
Proc. Natl. Conf. Theor. Phys. 36 (2011), pp. 23-39

CP VIOLATION

DO THI HUONG
Institute of Physics, VAST, P. O. Box 429, Bo Ho, Hanoi 10000, Vietnam

Abstract. We study the CP violation in the electroweak decay.We show how the CP violation

of asymmetry depends on the weak phase and strong phase of form factors. In framework of

the resonance effective theory of QCD with external tensor source,the direct CP violation in the

semileptonic decay is considered. The maximal value of the CP asymmetry is approximately twenty

percents at s = M
2
ρ .

I. INTRODUCTION

CPT theorem is one of the most important and generally valid theorems in quantum
field theory. All interactions are invariant under combined C, P and T. It implies particle
and anti-particle have equal masses and lifetimes. However, CP violation was found by
Cronic and Fitch in 1964 ([2])in decay of neutral kaon. The discovery of CP violation
implies that there is the difference between particle and anti-particle.

In the Standard Model (SM), all the observable which violate CP depend essentially
on one parameter (the phase of the Cabibbo-Kobayashi- Maskawa matrix). The measure-
ments of CP violation in B and K decays are consistent with the prediction of CKM
mechanism of the standard model predicts. If quarks violate CP why not CP violation
with leptons. On the other hand,the CP violation that we see in outer space is much larger
than the CP violation which we see with quarks. In the SM, the lepton family number
and the total lepton number are strictly conserved. However, neutrino experiments have
established the existence of the lepton flavor violation (LFV) in the neutral lepton sector.
Hence, we expect this phenomenon can occurs in the charged lepton sector even decays
involving charged LFV have not yet been observed. Many extensions of the SM predict
measurable rates for LFV processes with the branching ratios for charged lepton LFV are
much suppressed, specially LFV decays of charged leptons occur just below the current
experimental bounds given in the Belle experiment [13].

The search for LFV decays of the τ charged lepton is particularly interesting since
LFV sources involving the third generation can decay into particles belonging to the first
and the second ones. Moreover, the τ lepton is the only known lepton massive enough to
decay into hadronic; its semileptonic decay is an ideal tool for studying strong interaction
effects in very clean conditions. Thus, in the framework of some popular models beyond
the SM, studying the semileptonic τ decays related to LFV and CP violation is very in-
teresting and needed. In fact, the effects of new physics on LFV semileptonic τ decays
[14]. They have shown that these decay processes are very sensitive to the new physics ef-
fects and the constraint on the free parameters of some beyond SM models have obtained.
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Furthermore, the BELLE and BABAR collaborations have published many reported sen-
sitivity [15]recently that are more competitive with the LFV τ leptonic decays.On the
other hand, the coupling constants of τ lepton with the new particles are expected to be
larger than these of muon and electron, the people not only expected to search for LFV
in τ decay but also expected to search for CP violation in τ decay. The searches for CP
violation in τ lepton decays have been proposed in [16],as the observation of non-zero
CP asymmetry in the τ decay into neutrino modes would be a clear and unambiguous
signature for new physics.

At the low energy, interactions of light quarks with gluon are strong. Therefore,
semileptonic τ decay processes allow us to study the properties of bilinear QCD currents,
and provide relevant information on dynamics of the resonances entering into the processes.
The hadronization of these currents involves the strong interaction at the low energy and,
therefore, nonperturbative features of QCD have to be implemented properly into their
evaluation. The effective theory frame work has a long story of successful achievements
in this task. One of successful theory is the Chiral Perturbation Theory (χPT )[4]. At
the energies E ∼ Mρ, (Mρ is the mass of the ρ(770), the lightest hadron resonance), the
resonance meson are active degrees of freedom that can not be integrated out by χPT, and
they have to be properly included into the relevant Lagrangian [5]. The procedure is ruled
by the chiral symmetry under SU(3)L× SU(3)R, that drives the interaction of Goldstone
bosons (the lightest octet of pseudoscalar mesons), and the SU(3)V assignments of the
resonance multiples. Its systematic arrangement has been done in [6] as the Resonance
Chiral theory (RχT ). Basing on the context of (χPT ) and (RχT ), they accounted for the
set of the form factors for semileptonic decays of the Dirac bilinear ψγµψ,ψγµγ5ψ,ψψ and

ψiγ5ψ. In particular, no systematic introduction of the tensor Dirac bilinear ψσµνψ has
been studied. Our calculations can be parameterized by introducing form factors base on
the context of (χPT ) and (RχT ).

