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MICROSCOPIC DESCRIPTION
OF NUCLEAR THERMODYNAMIC PROPERTIES
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Abstract. Thermodynamic properties of atomic nuclei at high excitation energy (hot nuclei) are
studied within two microscopic approaches. The latter are derived based on the solutions of the
Bardeen-Cooper-Schrieffer (BCS) and self-consistent quasiparticle random-phase approximation
(SCQRPA) at zero temperature embedded into the canonical and microcanonical ensembles. The
results obtained for 94Mo, 98Mo, 162Dy, and 172Yb nuclei are in good agreement with the recent
experimental data measured by the Oslo (Norway) group.

I. INTRODUCTION

The study of thermodynamic properties of hot nuclei has been an important topic in
nuclear physics. Thermodynamic properties of any system can be studied by using three
principal statistical ensembles, namely the grand canonical ensemble (GCE), canonical
ensemble (CE) and microcanonical ensemble (MCE). The GCE is an ensemble of iden-
tical systems in thermal equilibrium each of which exchanges their energies and particle
with the external heat bath. The CE describes the same systems as the GCE but they
exchange only their energies, whereas their particle numbers are fixed. The MCE consists
of thermally isolated systems with fixed energies and particle numbers. The GCE is of-
ten used in most theoretical approaches, for example, the conventional finite-temperature
BCS (FTBCS) theory [1] and/or finite-temperature Hartree-Fock-Bogoliubov theory [2].
While this theory describes very well thermodynamic properties of infinite systems such as
metal superconductors, it fails to describe the properties of finite systems such as atomic
nuclei, where the quantal and thermal fluctuations are significant. Most of theoretical
approaches to thermal pairing have been derived so far within the GCE in finite systems,
where no particle-number fluctuations are allowed. Therefore, the CE and MCE should
be used instead of the GCE to describe the thermodynamic properties of atomic nuclei.
Moreover, although the pairing problem can be solved exactly [3] and the exact eigenvalues
are usually embedded into the CE and MCE [4, 5]. This task is impracticable for particle
numbers N > 14 in the case of half-filled doubly-folded multilevel model with N = Ω (Ω
is number of single-particle levels). The purpose of this work is to construct an approach
based on the CE and MCE, which can offers results in good agreement with the exact
solutions for any value of the particle number, as well as the experimental data of realistic
nuclei.
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II. FORMALISM

The present paper considers the pairing Hamiltonian H =
∑

k εk(a
†
k+ak+a†k−ak−)−

G
∑

kk′ a
†
k+a†k−ak′−ak′+, where a†k and ak are respectively the creation and annihilation

operators of a particle (neutron or proton) on the kth orbitals and G is the pairing inter-
action parameter. The subscript k are labeled the single-particle states in the deformed
basis, whereas the subscripts −k denote the time-reversal ones. This Hamiltonian can
be diagonalized exactly by using the SU(2) algebra of angular momentum [3]. At finite
temperature T 6= 0 the exact diagonalization is done for all total seniority or number
of unpaired particles S, whose values are S = 0, 2, ..., N for systems with even particle
number N , and S = 0, 1, 3, ..., N for odd-N systems. The number nExact of exact eigen-
states for a system of N particles moving in Ω degenerate single-particle levels is given
as nExact =

∑
S CΩ

S × CΩ−S
Npair−S/2, where Cm

n = m!/[n!(m − n)!] and Npair = N/2 [6].
This number increases combinatorially with N . Therefore, the exact solution at T 6= 0
is impossible for systems with large particle number, for example, N > 14 for the half-
filled case (N = Ω), because the size of the matrix to be diagonalized is huge. Knowing
all the exact eigenvalues EExact

S and occupation numbers fS
k , one can construct the CE

partition function ZExact(β) =
∑

S dSexp(−βEExact
S ), where dS = 2S is the degeneracy

and β = 1/T is the invert of temperature. Based on this CE partition function, one can
calculate all the thermodynamic quantities such as total energy E , free energy F , entropy
S, and heat capacity C as F = −T lnZ(T ), S = −∂F

∂T , E = F + TS, C = ∂E
∂T .

