, Å.) Or the keyword “auto” can be given, in which case
AutoGrid will center the grid maps on the center of mass of the macromolecule.

types %s

1-letter names of the atom types present in the small molecule; e.g. if there are carbons, nitrogens,
oxygens and hydrogens, then this line will be “CNOH”; there are no delimiters.

map %s

Filename of the grid map, for ligand atom type Y; the extension is usually “.map”.

nbp_coeffs %f %f %d %d

Either “nbp_coeffs” or “nbp_r_eps” keywords can be used to define Lennard-Jones or hydrogen
bond interaction energy parameters. The keyword “nbp_coeffs” specifies coefficients and expo-
nents, in the order “Cn Cm n m”, delimited by spaces; n and m are integer exponents. The units of
Cn and Cm must be kcal mol-1 Ån and kcal mol-1 Åm respectively; n and m have no units. 

nbp_r_eps %f %f %d %d

Alternatively, the user can employ “nbp_r_eps” to specify the equilibrium distance and well
depth, epsilon, for the atom pair. The equilibrium separation has units of Å and the well depth,
epsilon, units of kcal mol-1. The integer exponents n and m must be specified too.

In either case, the order of the parameters must be: Y-C, Y-N, Y-O, Y-S, Y-H, Y-X, and Y-M. Repeat 1
“map” line and the 7 “nbp_coeffs”or “nbp_r_eps” lines, for each atom type, Y, present in the small
molecule being docked.

elecmap %s

Filename for the electrostatic potential energy grid map to be created; filename extension ‘.map’. 

dielctric %f

Dielectric funtion flag: if negative, AutoGrid will use distance-dependent dielectric of Mehler
and Solmajer3; if the float is positive, AutoGrid will use this value as the dielectric constant.

fmap %s

(Optional.) Filename for the so-called “floating” grid map9; filename extension ‘.map’. In such
floating grids, the scalar at each grid point is the distance to the nearest atom in the receptor. These
values could be used to guide the docking ligand towards the receptor’s surface, thus avoiding
non-interesting, empty regions. 

9. This grid map is not used in AutoDock 2.4; its utility is under investigation, and may be included in a later 
version.
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Example AutoGrid Parameter File
An example AutoGrid parameter file is given below:

______________________________________________________________________________

receptor 3ptb.pdbq #macromolecule
gridfld 3ptb.maps.fld #grid.data.file
npts 60 60 60 #numxyzpoints
spacing .375 #spacing/Angstroms
gridcenter -1.930 14.070 16.224#center_of_grids or auto
types CNH #atom.type.names
map 3ptb.C.map #atomic.affinity.map
nbp_r_eps  4.00 0.1500  12   6#C-C non-bond Rij & epsilonij
nbp_r_eps  3.75 0.1549  12   6#C-N non-bond Rij & epsilonij
nbp_r_eps  3.60 0.1732  12   6#C-O non-bond Rij & epsilonij
nbp_r_eps  4.00 0.1732  12   6#C-S non-bond Rij & epsilonij
nbp_r_eps  3.00 0.0548  12   6#C-H non-bond Rij & epsilonij
nbp_r_eps  3.00 0.0548  12   6#C-H non-bond Rij & epsilonij
nbp_r_eps  3.00 0.0548  12   6#C-H non-bond Rij & epsilonij
map 3ptb.N.map #atomic.affinity.map
nbp_r_eps  3.75 0.1549  12   6#N-C non-bond Rij & epsilonij
nbp_r_eps  3.50 0.1600  12   6#N-N non-bond Rij & epsilonij
nbp_r_eps  3.35 0.1789  12   6#N-O non-bond Rij & epsilonij
nbp_r_eps  3.75 0.1789  12   6#N-S non-bond Rij & epsilonij
nbp_r_eps  1.90 5.0000  12  10#N-H non-bond Rij & epsilonij
nbp_r_eps  1.90 5.0000  12  10#N-H non-bond Rij & epsilonij
nbp_r_eps  1.90 5.0000  12  10#N-H non-bond Rij & epsilonij
map 3ptb.H.map #atomic.affinity.map
nbp_r_eps  3.00 0.0548  12   6#H-C non-bond Rij & epsilonij
nbp_r_eps  1.90 5.0000  12  10#H-N non-bond Rij & epsilonij
nbp_r_eps  1.90 5.0000  12  10#H-O non-bond Rij & epsilonij
nbp_r_eps  2.50 1.0000  12  10#H-S non-bond Rij & epsilonij
nbp_r_eps  2.00 0.0200  12   6#H-H non-bond Rij & epsilonij
nbp_r_eps  2.00 0.0200  12   6#H-H non-bond Rij & epsilonij
nbp_r_eps  2.00 0.0200  12   6#H-H non-bond Rij & epsilonij
elecmap 3ptb.e.map #electrostatic.PE.map
dielectric -1. #distance-dep.diel=-1,constant>0
#fmap 3ptb.f.map #floating.grid

_________________________________________________________________

Note how hydrogen bonding is defined for oxygens. The ideal hydrogen bond would have an
angle, θ, of 180˚ between the acceptor, the polar hydrogen and the donor, thus:

O H N

θ

donor

acceptor

probe

macromolecule
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As θ decreases, the strength of the hydrogen bond diminishes. There are no hydrogen bonds when
θ is 90˚ or less. 

If a line in the parameter file contains a ‘10’ in the fourth column, AutoGrid will treat this atom-
pair as hydrogen bonding. So in the example above, the last 3 lines in the “mcp2_O.map” block
will be treated as hydrogen bonds. AutoGrid scans for any polar hydrogens in the macromole-
cule. The vector from the hydrogen-donor, along with the vector from the probe-atom at the cur-
rent grid point, are used to calculate the directional attenuation of the hydrogen bond. In this
example, AutoGrid will calculate H-bonds between O-H, O-X and O-M.

