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Abstract. The chiral phase transition of linear sigma model with constituent quarks at finite
temperature T and chemical potential µ is scrutinized in a non-simply connected space-time where
the compactified dimension with length L is taken along the Oz direction. It results that cor-
responding to untwisted and twisted quarks the phase diagrams in the (T,L−1)- plane are quite
different from each other. Here, untwisted (twisted) quark denotes the quark field which satisfies
the periodic (anti-periodic) boundary conditions. In the chiral limit the chiral phase transition for
untwisted quark is first order for all values of L, while for twisted quark it is first order at high
L and becomes second order at lower values of L . In the physical world with explicit symmetry
breaking, it is found that the chiral phase transition for untwisted quark is first order at low values
of L and eventually ends up with a critical end point at high L, and for twisted quark it is a
crossover transition everywhere.

I. INTRODUCTION

Motivated by the early work of Kaluza and Klein [1] who attempted to unify gravity
with other forces in nature the study of physical phenomena arising in a space-time with
nontrivial topology has attracted many investigators in recent years. There, the extra spa-
tial dimension was introduced and compactified in small distances. The physical theories
with compactified spatial dimensions are developed in diverse domains of modern physics:

1- This idea has been intensively developed with different applications in supergrav-
ity, superstrings and brane theories [2]. Especially, extra dimensions have been extended
to lower energy scale for understanding the hierarchy between mass scales existing in high
energy physics [3, 4].

2- The holographic QCD [5], the holographic nuclear theory [6] and the holographic
theory of high temperature superconductor [7] have been proposed and developed with
great interest. Here, based on the gauge/gravity duality [8] the gauge theory is transferred
to the gravitation theory in the higher - dimensional space-time with some compactifica-
tions. As consequence, the problem of non-perturbative nature is hopefully solved by
means of the perturbative method of the gravity theory.

3- On the other hand, it is well known that the space-time with nontrivial topology
can give rise to new physical effects, such as the celebrated Casimir effect [9, 10], caused
by the vacuum structure of quantized field restricted in a domain of compactified space-
time. The Casimir energy and its role in cosmology have been explored in Refs.[11]-[17], in
particular, it was employed to model the dark energy for explaining the present accelerated
expansion of universe [11, 12]. In condensed matter physics the Casimir effect is applied not
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only to the fabrication and operation of nano - scale systems [18], but also to nanophysics
[19, 20] since the single-walled carbon nanotubes are generated by graphene sheet and
the background space-time for corresponding Dirac-like theory of the electronic states in
grapheme has topology S1 ×R2.

Following the idea of compactified spatial dimensions this paper is devoted to the
study of chiral phase transition in the space-time with topology S1 × R3, in which the
Casimir effect is not taken into account. We start from the linear sigma model involving
constituent quarks, whose Lagrangian reads

L = LLSM + q
[

iγµ∂µ −mq − g(σ + iγ5~τ~π)
]

q + µqγ4q,

(1)

in which

LLSM =
1

2
[∂ασ∂

ασ + ∂α~π∂
α~π]− U,

U =
m2

2
(σ2 + ~π2) +

λ2

4
(σ2 + ~π2)2 − ǫfπm

2
πσ,

where q, σ and ~π denote respectively the quark, sigma and pion fields; µ is the quark
chemical potential; g,m and λ are the coupling constants, mq is current quark mass and
ǫ = 0, 1. The coupling constants are determined

m2 =
3m2

π −m2
σ

2
< 0, λ2 =

m2
σ −m2

π

2f2
π

> 0.

The present article is organized as follows. In Section II we calculate the effective
potential and gap equations for both untwisted and twisted quarks and study numerically
the chiral phase transition. The conclusion and discussion are given in Section III.

II. CHIRAL PHASE TRANSITION WITHOUT CASIMIR EFFECT

II.1. The effective potential and gap equation

After a Wick rotation the classical action SE corresponding to (1) reads

SE = i

∫ L

0
dx3

∫ +∞

−∞

dτdx⊥LE . (2)

In the mean - field approximation σ and ~π develop the ground - state expectation values

〈σ〉 = u, 〈~π〉 = 0.

As known [21, 22], the non - trivial topology of space-time leads to the existence
of two types of boundary conditions for quark fields that are either periodic (untwisted
quark) or anti - periodic (twisted quark)

q(τ, x, y, z = 0) = ±q(τ, x, y, z = L). (3)

As is indicated in (3) there is a similarity between L and β = 1/T in the Matsubara
formalism.
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Next the grand partition function is established

Z =

∫

DqDq exp[−SE],

which, taking into account (3), leads to the effective potential

Ω(u,L) = −
lnZ

V L
= U +Ωqq, (4)

where V means the volume of the Euclidean 3 - dimensional space - time and

Ωqq = −
νq
L

+∞
∑

n=−∞

∫

d~p⊥
(2π)2

{

En + T ln

[

1 + exp

(

−
En − µ

T

)]

+ T ln

[

1 + exp

(

−
En + µ

T

)]}

, (5)

with

En =
√

p23n + p2
⊥
+M2,

M = mq + gu.