The article is organized as follows: In Sec. II we study the effective theory base on
the context of (χPT ) and (RχT ) with tensor source. The bilinear currents form factors
at the tree level in τ+ → µ+PP with PP = π+π−, πoπo, ηη, η′η′, ηη′,KoKo,K+K− are
given in Sec. II. The Sec. III is devoted the analytical results of the lepton flavor violation
in τ+ →Pµ+, V µ+, PPµ+ processes. It includes the information of CP odd and T odd
quantities. The numerical results are given by consider the special mode τ → π+π−µ+ in
sec. IV. Finally, in sec. V, we sketch our conclusions.

II. THE CHIRAL PERTURBATION THEORY WITH TENSOR SOURCE

AND RESONANCE EFFECTIVE THEORY

The general formalism to hadronize the bilinear quark currents was studied in [7]
by using the (χPT ) and (RχT ). Basing on these theories, there is no way to calculate
the form factor for tensor quark Dirac current. As mentioned, the physics beyond SM can
provide the tensor quark Dirac currents. Hence, studying the chiral perturbation theory
with tensor source is needed. The chiral Lagrangian with the external tensor source is
given as follows
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LQCD = LoQCD + q (γµ(v
µ + γ5a

µ)− (s− ipγ5)) q + qσµνtµνq. (1)

where vµ, aµ, s, p and tµν are the vector, axial-vector, scalar, pseudo-scalar and tensor
external currents, respectively. They are matrices in the flavor space and extended as

follows: vµ = λi
2 v

i
µ, aµ = λi

2 a
i
µ, s = λis

i ,p = λip
i and t

µν
= λi

2 t
i
µν . L

o
QCD is the massless

QCD Lagrangian. From Lagrangian given in 1, we can construct the QCD generating
function as follows

eiZQCD[v,a,s,p,tµν ] =

∫

[DGµ][Dq][Dq]e
i
∫
d4xLQCD[q,q,vµ,aµ,s,p,tµν ] (2)

The very low-energy strong interaction in the light quark sector is known to be ruled out
by the SU(3)L × SU(3)R chiral symmetry of massless QCD implemented in χPT . The
leading O(p2), the only external scalar and pseudo-scalar are switched on, the Lagrangian
is

Lχ2 =
F 2

4
〈uµuµ + χ+〉 , (3)

where

uµ = i
[
u+(∂µ − irµ)u− u(∂µ − ilµ)u+

]
,

χ± = u+χu+ ± uχ+u, χ = 2Bo(s+ ip), (4)

and <> is short for a trace in the flavor space.The lightest U(3) notet of pseudoscalar
mesons:

Φ =
1√
2

8∑

a=0

λaϕa

=






1√
2
πo + 1√

6
η8 +

1√
3
ηo π+ K+

π− − 1√
2
πo + 1√

6
η8 +

1√
3
ηo Ko

K− Ko − 2√
6
η8 +

1√
3
ηo




 (5)

is realized nonlinearly into the unitary matrix in the flavor space

u(ϕ) = exp

[

i
Φ√
2F

]

, (6)

that transforms as

u(ϕ)→ gRu(ϕ)h(g, ϕ)
+ = h(g, ϕ)u(ϕ)g+

L (7)

with g ≡ (gL, gR) ∈ SU(3)L × SU(3)R and h(g, ϕ) ∈ SU(3)V , the external Hermitian
matrix fields rµ, lµ, s and p promote the global SU(3)L × SU(3)R symmetry to a local
one. Interactions with electroweak bosons can be accommodated through the vector vµ =
(rµ + lµ)/2 fields and axial-vector aµ = (rµ − lµ)/2 fields. The scalar field s incorporates
explicit chiral symmetry breaking through the quark masses s = M + ..., with M =
diag(mu,md,ms) and, finally, F = Fπ ∼= 92.4 GeV is the pion decay constant and BoF

2 =
−
〈
ψψ

〉

o
in the chiral limit.

