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Abstract. The time-dependent Ginzburg-Landau approach in 2D is used to investigate linear

response of a strongly type-II superconductor. Thermal fluctuations, represented by the Langevin

white noise, are assumed to be strong enough to melt the Abrikosov vortex lattice created by the

magnetic field into a moving vortex liquid and marginalize the effects of the vortex pinning by

inhomogeneities. The nonlinear interaction term in dynamics is treated within self-consistent

Gaussian approximation and we go beyond the often used lowest Landau level approximation

to treat arbitrary magnetic fields. The results are compared to experimental data on high-Tc

superconductor Bi2Sr2CaCuO8.

I. INTRODUCTION

Linear response to electric field in the mixed state of superconductors has been
thoroughly explored experimentally and theoretically over the last three decades. These
experiments were performed at very small voltages in order to avoid effects of nonlinearity.
Magnetic field in strongly type-II superconductors create magnetic vortices, which, if
not pinned by inhomogeneities, move and let the electric field to penetrate the mixed
state. The dynamic properties of fluxons appearing in the bulk of a sample are strongly
affected by the combined effect of thermal fluctuations, anisotropy (dimensionality) and
the flux pinning [1]. Thermal fluctuations in these materials are far from negligible and in
particular are responsible for existence of the first-order vortex lattice melting transition
separating two thermodynamically distinct phases, the vortex solid and the vortex liquid.
Magnetic field and reduced dimensionality due to pronounced layered structure (especially
in materials like Bi2Sr2CaCuO8+δ) further enhance the effect of thermal fluctuations on
the mesoscopic scale.

Since thermal fluctuations in the low-Tc materials are negligible compared to the
inter-vortex interactions, the moving vortex matter is expected to preserve a regular lattice
structure (for weak enough disorder). On the other hand, as mentioned above, the vortex
lattice melts in HTSC over large portions of their phase diagram, so the moving vortex
matter in the region of vortex liquid can be better described as an irregular flowing vortex
liquid.

A simpler case of a zero or very small magnetic field in the case of strong thermal
fluctuations was in fact comprehensively studied theoretically [6] albeit in linear response
only. In any superconductor there exists a critical region around the critical temperature
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|T − Tc| ≪ Gi · Tc, in which the fluctuations are strong (the Ginzburg number charac-
terizing the strength of thermal fluctuations is just Gi ∼ 10−10 − 10−7 for low Tc, while
Gi ∼ 10−5 − 10−1 for HTSC materials). Outside the critical region and for small electric
fields, the fluctuation conductivity was calculated by Aslamazov and Larkin [2] by consid-
ering (noninteracting) Gaussian fluctuations within Bardeen-Cooper-Schrieffer (BCS) and
within a more phenomenological Ginzburg-Landau (GL) approach. In the framework of
the GL approach (restricted to the lowest Landau level approximation), Ullah and Dorsey
[3] computed the Ettingshausen coefficient by using the Hartree approximation. This ap-
proach was extended to other transport phenomena like the Hall conductivity [3] and the
Nernst effect [4]. The fluctuation conductivity within linear response can be applied to
describe sufficiently weak electric fields, which do not perturb the fluctuations’ spectrum
[5, 6].

In this paper the linear electric response of the moving vortex liquid in 2D supercon-
ductor under magnetic field is studied using the time dependent GL (TDGL) approach.
The TDGL approach is an ideal tool to study a combined effect of the dissipative (over-
damped) flux motion and thermal fluctuations conveniently modeled by the Langevin
white noise. The interaction term in dynamics is treated in self-consistent Gaussian ap-
proximation which is similar in structure to the Hartree approximation [3, 6]. A main
contribution of our paper is an explicit form of the Green function incorporating all Lan-
dau levels. This allows to obtain explicit formulas for conductivity (resistivity) without
need to cutoff higher Landau levels. The method is very general, and it allow us to study
transport phenomena beyond linear response of type-II superconductor like the Nernst
effect, Hall effect.