13. Running AutoGrid

AutoGrid requires an input grid parameter file, which usually has the extension “.gpf”. The com-
mand is issued as follows:

% autogrid -p molecule.gpf -l molecule.glg &

where ‘-p molecule.gpf’ specifies the grid parameter file, and ‘-l molecule.glg’ the log file output
during the grid calculation. The ‘&’ ensures that the this job will be run in the background. This
whole line can be prefixed with the ‘nice’ command to ensure other processes are not unduly
affected. The log file will inform the user of the maximum and minimum energies found during
the grid calculations. AutoGrid writes out the grid maps in ASCII form, for readability and porta-
bility; AutoDock expects ASCII format grid maps. The first six lines of each grid map hold header
information which describe the spatial features of the maps and the files used or created. These
headers are checked by AutoDock to ensure that they are appropriate for the requested docking.
The remainder of the file contains grid point energies, written as floating point numbers, one per
line. They are ordered according to the nested loops z( y( x ) ). A sample header is shown below:

______________________________________________________________________________

GRID_PARAMETER_FILE vac1.nbc.gpf
GRID_DATA_FILE 4phv.nbc_maps.fld
MACROMOLECULE 4phv.new.pdbq
SPACING 0.375
NELEMENTS 50 50 80
CENTER -0.026 4.353 -0.038
125.095596
123.634560
116.724602
108.233879
:

______________________________________________________________________________

As well as the grid maps, AutoGrid creates two AVS-readable files, with the extensions ‘.fld’, and
‘.xyz’. The former is a field file summarizing the grid maps, and the latter describes the spatial
extent of the grids in Cartesian space. (To read the grid maps into AVS, use a “read field” module.)
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The ‘-o’ flag can be used on the AutoGrid command line to signify that the ‘.pdbq’ file specified
in the grid parameter file is in ‘old’ PDBQ format (charges are stored in columns 55-61).

14. AutoDock Parameter File Format

AutoDock 2.4 has a completely new and upgraded interface, based on keywords. This new inter-
face is intended to make it easier for the user to set up and control a docking job, and for the pro-
grammer to add new commands and functionality. The input file is often referred to as a “docking
parameter file” or “DPF” for short. The scripts described in the appendices give these files the
extension “.dpf”.

Note: All delimiters where needed are white spaces. Default values, where applicable, are given in
square brackets [thus]. A comment must be prefixed by the “#” symbol, and can be placed at the
end of a parameter line, or on a line of its own. Once again, the type of each keyword argument is
described using the C-standard, where: 

%s = is an alphanumeric string, and in most cases, a valid filename; 
%d = is a decimal integer; and
%f = is a floating point or real number. 

Although in theory it should be possible to give these keywords in any order, not every possible
combination has been tested, so it may be wise to stick to the following order.

AutoDock Keywords
seed %ld
seed time

Each job can be seeded with either a user-defined or a time-dependent random-number generator
seed. The first form explicitly defines the seed-value for the random number generation. The sec-
ond uses a keyword, “time”, to obtain the number of seconds since the epoch. The epoch is refer-
enced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970.

types %s

Atom names for all atom types present in small molecule. Each must be a single character, and
only one of: C, N, O, S, H, X, or M. The maximum number of characters allowed in this line is
ATOM_MAPS, which is defined in the “autodock.h” include file. Do not use any spaces to delimit
the types: they are not needed.

fld %s

Grid data field file created by AutoGrid and readable by AVS (must have the extension “.fld”).

map %s

Filename for the first AutoGrid affinity grid map of the 1st atom type. This keyword plus filename
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must be repeated for all atom types in the order specifed by the “types” command. In all map files
a 6-line header is required, and energies must be ordered according to the nested loops z( y( x ) ).

map %s

Filename for the electrostatics grid map. 6-line header required, and energies must be ordered
according to the nested loops z( y( x ) ).

move %s

Filename for the ligand to be docked. This contains most importantly, atom names, xyz-coordi-
nates, anb partial atomic charges in PDBQ format. (Filename extension should be “.pdbq”).

about %f %f %f

Use this keyword to specify the center of the ligand, about which rotations will be made. (The
coordinate frame of reference is that of the ligand PDBQ file.) Usually the rotation center of the
ligand is the mean x,y,z-coordinates of the molecule. Inside AutoDock, the “about” xyz-coordi-
nates are subtracted from each atom’s coordinates in the input PDBQ file. So internally, the
ligand’s coordinates become centered at the origin. Units: Å, Å, Å.

tran0 %f %f %f
tran0 random

Initial coordinates for the center of the ligand, in the same frame of reference as the receptor’s grid
maps. The ligand, which has been internally centered using the “about” coordinates, has the xyz-
coordinates of the initial translation “tran0 x y z” added on. Every run starts the ligand from this
location.

Alternatively, the user can just give the keyword “random” and AutoDock will pick random initial
coordinates instead.

If there are multiple runs defined in this file, using the keyword “runs”, then each new run will
begin at this same location.

The user must specify the absolute starting coordinates for the ligand, used to start each run. The
user should ensure that the small molecule, when translated to these coordinates, still fits within
the volume of the grid maps. If there are some atoms which lie outside the grid volume, then
AutoDock will automatically correct this, until the small molecule is pulled completely within the
volume of the grids. (This is necessary in order to obtain complete information about the energy
of the initial state of the system.) The user will be notified of any such changes to the initial trans-
lation by AutoDock. (Units: Å, Å, Å.)

quat0 %f %f %f %f
quat0 random

Respectively: Qx, Qy, Qz, Qw. Initial quaternion (applied to small molecule) - Qx, Qy, Qz define the
unit vector of the direction of rigid body rotation [1, 0, 0], and Qw defines the angle of rotation
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about this unit vector, in ˚ [0˚]. (Units: none,none,none, ˚.)