The exact pairing gap is calculated as ∆Exact = [−G(E − 2
∑

k εkfk + G
∑

k f2
k )]1/2, where

fk =
∑

S fS
k dSexp(−βEExact

S )/ZExact [5].

II.1. Canonical ensemble of the BCS with Lipkin-Nogami particle-number pro-
jection (CE-LNBCS)

The CE-LNBCS is derived based on the solutions of the BCS + Lipkin-Nogami
particle-number projection (PNP) at T = 0 [7] for each total seniority S. The LNBCS
equations at T = 0 for each total seniority S are given as

∆LNBCS(kS) = G
∑
k 6=kS

ukvk, N = 2
∑
k 6=kS

v2
k + S , (1)

where

u2
k 6=kS

=
1
2

(
1 +

εk −Gv2
k − λ(kS)
Ek

)
, v2

k 6=kS
=

1
2

(
1−

εk −Gv2
k − λ(kS)
Ek

)
, (2)

Ek 6=kS
=

√
[εk −Gv2

k − λ(kS)]2 + [∆LNBCS(kS)]2, λ(kS) = λ1(kS) + 2λ2(kS)(N + 1) ,

λ2(kS) =
G

4

∑
k 6=kS

u3
kvk

∑
k′ 6=k′

S
uk′v3

k′ −
∑

k 6=kS
u4

kv
4
k

(
∑

k 6=kS
u2

kv
2
k)

2 −
∑

k 6=kS
u4

kv
4
k

,

with kS denoting the quantum number of unpaired particles appeared when the pairs
are broken (S 6= 0). The single-particle levels with k = kS (blocked levels) always
have the occupation numbers of 1/2. Solving the systems of Eqs. (1)-(2), one ob-
tains the pairing gaps ∆LNBCS

iS
, quasiparticle energies Ek, and Bogoliubov coefficients
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uk and vk corresponding to each position of unpaired particles on the blocked levels kS

at each total seniority S. The LNBCS energies (eigenvalues) are then given as ELNBCS
iS

=

2
∑

k 6=kS
εkv

2
k +

∑
kS

εkS
− [∆LNBCS(kS)]2

G −G
∑

k 6=kS
v4
k−4λ2(kS)

∑
k 6=kS

u2
kv

2
k. As the result,

one can construct the partition function of the so-called CE-LNBCS having the form as
ZLNBCS(β) =

∑
S dS

∑nLNBCS
iS=1 e

−βELNBCS
iS . Based on this partition function, all the ther-

modynamic quantities are then calculated in the same way as the exact case mentioned
above. The CE-LNBCS pairing gap is obtained by averaging the seniority-dependent gaps
∆LNBCS

iS
at T = 0 in the CE as ∆CE−LNBCS = 1

ZLNBCS

∑
S dS

∑nLNBCS
iS

∆LNBCS
iS

e
−βELNBCS

iS .

II.2. Canonical ensemble of the Lipkin-Nogami selfconsistent quasiparticle
random-phase approximation (CE-LNSCQRPA)

Within the LNBCS at T = 0, only the lowest eigenstates can be obtained, e.g.,
the ground-state energy at S = 0. The number of LNBCS eigenstates obtained in this
case is equal to nLNBCS =

∑
S CΩ

S , which is much smaller than nExact. The CE of
these lowest eigenstates is therefore comparable with the exact one only in the region
of low T . At higher T , one needs to include not only the ground state but also excited
states into the CE. This can be resolved by means of the self-consistent quasiparticle
random-phase approximation with Lipkin-Nogami PNP (LNSCQRPA) [8]. The LNSC-
QRPA includes the ground-state and screening correlations, which are neglected within
the conventional BCS and quasiparticle RPA. These correlations improve the agreement
between the energies of ground state and low-lying excited states obtained within the
LNSCQRPA and the corresponding exact results for the doubly-folded multilevel pair-
ing model. The formalism of the LNSCQRPA was presented in details in [8], so we do
not repeat it here. The total number of eigenstates obtained within the LNSCQRPA is
nLNSCQRPA =