On the other hand, if we consider the resonances participate in the dynamic of the
process, such as τ → PPµ; τ → V µ, it is necessary to include the resonance as the active
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degree of freedom into Lagrangian and, therefore, to consider the RχT. As concluded in
[18], the contribution of tensor resonance fields exchange to the low energy constants of
O(p4) is much suppressed. Because of the strong coupling of the vector mesons to pseudo-
scalars and the comparatively low masses of the lowest-lying vector meson nonet, the chiral
vector meson can be dominated. Hence, it is a good approximate to consider the theory
with only including the role of vector resonance. In [6], the simplest couplings among the
lightest notet of pseudoscalar mesons with the resonances were introduced by using the
antisymmetric tensor formulation to describe the the vector and axial-vector resonance.
The notet of resonance fields Vµν is given by

Vµν =






ρo√
2
+ ω8√

6
+ ω1√

3
ρ+ K∗+

ρ− − ρo√
2
+ ω8√

6
+ ω1√

3
K∗o

K∗− K
∗o −2ω8√

6
+ ω1√

3




 (8)

In the antisymmetric tensor formulation, the kinematic term for the spin-1 resonances in
Lagrangian read

LVkin = −
1

2

〈

∇λVλµ∇νV
νµ
〉

+
M2

V

4
〈VνµV νµ〉 (9)

with MV is mass of the notet vector. The lowest order interaction Lagrangian is given as

LV(2) =
FV

2
√
2

〈
Vµνf

µν
+

〉
+ i

GV√
2
〈Vµνuµuν〉 (10)

where

∇µX ≡ ∂µX + [Γ, X],

Γµ =
1

2

[
u+(∂µ − irµ)u+ u(∂µ − ilµ)u+

]
,

fµν+ = uF µν
L u+ + u+Fµν

R u, (11)

and FL, FR are the field strength tensor associated with the external right and left fields.
Let us remaind that at the next to leading orderO(p4), the external tensor source is

started to switch on. The Lagrangian containing the external tensor source and including
resonances files given as follows

LχPT4 = Λ1 < tµν+ f+µν > −iΛ2 < tµν+ uµuν >

+ Λ3 < tµν+ t+µν > +Λ4 < tµν+ >2 +
√
2FV TMV < Vµνt

µν
+ > (12)

with tµν± are defined as

tµν± = u†tµνu† ± utµν†u. (13)

The relevant resonance chiral theory with three flavors and including the tensor current
source is described by the Lagrangian given as follows

LRχT = Lχ2 + LVkin + LV2 + LχPT4 , (14)

From Eq.(2), the hadronisation of the bilinear quark currents is studied by taking the
partial derivatives of the functional action with respect to the external auxiliary fields.
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The detailed results are given as

V i
µ = qγµ

λi

2
q =

∂LRχT
∂vµi

|j=0, Aiµ = qγµγ5
λi

2
q =

∂LRχT
∂aµi

|j=0,

Si = −qλiq = LRχT
∂si

|j=0, P i = qiγ5λ
iq =

LRχT
∂pi

|j=0,

Tµνi = qσµνλiq =
∂LRχT
∂tµν

+
∂LRχT
∂tµν†

(15)

In order to hadronise the final states in τ+ → µ+PP ; τ+ → µ+P and τ+ → µ+V , these
expressions can be written as:

V i
µ =

F 2

4

〈
λi

(
uuµu

+ − u+uµu
)〉
− FV

2
√
2

〈
λi∂ν

(
u+Vνµu+ uVνµu

+
)〉
|j=0. (16)

Aiµ =
F 2

4

〈
λi

(
uuµu

+ + u+uµu
)〉
|j=0, (17)