Alternatively, the user can just give the keyword “random” and AutoDock will pick a random unit
vector and a random rotation (between 0˚ and 360˚) about this unit vector. Each run will begin at
this same random rigid body rotation.

ndihe %d

Number of dihedrals or rotatable bonds in the small molecule. This may be specifed only if rotat-
able bonds have been defined using ROOT, BRANCH, TORS etc. keywords in the “.pdbq” file
named on the “move” line. If this keyword is used, then the next keyword, dihe0, must also be
specified. Note that if ndihe and dihe0 are not specified and there are defined torsions in the
ligand PDBQ file, AutoDock assumes that the chi1, chi2, chi3, etc. are all zero, and does not
change the initial ligand torsion angles.

dihe0 %f %f %f ...

Initial relative dihedral angles; there must be ndihe floating point numbers specified on this
line. Each  value specified here will be added to the corresponding torsion angle in the input
PDBQ file, at the start of each run. Torsion angles are only specified by two atoms, so the defini-
tion of rotations is relative. Units: ˚.

tstep %f

Maximum translation step [0.2 Å]. Units: Å.

qstep %f

Maximum quaternion rotation step [5.˚]. Units: ˚.

dstep %f

Maximum dihedral step [5.˚]. Units: ˚.

trnrf %f

Per-cycle reduction factor for translations [1.].

quarf %f

Per-cycle reduction factor for quaternions [1.].

A quaternion.

Qx

Qy

Qz

Qw



AutoDock 2.4 User Guide

30

dihrf %f

Per-cycle reduction factor for dihedrals [1.].

barrier %f

(Optional) This defines the energy-barrier height applied to constrained torsions. When the tor-
sion is at a preferred angle, there is no torsion penalty: this torsion’s energy is zero. If the torsion
angle falls within a disallowed zone, however, it can contribute up to the full barrier energy. Since
the torsion-energy profiles are stored internally as arrays of type ‘unsigned short’, only positive
integers between 0 and 65535 are allowed. [10000].

gausstorcon %d %f %f

(Optional) Adds a constraint to a torsion. The torsion number is identified by an integer. This
identifier comes from the list at the top of the AutoTors-generated input ligand PDBQ file (on the
REMARK lines). An energy profile will be calculated for this torsion. An inverted Gaussian bell
curve is added for each new constraint. To completely specify each Gaussian, two floating point
numbers are needed: the preferred angle and the half-width respectively (both in degrees). Note
that the preferred angle should be specified in the range -180˚ to +180˚; numbers outside this
range will be wrapped back into this range. This angle, χ, is relative to the original torsion angle
in the input structure. The half-width is the difference between the two angles at which the energy
is half the barrier (B/2 in the diagram above). The smaller the half-width, the tighter the con-
straint. 

If you wish to constrain to absolute-valued torsion angles, it will be neccessary to zero the initial
torsion angles in the ligand, before input to AutoTors. The problem arises from the ambiguous 2-
atom definition of the rotatable bond B-C. To identify a torsion angle unambiguously, 4 atoms
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must be specified: A-B-C-D: 

The sign convention for torsion angles which we use is anti-clockwise (counter-clockwise) are
positive angles, clockwise negative. In the above diagram, looking down the bond B-C, the dihe-
dral angle A-B-C-D would be positive. 

There is no limit to the number of constraints that can be added to a given torsion. Each new tor-
sion-constraint energy profile is combined with the pre-exisiting one by selecting the minimum
energy of either the new or the existing profiles.

showtorpen

(Optional) (Use only with “gausstorcon”) This switches on the storage and subsequent output of
torsion energies. During each energy evaluation, the penalty energy for each constrained torsion,
as specified by the “gausstorcon” command, will be stored in an array. At the end of each run, the
final docked conformation’s state variables are output, but with this command, the penalty energy
for each torsion will be printed alongside its torsion angle.

hardtorcon %d %f %f

(Optional) This command also adds a torsion constraint to the %d-th torsion, as numbered in the
AutoTors-generated REMARKs. The first float defines the preferred relative angle, and the sec-
ond specifies the full width of the allowed range of torsion angles (both in degrees). This type of
torsion constraint is hard because the torsion is never allowed to take values beyond the range
defined. For example, “hardtorcon 3 60. 10.” would constrain the third torsion to values between
55˚ and 65˚.

intnbp_coeffs %f %f %d %d

Respectively: Cn; Cm; n; m. These are the internal pairwise non-bonded energy parameters for
flexible ligands, where:

These parameters are needed even if no rotatable bonds were defined in the ligand-PDBQ file.
They are only used in the internal energy calculations for the ligand and must be consistent with
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those used in calculating the grid maps. (Units: kcal mol-1 Ån; kcal mol-1 Åm; none; none, respec-
tively)

intelec

(Optional) Internal electrostatic energies will be calculated; the products of the partial charges in
each non-bonded atom pair are pre-calculated, and output. Note that this is only relevant for flexi-
ble ligands.

rt0 %f

Initial “annealing temperature”; this is actually the absolute temperature multiplied by the gas
constant R. [500. cal mol-1]. R = 8.314 J mol-1 K-1 = 1.987 cal mol-1 K-1. (Units: cal mol-1.)

rtrf %f

Annealing temperature reduction factor, g [0.95 cycle-1]. See the equation at the bottom of page 5.
At the end of each cycle, the annealing temperature is multiplied by this factor, to give that of the
next cycle. This must be positive but < 1 in order to cool the system. Gradual cooling is recom-
mended, so as to avoid “simulated quenching”, which tends to trap systems into local minima.

