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Abstract. The physical characteristics of the solutions of Yang-Mills equations with
two point color charge sources and for topological indices n ≥ 2 are studied. The
space distributions of corresponding non-Abelian field strengths and energy density are
simulated and plotted. The dependence of the field strengths and the energy density on
topological indices is discussed. By using the same algorithm of solving, new solutions
for the Yang-Mills field due to a series of color point charges which lie in a straight
line are found and plotted explicitly. It is shown that the solutions for gauge potentials
and field energy have the form of vortex strings.

I. INTRODUCTION

For field equations of gauge theories there exist solutions, characterized by
nontrivial topological properties. They are called ”topological defects”, which
play an important role in particle physics and cosmology. Some examples are
monopoles (zero-dimensional defects), vortex strings (one-dimensional defects),
domain walls (two-dimensional defects). Since the systems of gauge field equa-
tions are coupled nonlinear differential equations of several field variables, the
solutions that have been found by analytical methods are only for some specific
cases of high symmetry properties. For example, the Wu-Yang monopole [1], ’t
Hooft-Polyakov monopole [2-4], instanton [5] solutions to the systems of Yang-
Mills and Yang-Mills-Higgs equations were found by virtue of using a spherically
symmetric ansatz. In general cases, for systems with lower symmetries, the inte-
gration of the corresponding field equations must be done numerically. Nowadays
different numerical methods are widely applied in order to discover more new so-
lutions, and a lot of important solutions have been presented in the literature
(see, for example, [6]-[9]).

Much attention have been paid also to the solutions to the systems of the
Yang-Mills fields coupled to external sources. Notable are the charge screening
solutions and the magnetic dipole solutions by Sikivie , Weiss [10], the type-I and
type-II solutions by Jackiw, Jacobs, Rebbi [11]. The solutions carry an gauge-
invariant topological index, identified with the magnetic charge. The solutions
to the Yang-Mills fields with axial-symmetric external sources and with higher
topological indices were constructed in Refs. [12],[13].

The problem of the Yang-Mills field equations with two color point charges
and higher topological indices (n ≥ 2) has been investigated in Ref. [14], where
the solutions to the field equations were found numerically by the relaxation
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method [15]. In the present paper, some physical characteristics of the solutions
obtained in [14] are studied in more details. Namely, the space distributions of
the non-Abelian ”electric”, ”magnetic” field and field energy density are simu-
lated and plotted for the cases n = 2 and n = 3. The results show explicitly the
dependence of the field and energy on the topological index (Sec. II). Further-
more, by the same algorithm for solving, as in Ref. [14], new solutions for the
case of a series of color point charges located in a straight line are exhibited (Sec.
III). In Section IV, Conclusion, a discussion is given about the obtained results.

II. PROPERTIES OF THE YANG-MILLS FIELDS WITH TWO
POINT COLOR CHARGE SOURCES

The SU(2) Yang-Mills equations in the presence of an external static source
is

DµF
µνa = jνa, (1)

where jνa is the non-Abelian color charge external static source current, and

Fµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (2)

is the non-Abelian field strength tensor of electrodynamics. In Eq. (2) g is the
gauge field coupling constant. Here we shall set g = 1, and the restoration can
be done by a rescaling with the coefficient 1/g for potentials and field strengths
and 1/g2 for Lagrangian and energy.

For the external sources with two point color charges the system possesses
axial symmetry. By applying the axial-symmetric ansatz for the Yang-Mills po-
tentials in Refs. [12], [13], the Lagrangian functional for the Yang-Mills equations
with two point color charges is reduced to the following form in cylindrical coor-
dinates [14]
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−QΦn(ρ = 0, z = a) +QΦn(ρ = 0, z = −a), (3)

In Eqs. (3) (ρ = 0, z = ±a) are the coordinates of two point sources, An(ρ, z),
Φn(ρ, z) are the field profiles, n is the topological index of the solution, which
defines which homotopy class the solution belongs to. The numerical solutions
are equilibrium gauge configurations for Lagrangian (3) and can be found by
the relaxation method [15]. The schema of discretization and minimization for
Lagrangian (3), as well as the results for the case n = 2 were presented in Ref.
[14]. Here we find the solutions for the case of n = 3, 4, and then calculate and
plot explicitly the corresponding electric, magnetic non-Abelian field strengths
and the energy density.