II. THERMAL FLUCTUATIONS IN THE TIME DEPENDENT GL

MODEL IN 2D

To describe fluctuation of order parameter in thin-film superconductors, one can
start with the GL free energy:

FGL = s′
∫

d2r
{

~
2

2m∗
|DΨ|2 + a|Ψ|2 + b′

2
|Ψ|4

}

, (1)

where s′ is the order parameter effective “thickness”. For simplicity we assume a =

αTmf
c (t−1), t ≡ T/Tmf

c , although this temperature dependence can be easily modified to
better describe the experimental coherence length. The “mean field” critical temperature

Tmf
c depends on UV cutoff, τc, of the “mesoscopic” or “phenomenological” GL description,

specified later. This temperature is higher than measured critical temperature Tc due to
strong thermal fluctuations on the mesoscopic scale.

The covariant derivatives are defined by D ≡ ∇ + i(2π/Φ0)A, where the vector
potential describes constant and homogeneous magnetic field A = (−By, 0) and Φ0 =
hc/e∗ is the flux quantum with e∗ = 2 |e|. The two scales, the coherence length ξ2 =
~
2/(2m∗αTc), and the penetration depth, λ2 = c2m∗b′/(4πe∗2αTc) define the GL ratio
κ ≡ λ/ξ, which is very large for HTSC. In this case of strongly type-II superconductors the
magnetization is by a factor κ2 smaller than the external field for magnetic field larger than
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the first critical field Hc1 (T ), so that we take B ≈ H. The electric current, J = Jn + Js,
includes both the Ohmic normal part

Jn = σnE, (2)

and the supercurrent

Js =
ie∗~

2m∗
(Ψ∗DΨ−ΨDΨ∗) . (3)

Since we are interested in a transport phenomenon, it is necessary to introduce a dynamics
of the order parameter. The simplest one is a gauge-invariant version of the “type A”
relaxational dynamics [7]. In the presence of thermal fluctuations, which on the mesoscopic
scale are represented by a complex white noise [8], it reads:

~
2γ′

2m∗
DτΨ = − 1

s′
δFGL

δΨ∗
+ ζ, (4)

where Dτ ≡ ∂/∂τ − i(e∗/~)Φ is the covariant time derivative, with Φ = −Ey being the
scalar electric potential describing the driving force in a purely dissipative dynamics.

Throughout most of the paper we use the coherence length ξ as a unit of length and
Hc2 = Φ0/2πξ

2 as a unit of the magnetic field. In analogy to the coherence length and
the penetration depth, one can define a characteristic time scale. In the superconducting
phase a typical “relaxation” time is τGL = γ′ξ2/2. It is convenient to use the following
unit of the electric field and the dimensionless field: EGL = Hc2ξ/cτGL, E = E/EGL. The
TDGL Eq. (4) written in dimensionless units reads

(

Dτ −
1

2
D2

)

ψ − 1− t

2
ψ + |ψ|2ψ = ζ, (5)

Here the covariant time derivative is Dτ = ∂
∂τ + iEy, the covariant derivatives are

defined by Dx = ∂
∂x − iby, Dy = ∂

∂y with b = B/Hc2, and t = T/Tmf
c . The “mean

field” critical temperature Tmf
c depends on UV cutoff. This temperature is higher than

measured critical temperature Tc due to strong thermal fluctuations on the mesoscopic
scale, and it will be renormalized later. The Langevin white-noise forces ζ are correlated

through
〈

ζ
∗

(r, τ)ζ(r′, τ ′)
〉

= 2ηtδ(r−r′)δ(τ −τ ′) with η =
√
2Gi2Dπ, where the Ginzburg

number is defined by Gi2D = 1
2
(8e2κ2ξ2Tmf

c /c2~2s′).
The dimensionless current density is Js = JGLjs where

js =
i

2
(ψ∗Dψ − ψDψ∗) . (6)

with JGL = cHc2/(2πξκ
2) being the unit of the current density. Consistently the con-

ductivity will be given in units of σGL = JGL/EGL = c2γ′/(4πκ2). This unit is close to
the normal state conductivity σn in dirty limit superconductors [9]. In general there is a
factor k of order one relating the two: σn = kσGL.
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III. THE GREEN’S FUNCTION OF TDGL IN GAUSSIAN