The first term under the integral is exactly the vacuum contribution, which is relevant to
the Casimir energy. We first discard it temporarily, then the expression is simplified to

Ωqq = −
νqT

L

+∞
∑

n=−∞

∫

d~p⊥
(2π)2

{

ln

[

1 + exp

(

−
En − µ

T

)]

+ ln

[

1 + exp

(

−
En + µ

T

)]}

. (6)

The boundary conditions (3) yield

p3n =
2nπ

L
, (7)

for untwisted quark and

p3n =
(2n+ 1)π

L
, (8)

for twisted quark.
The ground state of the system is determined by

∂Ω

∂u
= 0,

or

m2u+ λ2u3 − ǫfπm
2
π +

∂Ωqq

∂u
= 0, (9)

where

∂Ωqq

∂u
=

νq
L
gM

+∞
∑

n=−∞

∫

d~p⊥
(2π)2

×
1

En

{

1

e(En−µ)/T + 1
+

1

e(En+µ)/T + 1

}

. (10)

Eqs.(9), (10) together with (7) and (8) are called the gap equations for untwisted and
twisted quarks, respectively. They play the essential role in what follows.
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Fig. 1. In the chiral limit and µ = 0. The evolution of chiral condensate as
a function of T . The solid line corresponds to L → ∞ for both twisted and
untwisted quarks. The dashed (dashed-dotted) line corresponds to twisted quark
at L = 1.973fm (3.946 fm). The dotted line corresponds to untwisted quark at
L = 1.973 fm.

II.2. Numerical study

In order to proceed to the numerical computation the model parameters are chosen
to be mσ = 500 MeV, mπ = 138 MeV, fπ = 93 MeV, mq = 5.5 MeV and therefore the
value g = 3.3 provides the mass of constituent quark.

With the aid of MATHEMATICA [23] and FORTRAN we will investigate the chiral
phase structure for the following cases:

II.2.1. In the chiral limit, ǫ = 0 and mq = 0

Let us first consider the case when µ = 0. Then based on Eqs. (7), (8) and (9) it is
found that

- The evolution of chiral condensate u(T,L) versus T at several values of L are
depicted in Fig.1 for both twisted and untwisted quarks. It is evident that for untwisted
quark the phase transition is always first - order, while for twisted quark the transition is
first - order for L > 1.972 fm and becomes second - order for smaller L.

The statement that the transition is first - order for untwisted quark at several
values of L is easily tested by observing the evolution of effective potential Ω versus u at
µ = 0 and L = 3.946 fm shown in Fig.2. It is found that two minima of Ω exhibit as
degenerate at the critical temperature Tc = 117.38 MeV. Analogously, the first - order
transition for twisted quark in the interval 1.972fm ≤ L ≤ ∞ is also confirmed.

- As a consequence, the phase diagrams in the (T,L−1) - plane are plotted by upper
lines in Fig.3(a) (for untwisted quark) and Fig.3(b) (for twisted quark).
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Fig. 2. In the chiral limit and for untwisted quark. The evolution of effective
potential versus u at µ = 0, L = 3.946 fm and T = 100 MeV (dotted line),
T = 117.83 MeV (solid line) and T = 125 MeV (dashed line).
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Fig. 3. In the chiral limit. The phase diagram of chiral condensate in (T, L−1) -
plane at µ = 0 (upper line) and µ = 50 MeV (lower line). The solid line denotes
first - order phase transition.

Next the case µ = 50 MeV is concerned. Solving Eqs. (7) - (10) together with

u(T, µ = 50MeV, L) = 0,
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Fig. 4. In the chiral limit and µ = 50MeV. The evolution of chiral condensate as a
function of T . The solid line corresponds to L → ∞ for both twisted and untwisted
quarks. The dashed and dotted lines correspond to twisted and untwisted quarks
and L = 1.973 fm.

leads to the phase diagrams plotted by lower lines in Fig.3(a) and Fig.3(b). The order of
the transition is determined from the evolution of chiral condensate versus T at several
values of L for each case. With this in mind we obtain Fig.3 which yield the scenarios:
for untwisted quark the transition is first - order everywhere, whereas for twisted quark
the chiral phase transition changes from first - order at L > 2.358 fm to second - order at
smaller L. Two types of transitions are separated by a tri - critical point.