linear_schedule
schedule_linear
linsched
schedlin

These keywords are all synonymous, and instruct AutoDock to use a linear or arithmetic temper-
ature reduction schedule during simulated annealing. Unless this keyword is given, a geometric
reduction schedule is used, according to the rtrf parameter just described. If the linear schedule
is requested, then any rtrf parameters will be ignored. The first simulated annealing cycle is
carried out at the annealing temperature rt0.  At the end of each cycle, the temperature is reduced
by (rt0/cycles). The advantage of the linear schedule is that the system samples evenly across
the temperature axis, which is vital in entropic calculations. Geometric temperature reduction
schedules on the other hand, under-sample high temperatures and over-sample low temperatures.

runs %d

Number of automated docking runs [1].

cycles %d

Number of temperature reduction cycles [50].

accs %d

Maximum number of accepted steps per cycle [100].

rejs %d

Maximum number of rejected steps per cycle [100].
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select %d

State selection flag. This can be either m for the minimum state, or l for the last state found during
each cycle, to begin the following cycle [m].

outlev %d

Diagnostic output level. 0 = no output, 1 = minimal output, 2 = full state output at end of each
cycle; 3 = detailed output for each step. [1].

rmstol %f

RMS deviation tolerance for cluster analysis or ‘structure binning’ [0.5Å], carried out after multi-
ple docking runs. If two conformations have an RMS less than this tolerance, they will be placed
in the same cluster. The structures are ranked by energy, as are the clusters. The lowest energy rep-
resentative from each cluster is output in PDBQ format to the log file. To keep the original residue
number of the input ligand PDBQ file, use the ‘-k’ flag; otherwise the cluster-representatives are
numbered incrementally from 1. (Units: Å).

rmsnosym

When more than one run is carried out in a given job, cluster analysis or ‘structure binning’ will
be performed, based on structural rms difference, ranking the resulting families of docked confor-
mations in order of increasing energy.  The default method for structure binning allows for atom
similarity, as in a tertiary-butyl which can be rotated by +/-120˚, but in other cases it may be desir-
able to bypass this similar atom type checking and calculate the rms on a one-for-one basis. The
symmetry checking algorithm scans all atoms in the reference structure, and selects the nearest
atom of identical atom type to be added to the sum of squares of distances. This works well when
the two conformations are very similar, but this assumption breaks down when the two conforma-
tions are translated significantly. Symmetry checking can be turned off using the rmsnosym
command; omit this command if you still want symmetry checking.

trjfrq %d

Output frequency, n, for trajectory of small molecule, in steps [0]. If n = 0, then no trajectory
states will be output; otherwise, every nth state will be output. The state consists of 7 floats
describing the x,y,z translation, the x,y,z components of the quaternion unit vector, the angle of
rotation about the quaternion axis; and any remaining floats describing the torsions, in the same
order as described in the input small molecule PDBQ file).

trjbeg %d

Begin sampling states for trajectory output at this cycle. [1]

trjend %d

End trajectory output at this cycle. [50].

trjout %s

Trajectory filename [<smlmol.pdbq>.trj]. AutoDock will write out state variables to this file every
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“trjfrq” steps. Use the “traj” command in AutoDock’s command mode to convert this trajectory of
state-variables into a series of PDB frames. The “traj” command is described in § “Using the
Command Mode in AutoDock”; see also § “Trajectory Files”.

trjsel %s

Trajectory output flag, can be either ‘A’ or ‘E’; the former outputs only accepted steps, while the
latter outputs either accepted or rejected steps.

watch %s

Optional) Creates a “watch” file for real-time monitoring of an in-progress simulated
annealing job. This works only if the “trjfrq” parameter is greater than zero.

The watch file will be in PDB format, so give a “.pdb” extension. This file has an exclusive lock
placed on it, while AutoDock is writing to it. Once the file is closed, the file is unlocked. This can
signal to a watching visualization program that the file is complete and can now be read in, for
updating the displayed coordinates. This file is written at exactly the same time as the trajectory
file is updated

extnrg %f

External grid energy [1000.] assigned to any atoms that stray outside the volume of the grid dur-
ing a docking. Units: kcal mol-1.

rmsref %s

The RMS deviation of any conformations generated during the docking will be calculated by
comparing the coordinates in the file specified by this command. This tends to be useful when the
experimentally determined complex structure is known. The order of the atoms in the PDB file
specified by this command must match that in the input PDBQ file given by the move command.
These values of RMS will be output in the last column of the final PDBQ records, after the clus-
tering has been performed.

cluster %s

(Clustering multi-job output only.) AutoDock will go into ‘cluster mode’.  Use this command
only to perform cluster analysis on the combined output, <PDBQfilename>, of several jobs. This
command can be very useful when many jobs have been distributed to several machines and run
in ‘parallel’. The docking parameter file will need the following keywords: rmstol and types;
and optionally write_all_cluster_members and/or rmsnosym. It is necessary to grep the
REMARKS along with the ATOM records, since AutoDock parses the REMARKS to determine
what the energy of that particular conformation was. See the second example .dpf below.

write_all_cluster_members

(Custering multi-job output only.) This command is used only with the cluster command, to
write out all members of each cluster instead of just the lowest energy from each cluster. This
affects the cluster analysis PDBQ output at the end of each job.
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Example AutoDock Parameter File
An example of a commented AutoDock parameter file is given below:

______________________________________________________________________________

seed random
types CNOH # atom type names
fld 4phv.nbc_maps.fld# grid data file
map 4phv.nbc_C.map # C-atomic affinity map
map 4phv.nbc_N.map # N-atomic affinity map
map 4phv.nbc_O.map # O-atomic affinity map
map 4phv.nbc_H.map # H-atomic affinity map
map 4phv.nbc_e.map # electrostatics map

move xk263pm3.pdbq # small molecule
about -5.452 -8.626 -0.082 # small molecule center
tran0 -5.452 -8.626 -0.082 # initial coordinates/A
quat0 1. 0. 0.   0. # initial quaternion:unit-vector(qx,qy,qz);angle/deg(qw)
ndihe 10 # number of rotatable bonds
dihe0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. # initial dihedrals/deg
tstep 0.2 # translation step/A
qstep 5. # quaternion step/deg
dstep 5. # torsion step/deg
trnrf 1. # trans reduction factor/per cycle
quarf 1. # quat reduction factor/per cycle
dihrf 1. # tors reduction factor/per cycle

intnbp 1272653.000  1127.684  12  6 # C-C internal energy non-bond parameters/Cn,Cm,n,m
intnbp  610155.100   783.345  12  6 # C-N internal energy non-bond parameters/Cn,Cm,n,m
intnbp  588883.800   633.754  12  6 # C-O internal energy non-bond parameters/Cn,Cm,n,m
intnbp   88604.240   226.910  12  6 # C-H internal energy non-bond parameters/Cn,Cm,n,m
intnbp  266862.200   546.765  12  6 # N-N internal energy non-bond parameters/Cn,Cm,n,m
intnbp  249961.400   445.918  12  6 # N-O internal energy non-bond parameters/Cn,Cm,n,m
intnbp   39093.660   155.983  12  6 # N-H internal energy non-bond parameters/Cn,Cm,n,m
intnbp  230584.400   368.677  12  6 # O-O internal energy non-bond parameters/Cn,Cm,n,m
intnbp   38919.640   124.049  12  6 # O-H internal energy non-bond parameters/Cn,Cm,n,m
intnbp    1908.578    46.738  12  6 # H-H internal energy non-bond parameters/Cn,Cm,n,m

rt0 500. # initial RT
rtrf 0.95 # RT reduction factor/per cycle

runs 10 # number of runs
cycles 50 # cycles
accs   100 # steps accepted
rejs   100 # steps rejected
select m # minimum or last

outlev 1 # diagnostic output level

rmstol 0.5 # cluster tolerance/A
#rmsnosym                # no symmetry checking in RMS calc.

trjfrq 7500 # trajectory frequency
trjbeg 45 # start trj output at cycle
trjend 50 # end trj output at cycle
trjout xk263pm3.trj # trajectory file
trjsel E # A=acc only;E=either acc or rej
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extnrg 0.0 # external grid energy

______________________________________________________________________________

In this case, the small molecule file ‘xk263pm3.pdbq’ has been defined such that it contains 10
rotatable bonds. The docking will be sampled every 7500 steps, from cycle 45 to cycle 50. Either
accepted or rejected states will be output. The trajectory file ‘xk263pm3.trj’ will hold the
state information required to generate the coordinates later on. The external grid energy is set to
0.0, which can allow greater freedom for ligand rotations during docking.

The next example .dpf shows how to use the cluster mode in AutoDock. The PDBQ files con-
taining the final docked conformations have been extracted from the .dlg AutoDock log files
(using the UNIX grep command), and stored together in “vac1.new.nrg.pdb”. The toler-
ance for the RMS deviation is set to 1.5Å, so only conformations with this RMS or less will be
grouped into the same cluster. All cluster members will be written out, instead of just the lowest
energy representative of each.

______________________________________________________________________________

types CNOH                # atom_type_names
rmstol 1.5                # cluster_tolerance/A
write_all_cluster_members
cluster vac1.new.nrg.pdb  # structure binning 

______________________________________________________________________________

15. Running AutoDock

Once the grid maps have been prepared by AutoGrid, and the docking parameter file is ready, the
user is ready to run an AutoDock job. A docking is initiated using the following command:

autodock [-o][-k][-i][-u][-t] -p molecule.dpf [-l molecule.dlg] &

Input parameters are specified by ‘-p molecule.dpf’, and the log file containing results of
the docking is defined by ‘-l molecule.dlg’. This is the normal usage of AutoDock, and
performs a standard docking calculation. 

-o
can be added to the command line, to signify that the input file specified in the docking parameter
file is in old PDBQ format, with charges in columns 55-61.

-k
keep the original residue number of the input ligand PDBQ file. Normally AutoDock re-numbers
the starting position to residue-number 0, and any cluster-representatives are numbered incremen-
tally from 1, according to their rank (rank 1 is the lowest energy cluster).
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-i
used to ignore any grid map header errors that may arise due to conflicting filenames. This over-
rides the header checking that is normally performed to ensure compatible grid maps are being
used.

-u
returns a message describing the command line usage of AutoDock.

-t
instructs AutoDock to parse the PDBQ file to check the torsion definitions, and then stop. 

The Unix script “job” can be used to submit an AutoDock job, and then perform additional post-
processing, such as profiling, extracting job-information and creating a field file for AVS display
of the docked results. See the Appendix for more details.

16. Using the Command Mode in AutoDock

AutoDock can be run in “command mode”, using the “-c” flag thus:

% autodock -p molecule.dpf -l molecule.clg -c &

When AutoDock has read in the grid maps specified in “molecule.dpf”, the program gives
the message “COMMAND MODE” and waits for the user to issue a command from the standard
input. These commands are described in more detail below. An alternative method of using the
command mode is to edit a file containing the commands you wish AutoDock to execute (com-
mand.file) and channel the output to a file (command.output), thus:

% autodock -p molecule.dpf -l molecule.clg -c < command.file >
command.output &

AutoDock can be used in a UNIX pipe command. This is valuable when an alternative search pro-
cedure is desired. Here, alt_search_proc issues commands to the standard output, and
reads the results from the standard input. In this case, AutoDock is behaving as an energy server
for alt_search_proc, the alternative search-procedure program.

There are eight recognized commands: AutoDock’s command interpreter is not case sensitive.