The expression for the non-Abelian electric field vector is

Eain = F a0i = −
[
δa1cos(nϕ) + δa2sin(nϕ)

]
∂iΦn
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Fig. 1. The 3D-plot of the non-Abelian electric field vector ~E1
n for n = 2

(left) and for n = 3 (right)

−
[
δa2cos(nϕ)− δa1sin(nϕ)eφΦn

] [
An −

n

ρ

]
. (4)

Substituting the obtained numerical solutions for the field profiles An(ρ, z),

Fig. 2. The field lines of the non-Abelian magnetic field vector compo-
nent B3

n(ρ, z) for n = 2 (left) and for n = 3 (right)

Φn(ρ, z), one has the numerical values for Eain . The 3D-plots of the electric field
vector (transformed to Cartesian coordinates) for the component with a = 1,
and two different indices n = 2 and n = 3 are given in Fig. 1, for illustration.
Hereafter the numerical value of the charge parameter is taken Q = 3.
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The non-Abelian magnetic field is given by

Bai
n =

1

2
εijkF ajk = δa3ε

ijk∂j (Anϕ̂k) , (5)

where ϕ̂ is the unit vector of coordinate ϕ. Note that the magnetic field vectors
lie in the (ρ, z)-plane, and it is better to observe the magnetic field lines in this
plane (see Fig. 2).

The plots of the field energy density

H = 2πρ

[
1

2
(∇Φn)2 + Φ2

n

] [
An −

n

ρ

]2
, (6)

for the cases n = 2 and n = 3 are presented in Fig. 3.

Fig. 3. The distributions of non-abelian fields energy density H n(ρ, z)
in plane (ρ, z), for n = 2 (left) and for n = 3 (right)

Figures 1, 2, 3 give a visual concept about the Yang-Mills field solutions,
and their dependence on topological index n. One can see that when the picture
of non-Abelian electric and magnetic field vectors changes slowly as increasing n,
the fields, and in particular, the field energy density have a remarkable change in
magnitude. For example, the magnitude of the energy maximum in the case of
n = 3 is smaller than that for n = 2 in about 20 times.

III. YANG-MILLS FIELD SOLUTIONS WITH SERIES OF POINT
COLOR CHARGES LOCATED IN A STRAIGHT LINE

By using the same algorithm of solving, the Yang-Mills field solutions for
the case of the sources which have the form of a series of point color charge are
obtained. We have changed the last two term in Lagrangian functional (3) into

−
∑
n

QΦn(ρ = 0, z = na), n = 0,±1,±2, ... (7)

and performed the calculation in FOTRAN programming. The obtained re-
sults for the gauge potentials and the corresponding energy density become z-
independent. The plots of the profile functions for gauge potentials Φn and An,
as functions of only coordinate ρ, are given in Figures 4, where parameter Q is
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taken, as before, to be Q = 3. The distributions of non-abelian fields energy
density H n(ρ, z) in plane (ρ, z) are shown in Fig. 5.

Fig. 4. The profile functions Φn(ρ) - red solid curve, An(ρ) - dashed
curve for n = 2 (left) and for n = 3 (right)

Fig. 5. The distributions of the non-abelian fields energy density
H n(ρ, z) H n(ρ, z) in plane (ρ, z), for n = 2 (left) and for n = 3 (right)

It is seen that the solutions for the gauge potentials and the energy den-
sity have the form of a vortex. The results of calculation for different values of
parameter Q and of index n show that the global extrema of the gauge potentials
and the energy density increase fast with Q and decrease with increasing n.

IV. CONCLUSION

We have investigated static solutions of the SU(2) Yang-Mills theory with
external sources which have the form of two point color charges and then a series
of point color charges. The numerical calculations are obtained by solving the
system of two coupled non-linear partial differential equations for profile func-
tions of the Yang-Mills potentials. For the case of two point color sources, the
dependence of non-Abelian gauge field strengths and energy density on topo-
logical indices and the parameter Q of color point charges have been discussed.
Some main conclusions are as follows: (i) The space distribution of of the non-
Abelian gauge electric and magnetic changes when topological index n varies. (ii)
The magnitude of maxima of field strengths and energy increases with varying
parameter Q fast, and decrease with increasing topological index n.
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By numerical solutions for the Yang-Mills solutions in the case of external
sources that have the form of a series of point color charges, the results show the
vortex form of Yang-Mills potentials and energy density. These solutions provide
an example of vortex string configuration, the extended object which plays an
important role in particle and cosmology (see, for example,[16]).
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