APPROXIMATION

As mentioned, the cubic term in the TDGL Eq. (5) will be treated in the self-
consistent Gaussian approximation [10] by replacing |ψ|2ψ with a linear one 2

〈

|ψ|2
〉

ψ
(

∂

∂τ
− 1

2
D2 − b

2

)

ψ + εψ = ζ, (7)

leading the “renormalized” value of the coefficient of the linear term:

ε = −ah + 2
〈

|ψ|2
〉

, (8)

where the constant is defined as ah = (1− t− b)/2.
The relaxational linearized TDGL equation with a Langevin noise, Eq. (7), is solved

using the retarded (G0 = 0 for τ < τ ′) Green function (GF) G0(r, τ ; r′, τ ′):

ψ(r, τ) =

∫

dr′
∫

dτ ′G0(r, τ ; r′, τ ′)ζ(r′, τ ′). (9)

The GF satisfies
{

∂

∂τ
− 1

2
D2 − b

2
+ ε

}

G0(r, r′, τ − τ ′) = δ(r − r′)δ(τ − τ ′), (10)

The Green function is a Gaussian

G0
(

r, r′, τ ′′
)

= exp

[

ib

2
X

(

y + y′
)

]

g
(

X,Y, τ ′′
)

, (11)

where

g
(

X,Y, τ ′′
)

= C(τ ′′)θ
(

τ ′′
)

exp

(

−X
2 + Y 2

2β

)

, (12)

with X = x − x′, Y = y − y′, τ ′′ = τ − τ ′. θ (τ ′′) is the Heaviside step function, C and β
are coefficients.

Substituting the Ansatz (11) into Eq. (10), one obtains following conditions:

ε− b

2
+

1

β
+
∂τC

C
= 0, (13)

∂τβ

β2
− 1

β2
+
b2

4
= 0. (14)

The Eq. (14) determines β, subject to an initial condition β(0) = 0,

β =
2

b
tanh

(

bτ ′′/2
)

, (15)

while Eq. (13) determines C:

C =
b

4π
exp

{

−
(

ε− b

2

)

τ ′′
}

sinh−1

(

bτ ′′

2

)

. (16)

The normalization is dictated by the delta function term in definition of the Green’s
function Eq. (10).
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The thermal average of the superfluid density (density of Cooper pairs) can be
expressed via the Green’s functions [10].

〈

|ψ(r, τ)|2
〉

= 2ηt

∫

dr′
∫

dτ ′′
∣

∣G0(r, r′, τ ′′)
∣

∣

=
ηtb

2π

∫

∞

τ ′′=τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)
. (17)

Substituting it into the “gap equation”, Eq. (8), the later takes a form

ε = −ah +
ηtb

π

∫

∞

τ ′′=τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)
, (18)

In order to absorb the divergence into a renormalized value arh of the coefficient ah,
it is convenient to make an

b

∫

∞

τ ′′=τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)
= −

∫

∞

0

dτ ′′ ln[sinh(bτ ′′)]
d

dτ ′′

[

exp {− (2ε− b) τ ′′}
cosh(bτ ′′)

]

− ln(bτc) (19)

Physically the renormalization corresponds to reduction in the critical temperature by the

thermal fluctuations from Tmf
c to Tc. The thermal fluctuations occur on the mesoscopic

scale. The critical temperature Tc is defined as

Tc = Tmf
c

[

1 +
2η′

π
ln(τc)

]

. (20)

Then Eq. (18) can be written as

ε = −arh −
η′t′

π

∫

∞

0

dτ ′′ ln[sinh(bτ ′′)]
d

dτ ′′

[

exp {− (2ε− b) τ ′′}
cosh(bτ ′′)

]

− ηt

π
ln(b), (21)

where arh = 1−b−t′

2
, t′ = T/Tc and η′ =

√
2G′i2Dπ, where G

′i2D = 1

2
(8e2κ2ξ2Tc/c

2
~
2s′),

(Tmf
c is now replaced by Tc after renormalization). The formula is cutoff independent.