“eval” Evaluate this state’s total energy.
“epdb” Evaluate the energy of the named PDBQ file.
“outc” Output the last state’s PDB-formatted Cartesian coordinates.
“oute” Output (non-bond and electrostatic) energy breakdown, by atom.
“traj’’ Convert trajectory file to PDB-formatted Cartesian coordinates.
“stop”, “exit”, “quit” Stop the AutoDock command mode interpreter.
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Eval
Evaluates the total energy of a state defined by the subsequent state variables. This command uti-
lizes the trilinear interpolation routine in AutoDock along with the supplied grid maps defined in
the parameter file specified after the ‘-p’ flag to return this energy. The internal energy of the
small molecule is also taken into account, as dictated by the values of the torsion angles supplied
in the ntor lines following this eval command line; ntor is the number of torsion angles defined
in the small molecule PDBQ file, as described in the section “Defining Torsions in AutoDock”.
The usage of this command is:

eval %f %f %f %f %f %f %f} Tx, Ty, Tz, Qx, Qy, Qz, Qw (in ˚)
%f } ith torsion angle, in ˚.
:
: ntor lines.

where: Tx, Ty, Tz are the coordinates of the center of rotation of the small molecule; Qx, Qy, Qz is the
unit vector describing the direction of rigid body rotation, about which a rotation of angle Qw

degrees will be applied. The following ntor lines hold the torsion angles in degrees, given in the
same order as described in the AutoDock log file.

Epdb
Calculates the energy of the molecule provided in the PDBQ file, thus:

epdb filename.pdbq

where: “filename.pdbq” is the PDBQ formatted coordinates of a molecule for which the interac-
tion energy with the macromolecule will be returned. The ‘-o’ flag supplied at the AutoDock exe-
cution line specifies the old format of PDBQ, with charges in columns 55-61; otherwise it is
assumed that the charges are in columns 71-76.

This command is useful when the state variables for a given molecule are not known, e.g. the x-
ray crystal conformation of the small molecule.

Outc
Returns the coordinates of the small molecule at its current transformed position (in the form of a
PDB REMARK). The x,y,z coordinates will be determined by the state variables supplied to the
eval command.

Oute
Returns the total internal energy of the small molecule and the total energy of the complex, at the
current state variables. These two REMARK lines are written in PDB format, to the command
output channel and the log file.
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Traj
Convert a “.trj” file into PDBQ format. Usage:

traj filename.trj

where “filename.trj” is the trajectory file written out by an earlier run of AutoDock. This trajec-
tory file contains the state variables for the states sampled during the docking simulation. The tor-
sions are assumed to be in exactly the same order as the input ligand PDBQ file. The torsion
angles in the trajectory file are relative to the the latter’s conformation.

See also the Appendix 20, script “runtrj”; and the next section, “Trajectory Files”. 

Stop, Exit, Quit
Halts the execution of AutoDock. A value of 0 is returned by the program, and the message
“autodock: Successful Completion” is written to the log file and standard error. Timing informa-
tion is also written. Note: “stop”, “exit” and “quit” are synonymous.

17. Trajectory Files

A trajectory (of state variables) can be written out during a normal docking simulation, if the tra-
jectory-frequency (set by the keyword “trjfrq”) in the docking parameter file is greater than zero.
This value defines the output frequency, in steps, for states sampled during the run. The default
trajectory filename extension is “.trj” . These state variables are all that is needed to regenerate the
coordinates of the small molecule. The trajectory control parameter (either “A” or “E”) allows the
user to record only accepted moves (A); or, moves which are either accepted or rejected (E). Just
for information, a sample “.trj” trajectory file is shown below; you will not need to create such
files (unless you feel like creating an animation!):

______________________________________________________________________________

ntorsions 2
run 1
cycle 1
temp 300.000000
state 1 A -3.745762 -1.432243 -9.518171 23.713793 23.076145 0.713534 -0.023818 0.700216
30.606248
-4.894825
2.661499
:
:
state 6 R -12.679995 -1.452641 -9.259430 21.634645 23.135242 0.653369 -0.440832 0.615448
39.127316
-31.636299
10.261519
state 7 a -8.746072 -1.458231 -9.080998 21.356874 23.325665 0.648312 -0.448577 0.615200
41.075955
-37.935175
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11.918847
:

______________________________________________________________________________

There are several keywords: “run” and “cycle” are self-explanatory; “ntorsions” is the total num-
ber of changing torsions in the ligand; “temp” is the annealing temperature for all subsequent
entries, unless otherwise stated. Each “state” record has the format: 

state nstep acc_rej_code e_total e_internal x y z qx qy qz qw

where:
nstep = the number of the step, within this cycle;
acc_rej_code = ‘A’ = an accepted move whose energy was lower than its preceeding
state;

= ‘a’ = an acepted move whose energy was higher than its preceeding
state, which nevertheless passed the Monte Carlo probability test, at this temperature;

= ‘R’ = a rejected move.
= ‘e’ = an edge-hit, also a treated as a rejected move.

e_total = total energy of the system, small molecule + macromolecule;
e_internal = internal energy of small molecule only;
x,y,z = translation of small molecule center;
qx,qy,qz,qw = quaternion, which describes the small molecule’s orientation;

In order to get a coordinate-based trajectory file, for visualization, the command mode of
AutoDock must be used to regenerate the coordinates from the state variables. Use the “traj”
command with the name of the pre-calculated trajectory file. For example, suppose there is a com-
mand file called “trj.conv.com” that contains:

_____________________________________________________________________________

traj ligand.trj
stop

_____________________________________________________________________________

AutoDock would be executed a second time using the following command,

autodock -p ligand.dpf -l ligand.trj.conv.log -c < trj.conv.com >
trj.conv.out

18. Evaluating the Results of a Docking

At the end of an AutoDock execution, in which more than one run was performed, the program
outputs a list of clusters and their energies. The clustering or structure binning of docked confor-
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mations is determined by the tolerance specified in Å by the rmstol keyword. The best repre-
sentative from each cluster (that with the lowest energy) is written out in PDBQ format at the end
of the log file.