∑
S CΩ

S × (Ω−S) > nLNBCS because of the presence of QRPA excited states
but it is still much smaller than nExact. This is the most important feature of the present
method, which tremendously reduces the computing time in numerical calculations for
heavy nuclei. The thermodynamic quantities are obtained within the CE-LNSCQRPA in
the same way as that for the CE-LNBCS, namely from the CE-LNSCQRPA partition func-
tion ZLNSCQRPA(β) =

∑
iS

dSexp[−βELNSCQRPA
iS

], where ELNSCQRPA
iS

are the eigenvalues
obtained by solving the LNSCQRPA equations for each total seniority S.

II.3. MCE-LNBCS and MCE-LNSCQRPA

Within the MCE, we use the eigenvalues ELNBCS
iS

and ELNSCQRPA
iS

to calculate the
MCE entropy directly from the Boltzmanns definition S(E) = lnW (E), where W (E) =
ρ(E)δE is the number of accessible states within the energy interval (E , E + δE) with
ρ(E) being the density of states. Knowing the MCE entropy, one can calculate the MCE
temperature as T = [∂S(E)/∂E ]−1. The corresponding approaches, which embed the
LNBCS and LNSCQRPA eigenvalues at T = 0 into the MCE, are called the MCE-LNBCS
and MCE-LNSCQRPA, respectively.
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Fig. 1. Pairing gaps ∆, total energy E , and heat capacity E as functions of T
obtained within the multilevel model for N = Ω = 10 with G = 1 MeV. The
thick dashed, thick solid, and thin solid lines respectively denote the CE-LNBCS,
CE-LNSCQRPA and exact CE results, whereas the thin dashed lines stand for
the conventional FTBCS or the so-called GCE-BCS.

II.4. Level density

Within the CE, the level density is calculated by using the invert of Laplace trans-
formation of the partition function with the saddle point approximation [9]. It is ap-
proximated as ρ(E) ≈ eS(E)[−2π∂E/∂β]−1/2, where S(E) and E are the CE entropy and
excitation energy of the systems, respectively. Within the MCE, the level density is de-
fined based on the inverse relation of Boltzmann definition for MCE entropy, namely
ρ(E) = eS(E)/∂E .

III. NUMERICAL RESULTS AND DISCUSSIONS

The numerical calculations are carried out within a multilevel pairing model, which
consists of Ω doubly-folded equidistant levels with the single-particle energies chosen as
εk = k − (Ω + 1)/2 MeV, as well as several realistic nuclei such as 94,98Mo, 162Dy, and
172Yb. For the latter, we employ the axially deformed Woods-Saxon single-particle spectra
including spin-orbit and Coulomb interaction, whose parameters are chosen to be the same
as in Refs. [6, 10]. The pairing interaction parameter G for the model case is chosen to
be G = 1 MeV, whereas for realistic nuclei it is adjusted so that the pairing gap obtained
within the LNBCS at T = 0 and S = 0 fits the experimental odd-even mass difference.