II.2.2. In the physical world, ǫ = 1 and mq = 5.5 MeV

We will consider in this part the phase diagrams in the (T,L−1) - plane correspond-
ing to µ = 0 and 200 MeV, respectively.

a- Solving the gap equations, Eqs.(7), (9) and (10), for untwisted quark generates
the solid and dotted lines in Fig.5(a) (µ = 0) and Fig.5(b) (µ = 200 MeV), which represent
the T dependence of chiral condensate at several values of L. Their common feature is
that every figure has two different regions of temperature, separated by a definite value
T = T0 (of course, T0 depends on µ) so that for T > T0 the order parameter u is a single -
valued function of T and smoothly tends to zero as T increases. This kind of behavior of
u is usually defined as a crossover transition. Meanwhile, for T < T0 the order parameter
turns out to be multi - valued function of T , where, owing to Asakawa and Yazaki [24],
a first - order phase transition emerges. Then applying their proposed method, which
essentially identifies the multi - valued region of chiral condensate to the region of first -
order phase transition, we are led to the phase diagram in the (T,L−1) - plane plotted in
Fig.6(a) for µ = 0 and µ = 200 MeV. Here, the solid lines (dashed lines) denote first -
order phase transition (crossover transition). In each diagram two types of transitions are
separated by a critical end point (CEP).
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(a) µ = 0, the dashed and dotted lines correspond to
twisted and untwisted quarks and L = 1.316 fm.
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(b) µ = 200 MeV, the dashed and dotted lines corre-
spond to twisted and untwisted quarks and L = 39.46
fm.

Fig. 5. The evolution of chiral condensate as a function of T . The solid line
corresponds to L → ∞ for both twisted and untwisted quarks.
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Fig. 6. The phase diagram of chiral condensate in (T, L−1) - plane. From the top
to bottom the graphs correspond to µ = 0, 200 MeV. The solid line means first -
order phase transition and dashed line means crossover transition. M, N are the
CEPs with corresponding coordinates (T, L) = (126.72 MeV, 3.953 fm) and (93.37
MeV, 55.56 fm).
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Fig. 7. The evolution of effective potential versus M at µ = 0 in the physical
world and for untwisted quark. Starting from the top, the graphs correspond to
(T, L) = (92.1 MeV, 1.318 fm), (109.446 MeV, 1.972 fm), (126.721 MeV, 3.953

fm).

It is important to remember that solving the gap equation is not sufficient to decide
the order of the transition [25], therefore this result is reconfirmed only when we consider
additionally the evolution of the effective potential versus M for several values of (T,L)
belonging to the multi - valued region of chiral condensate. They are depicted in Fig.7
for µ = 0, featured by the fact that at critical temperature T = Tc (of course, Tc depends
on µ) the first - order phase transition is expressed by dotted lines with two minima
corresponding to restored and broken symmetry, separated by a barrier. As T increases
the barrier smears out and at T = Tcross (evidently, Tcross depends on µ, too) the barrier
disappears, signaling the onset of a crossover transition. We also obtain at µ = 200 MeV
the similar scenario.

b- Concerning twisted quark we plot the solid and dashed lines in Fig.5(a) (µ = 0)
and Fig.5(b) (µ = 200 MeV) the T dependences of chiral condensate at several L steps.
It is clear that as T increases the chiral condensate always smoothly goes to zero. This
implies that the chiral transition for different cases is of crossover type everywhere. The
corresponding phase diagrams u(T,L) = 0 in the (T,L−1) - plane are represented in
Fig.6(b), from the top to bottom the graphs correspond to µ = 0 and µ = 200 MeV.

III. CONCLUSION AND DISCUSSION

The most important results we found in this paper are in order:
a- Pions are split up into untwisted and twisted pions with quite different masses

when moving in restricted domain of space-time.
b- The finite-size effect indicates that the critical temperature monotonously in-

creases as L decreases in the twisted-quark case. This effect is of great significance for
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applying to high-temperature superconductors and ultrathin films of superconducting met-
als. Indeed, similarly to quarks, electrons which formed Cooper pairs could be split up
into untwisted and twisted electrons. So, it is probable that the systems might turn out
to be high-temperature superconductors with two energy gaps: the first gap corresponds
to untwisted-electron pairs and the second gap to twisted-electron pairs. The critical tem-
perature of normal-superconducting phase transition becomes high when L is sufficiently
small.

All new phenomena mentioned above are very interesting. Their experimental con-
firmations are related to a more fundamental problem which arises is that how to discover
experimentally the existences of two types of fermions in real systems when space-time
is compactified. Perhaps, the physics of ultracold gases is most suited for this purpose.
We know that at ultracold temperature the strength of inter-atomic interaction is char-
acterized by scattering length a. Across the Feshbach resonance, in principle, a−1 can
be tuned to any value, from −∞ to +∞. Therefore, by means of ultracold gases we are
able to study quantum physics of interacting fermions from weak to strong couplings.
Here, experimental realization could prove whether or not both untwisted-fermion and
twisted-fermion condensates coexist in quasi two-dimensional space.
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