These structures can be read into any appropriate molecular modelling system and the results
compared, where possible, with the experimental data. The table of ranked clusters shows the final
docked energy for each conformation, and the RMS difference between the lowest energy mem-
ber of the group and every other member. The RMS for the lowest member of the group is by def-
inition zero. After this table, the structures are output in PDBQ format. Each conformation has a
set of REMARK records, one of which describes the RMS difference between itself and the coordi-
nates specified in the original input PDBQ file.This can be useful for comparing how close each
docked conformation is to the experimentally determined position.

19. Visualizing Grid Maps and Trajectories Using AVS

Grid maps can be visualised in AVS by using a read field module. The user must specify the
‘.fld’ file that was created by AutoGrid, in order to read in the grid maps. An extract scalar
module selects the grid map of interest, e.g. carbon affinity or electrostatics. The resulting grid
map data can be analyzed using arbitrary slicer and isosurface modules, in order to examine cross
sections and iso-energy contours respectively. Negative energy contours are most informative for
the atomic affinity grid maps, since they reveal favorable regions of binding. 

Trajectories can be read into AVS also using the read field module. The trajectory file is essen-
tially a set of “stacked PDB frames”, and must be read in as a two dimensional field (being the
number of atoms in the small molecule, and the number of frames in the trajectory file). By pag-
ing through this field, using the orthogonal slicer, continuous replay of the trajectory can be
achieved using an animate integer module to control which PDBQ frame is selected by the
orthogonal slicer. This animates the sequence of sampled states and allows the user to view in real
time the progress of the docking simulation.
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APPENDIX 20. Shell Scripts and Auxilliary Tools

cartopdbq
Usage: cartopdbq ligand.car > ligand.pdbq

Converts from Biosym InsightII .car format to PDBQ format

check-qs
Usage: check-qs molecule
needs: molecule.pdbq
creates: molecule.err

Checks partial atomic charges in PDBQ file; any non-integral charges are reported.

clamp
Usage: clamp grid.map > grid.map.NEW

Clamps any AutoGrid map values that exceed ECLAMP (normally set to 1000.0)

deftors
Usage: deftors ligand
needs: ligand.mol2
creates: ligand.pdbq, ligand.err, ligand.bnd and ligand.bnd.pdbq

Sets up rotatable bonds for AutoDock. This script launches AutoTors, with the -a, -h and -m
flags; checks the charges in the output, with check-qs; creates a .bnd file with pdbqtobnd;
and creates an AVS .fld file using mkavsheader for trajectory viewing later on.

dpf-gen
Usage: dpf-gen ligand.pdbq > ligand.dpf

Generates a default AutoDock docking parameter file. You must edit the file before using it. In
particular, you will need to edit the filename stem on the trjout line.

extjobinfo
Usage: extjobinfo file.dlg > file.dlg.inf

Extracts information about a particular docking job. Columns contain: cycle, run, annealing tem-
perature, minimum energy, change in energy, number of accepted moves, number of rejected
moves, accepted/rejected ratio, total number of moves (accepted + rejected), time taken for this
cycle, average time per step.

genpdbq
Usage: cat file.pdb file.tor | genpdbq > output.pdbq
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This is used to extract the order of the atoms and ROOT, BRANCH, TORS records from the
file.tor, and replace the atom lines with the new coordinates in file.pdb. The PDB ATOM
records in file.tor must be converted into (non-standard) ATMNUM records, keeping just the
atom serial number from the original PDBQ file.

get-coords
Usage: get-coords file1.vol > file1.txt

This is used as part of prepare, prepare-gpf+dpf, prepare II and prepare III. It
takes the .vol file created by pdb-volume and creates a line that can be used in the grid
parameter file to specify the center of the maps.

gettrjdim
Usage: tail -12 file.tlg | gettrjdim > file.tmp

Used in mktrjfld, to obtain the number of atoms and number of frames in the trajectory log
file, file.tlg.

gpf-gen
Usage: gpf-gen ligand.pdbq > ligand.gpf

This script is used to generate a grid parameter file. It takes as its input, a ligand.pdbq file,
detects all atom types present, and creates the properly formatted parameter file for AutoGrid.
This is used in prepare, prepare-gpf+dpf, prepareII and prepare III.

job, job2
Usage: job dpfstem > dpfstem.joblog &

Launches a single AutoDock job. It assumes that “dpfstem.dpf” exists, and executes
AutoDock using the arguments: 

$bin/autodock -p dpfstem.dpf -l dpfstem.dlg

You must edit this script the first time you use it, so that the environment variables $root, $bin and
$sh are correctly set equal to, respectively: the path to the root of AutoDock tree, the architecture-
dependent binary subdirectory and the Unix scripts subdirectory. The file dpfstem.joblog
contains the output from the job script. 

The variant job2 takes two arguments, the first is as above, while the second is an AutoDock
flag. For eaxmple:

Usage: job2 dpfstem -flag > dpfstem.joblog &

This script can be useful for passing one of the arguments -k (keep original ligand residue num-
ber in output), -i (ignore grid map header mismatch errors) or -o (old format PDBQ file).
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mkbndfld
Usage: mkbndfld ligfilestem
Needs: ligfilestem.bnd
Creates: ligfilestem.bnd.fld

Creates an AVS field file to convey the correct bonding and connectivity to the appropriate mod-
ules. This is only important for AVS visualizations.

mkdlgfld
Usage: mkdlgfld ligand.dlg
Needs: ligand.dlg
Creates: ligand.dlg.fld

Extracts the “AVSFLD” records from an AutoDock log file, and puts them in ligand.dlg.fld. These
“AVSFLD” descriptors must be removed before the file can be used in AVS.