Shown in Fig. 1 are the pairing gaps ∆, total energies E , and heat capacities C ob-
tained within the GCE-BCS, CE-LNBCS, CE-LNSCQRPA versus the exact CE of the
multilevel model with N = Ω = 10 and G = 1 MeV. The figure clearly shows that the
CE-LNSCQRPA results (thick solid lines) nearly coincide with the exact ones (thin solid
lines) for all thermodynamic quantities under consideration. The results obtained within
the CE-LNBCS (thick dashed lines) are a bit off from the exact ones but, as compared
to the predictions by the GCE-BCS (thin dashed lines), they still offer a much better
agreement with the exact solutions. Figure 2 depicts the CE pairing gaps ∆, CE heat ca-
pacities C, and MCE entropies S obtained within the CE(MCE)-LNBCS and CE(MCE)-
LNSCQRPA versus the experimental data for 94,98Mo, 162Dy, and 172Yb nuclei. This Fig.
2 shows that the heat capacities obtained within the CE-LNSCQRPA (thick solid lines)
as well as the MCE-LNSCQRPA entropies (triangles) fit well the experimental data for
all nuclei under consideration, wheres those obtained within the CE (MCE)-LNBCS are
a bit far from the experimental ones, especially at high T and high excitation energy
E∗. The most interesting feature is that neither the pairing gaps obtained within the
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Fig. 2. The CE pairing gaps ∆ and heat capacity C as functions of T and MCE
entropy S as function of E∗ for 94,98Mo, 162Dy, and 172Yb nuclei. In (a), (d), (g),
and (j), the solid and dash-dotted lines denote the pairing gaps for protons and
neutrons, respectively, whereas the thin and thick lines respectively correspond
to the CE-LNBCS and CE-LNSCQRPA results. In (b), (e), (h), and (k), the
thin and thick solid lines stand for the CE-LNBCS and CE-LNSCQRPA results,
whereas the thick dashed lines depict the experimental results taken from Refs.
[10, 11], respectively. Shown in (c), (f), (i), and (m) are the MCE entropies
obtained within the MCE-LNBCS (squares) and MCE-LNSCQRPA (triangles),
and extracted from experimental data (circles with error bars).

CE-LNBCS nor those obtained within the CE-LNSCQRPA for both model and realistic
cases collapse at the critical temperature TC as predicted by the GCE-BCS, but they
all monotonously decrease with increasing T . Consequently, the sharp peak in the heat
capacity, which is the signature of superfluid-normal (SN) phase transition, is smoothed
out within these approaches. The neutron gap obtained within the CE-LNSCQRPA in
Fig. 2(a) (thick dash-dotted lines) is close to the experimental three-point gap extracted
from the finite temperature odd-even mass formula [10]. This feature implies that the
CE-LNBCS and CE-LNSCQRPA include the effects of quantal and thermal fluctuations,
which are neglected in the GCE-BCS. The level densities obtained within the CE(MCE)-
LNSCQRPA are plotted in Fig. 3 as function of E∗ in comparison with the experimental
data [11]. Figure 3 shows that the level densities obtained within the MCE-LNSCQRPA
offer the best fit to the experimental data for all nuclei. The results obtained within the
CE-LNSCQRPA are closer to the experimental data for 94,98Mo at E∗ ≤ 4 MeV, whereas
at higher E∗ the MCE-LNSCQRPA offers a better performance. The discrepancy be-
tween the CE-LNSCQRPA and experimental results seen in Fig. 3 (c) and (d) seems to
be larger and increases with E∗ for 162Dy and 172Yb. This might be due to by the absence
of the contribution of higher multipolarities such as dipole, quadrupole, etc., which are
not included in the present study and may be important for these two rare-earth nuclei.
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Fig. 3. Level densities as functions of E∗ obtained within the CE-LNSCQRPA
(solid line) and MCE-LNSCQRPA (triangles) versus the experimental data (circles
with error bars) for 94Mo (a), 98Mo (b), 162Dy (c), and 172Yb (d).

IV. CONCLUSION

The present paper proposes two approximations based on the solutions of the
LNBCS and LNSCQRPA at T = 0 embedded into the CE and MCE. The proposed
approaches are tested within the multilevel pairing model as well as several realistic nuclei
such as 94,98Mo, 162Dy, and 172Yb. The results obtained for the pairing gap, total energy,
heat capacity, entropy, and level density show that the CE(MCE)-LNSCQRPA describe
quite well the recent experimental data by the Oslo group [10, 11].
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