IV. CONDUCTIVITY

IV.1. Theoretical calculation

The supercurrent density, defined by Eq. (6), can be expressed via the Green’s
functions as:

jsy(τ) = iηt

∫

dr′
∫

dτ ′G∗
(

r, r′, τ − τ ′
) ∂

∂y
G
(

r, r′, τ − τ ′
)

+ c.c. (22)

where G (r, r′, τ − τ ′) as the Green’s function of the linearized TDGL Eq. (5) in the
presence of the scalar potential. One finds correction to the Green’s function to linear
order in the electric field

G(r, r′, τ ′′) = G0(r, r′, τ ′′)− i

∫

dr1

∫

dτ ′1G
0(r, r1, τ

′

1)E(τ ′1)y1G0(r1, r
′, τ ′2), (23)
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where E(τ ′1) are the scalar electric potential and electric field in dimensionless units re-
spectively, τ ′1 = τ − τ1, and τ

′

2 = τ1 − τ ′.
The supercurrent density, defined by Eq. (6), can be expressed via the Green’s

functions as:

jsy = iηt
d

s

∫ 2π/d

0

dkz
2π

∫

r′,τ ′
G∗

kz

(

r− r′, τ − τ ′
)

× ∂

∂y
Gkz

(

r− r′, τ − τ ′
)

+ c.c. (24)

Performing the integrals, one obtains the conductivity expression σs = jsy/E which do
match the linear response conductivity expression derived in our previous work [4].

σs =
η′t′

4πsb

{

2−
(

1− 2ε

b

)[

ψ
(ε

b

)

− ψ

(

1

2
+
ε

b

)]}

, (25)

where ψ is the polygamma function.

IV.2. Comparison with experiment

Our results is compared to the experimental data on Bi2Sr2CaCu2O8+δ (Bi2212)
[11] with Tc = 81 K. In order to compare the fluctuation conductivity with experimental
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Fig. 1. Points are the resistivity for different magnetic fields of Bi2212 in Ref.
[11]. The solid line is the theoretical value of the resistivity with fitting parameters
(see text).

data in HTSC, one can not use the expression of relaxation time γ′ in Bardeen-Cooper-
Schrieffer theory which may be suitable for low-Tc superconductor. Instead of this, we use
the factor k as fitting parameter. The comparison is presented in Fig. 1. The resistivity

ρ =
1

σs + σn
, (26)

σs =
σn
k
σs, (27)

curve was fitted to Eq. (26) with the normal-state conductivity measured in Ref. [11] to be
σn = 1.42×104 (Ωcm)−1. The best fitting parameters are: Hc2(0) = 120 T (corresponding
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to ξ = 14 Å), κ = 47.8, s′ = 4.31 Å, k = 0.61 which give Gi2D = 4.5 × 10−4. Our the
resistivity results are in good agreement with experimental data on Bi2212

V. DISCUSSION AND CONCLUSION

We calculated the conductivity in a type-II superconductor in 2D under magnetic
field in the presence of strong thermal fluctuations on the mesoscopic scale in linear re-
sponse. Time dependent Ginzburg-Landau equations with thermal noise describing the
thermal fluctuations is used to investigate the vortex-liquid regime. The nonlinear term
in dynamics is treated using the renormalized Gaussian approximation. We obtained the
analytically explicit expressions for the conductivity σs and resistivity ρs including all
Landau levels, so that the approach is valid for arbitrary values of the magnetic field not
too close to Hc1 (T ).

The results were compared to the experimental data on HTSC. Our the resistivity
results are in good qualitative and even quantitative agreement with experimental data on
Bi2212. The thermal fluctuation was included in the present approach, so that our results
should be applicable for above and below Tc.
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