mkinffld
Usage: mkinffld job.inf
creates: job.inf.fld

This is used by AVS users, to create a field file for plotting graphs showing job information
extracted by the extjobinfo script described above.

mktrjfld
Usage: mktrjfld filename
needs:   filename.tout
creates: filename.trj.fld

Also used by AVS users, to create a field file for displaying and animating a trajectory generated
by AutoDock.

mol2topdbq
Usage: mol2topdb2 file.mol2 > file.pdbq

Converts from SYBYL mol2 format into AutoDock PDBQ format.

pdb-center
Usage: pdb-center [ file.pdb | file.pdbq ] > file2.pdb

Calculates the center of mass of each residue; writes these coordinates out using REMARK
records.

pdb-center-all
Usage: pdb-center-all [ file.pdb | file.pdbq ] > file2.pdb

Calculates the center of mass of each residue; writes these coordinates out using REMARK
records.Also calculates the center of all the residues.
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pdb-volume
Usage: pdb-volume [ file.pdb | file.pdbq ] > file2.pdb

Calculates the center of mass of each residue. Writes out REMARKs showing these coordinates.
Draws ASCII diagram showing volume extents of each residue.

pdbq-to-pdb
Usage: pdbq-to-pdb file.pdbq > file.pdb

Converts from AutoDock PDBQ to Brookhaven PDB format.

pdbq55-to-pdbq71
Usage: pdbq55-to-pdbq71 old-format.pdbq > new-format.pdbq

Converts from old PDBQ format (with charge in columns 55-61) to new PDBQ format (charge in
columns 71-76).

prepare
Usage: prepare m s

where: m.pdb and s.pdbq contain the receptor and ligand respectively. Prepare performs
the following eight steps. The macromolecule ‘.pdb’ filename stem is represented by “m”, and
the small molecule ‘.pdbq’ filename stem by “s”: 

m = macromolecule;

Key:

s = small molecule.

m.pdb s.pdb

m.enz

m.rnm

m.polH

m1.pdbqm.err

s.pdbq

s.gpf

s.vol

s.dpf

m.rnm.log

grep ^[AT][TE][OR][M ]

renumber-residues

protonate

q.kollua

AMPAC/MOPAC, InsightII, Sybyl

pdb-volume

dpf-gen
gpf-gen

prepare m s

check-qs

get-coords
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1. Extracts all ATOM and TER records from m.pdb into m.enz;
2. Renumbers residues to avoid problems in protonate-step;
3. Adds polar hydrogens to m.enz, creating m.polH;
4. Somewhat crudely assigns partial atomic charges to m.polH, creating m.pdbq;
5. Checks charges in m.pdbq, all errors held in m.err;
6. Creates s.gpf, a parameter file for AutoGrid, based on small molecule file s.pdbq;
7. Creates s.vol, a volume dimensions file; and finally, 
8. Creates s.dpf, a parameter file for AutoDock, based on small molecule file s.pdbq;

Its arguments are the stem of the filename of the macromolecule ‘.pdb’ file and that of the small
molecule PDBQ file. See the flowchart below for more details. It shows what files are created by
‘prepare’, and which scripts or programs are used. Steps 1.-4. are better carried out with a reli-
able molecular modelling system: these steps can produce some odd results unless carefully
checked.

The user must check the m.err error file to ensure there are no non-integral charges, either on
any residue in the macromolecule, or on the macromolecule as a whole. If there are, then the user
must repair the m.pdbq file. This problem can arise if there are atoms for which no coordinates
were assigned by the crystallographer, e.g. due to ambiguous electron density. Assuming there
were no problems, s.gpf and s.dpf should be successfully produced.

prepareII
Usage: prepareII macromol smlmol

Executes only steps 5. through 8. of prepare described above.

prepare-gpf+dpf
Usage: prepare-gpf+dpf macromol smlmol

Executes only steps 6. through 8.

prepare-dpf
Usage: prepare-dpf macromol smlmol

Executes only step 8.

renumber-residues
Usage: file.pdb > file.rnm

Used by prepare to renumber residues in the macromolecule contiguously. This step is needed
prior to using protonate, which may fail if there are gaps in the residue numbers.

runtrj, runtrj-i
Usage: runtrj ligand
needs: ligand.dpf, ligand.trj
creates: ligand.tcom, ligand.tlg and ligand.tout
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This creates an AutoDock command file, ligand.tcom, which is then used to convert the tra-
jectory written in state variables (ligand.trj), into a trajectory written in cartesian coordi-
nates. Ligand.trj is created by an earlier run of AutoDock, in which trjfrq was set to a
non-zero value. Runtrj-i is like runtrj, but this passes the “-i” flag to AutoDock so as to
ignore grid map header checking warnings.
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APPENDIX 21. Parameters from AutoDock Version 1 

Table 4: Lennard-Jones C6 parameters (AutoDock version 1.0)

C N O S H

C 1127.684 783.3452 633.7542 1476.364 226.9102

N 783.3452 546.7653 445.9175 1036.932 155.9833

O 633.7542 445.9175 368.6774 854.6872 124.0492

S 1476.364 1036.932 854.6872 1982.756 290.0756

H 226.9102 155.9833 124.0492 290.0756 46.73839

Table 5: Lennard-Jones C12 parameters (AutoDock version 1.0)

C N O S H

C 1272653. 610155.1 588883.8 1569268. 88604.24

N 610155.1 266862.2 249961.4 721128.6 39093.66

O 588883.8 249961.4 230584.4 675844.1 38919.64

S 1569268. 721128.6 675844.1 1813147. 126821.3

H 88604.24 39093.66 38919.64 126821.3 1908.578

Table 6: Hydrogen bonding 12-10 parameters (AutoDock version 1.0)

Atoms i-j C12 C10

O-H 75570. 23850.

N-H 75570. 23850.

S-H 2657200. 354290.