Si = −LRχT
∂si

|j=0 =
1

2
BoF

2
〈
λi(u+u+ + uu)

〉
|j=0, (18)

P i = qiγ5λ
iq =

LRχT
∂pi

|j=0 =
i

2
BoF

2
〈
λi(u+u+ − uu)

〉
|j=0. (19)

Tµνi = −iΛ2

〈

λi(P
Lµνρu†uρuλu

† + PRµνρuuρuλu)
〉

+
√
2FV TMV

〈

λi(P
Lµνρu†Vρλu

† + PRµνρuVρλu)
〉

|j=0 (20)

with J indicates the external currents and PLµνρ, PRµνρ are given in [10]. We will use
the Eqs.(16), (17), (18)and (19), (20) as the powerful tool to evaluate the form factor in
τ+ → Pµ+, τ+ → PPµ+, τ+ → V µ+ semileptonic decay.
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III. CONSIDERING THE τ+ → P1P2µ+ PROCESSES

Let us start from the effective Lagrangian.

Leff = −4GF√
2
[MτARτσ

µνPLµFµν +MτALτσ
µνPRµFµν

+
∑

i=u,d,s

gi1(τPLµ)(qiPLqi) +
∑

i=u,d,s

gi2(τPLµ)(qiPRqi)

+
∑

i=u,d,s

gi3(τPRµ)(qiPRqi) +
∑

i=u,d,s

gi4(τPRµ)(qiPLqi)

+
∑

i=u,d,s

gi5(τγ
µPRµ)(qiγ

µPRqi) +
∑

i=u,d,s

gi6(τγ
µPLµ)(qiγ

µPLqi)

+
∑

i=u,d,s

gi7(τγ
µPRµ)(qiγ

µPLqi) +
∑

i=u,d,s

gi8(τγ
µPLµ)(qiγ

µPRqi)

+
∑

i=u,d,s

gi9(τσ
µνPRµ)(qiσµνqi) +

∑

i=u,d,s

gi10(τσ
µνPLµ)(qiσµνqi) +H.c.





(21)

There is no appearance of the the axial-vector and pseudoscalar quark currents on the
τ+ → P1P2µ

+ processes, the total amplitude is obtained as

Mτ+→P1P2µ+ =
4GF√

2




∑

i=u,d,s

gi3 + gi4
2

(vµPLvτ )(uqiuqi) +
∑

i=u,d,s

gi1 + gi2
2

(vµPRvτ )(uqiuqi)

+
∑

i=u,d,s

gi5 + gi7
2

(vµPLγαvτ )(uqiγ
αuqi) +

∑

i=u,d,s

gi6 + gi8
2

(vµPRγαvτ )(uqiγ
αuqi)

+
∑

i=u,d,s

gi9(vµPLσαβvτ )(uqiσ
αβuqi) +

∑

i=u,d,s

gi10(vµPLσαβvτ )(uqiσ
αβuqi)

+ iMτvµσαβq
β(ARPR +ALPL)vτ

e2

q2

∑

i=u,d,s

Qiuqiγ
αuqi



 (22)

After parameterizing by introducing the form factor, the total amplitude can be described
as

Mτ+→P1P2µ+ =
4GF√

2
(D1LvµPLvτ +D1RvµPRvτ

+
1

q2
(vµiMτσαβq

β(D2LPL +D2RPR)vτ )(p
α
1 − pα2 )

+ D3L(vµPLγαvτ )(p
α
1 − pα2 ) +D3R(vµPRγαvτ )(p

α
1 − pα2 )

+ (vµ(D4LPL +D4RPR)σαβvτ )(p
α
1 p

β
2 − p

β
1p

α
2 )
)

(23)
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with p1,p2 are the four momentums of the P1, P2 mesons, respectively and theDiL functions
are given as

D1L =
1

2
(Cg3

P1P2
+ Cg4

P1P2
); D1R =

1

2
(Cg1

P1P2
+ Cg2

P1P2
),

D2L = e2ALF
P1P2 ; D2R = e2ARF

P1P2 ,

D3L =
∑

i=u,d,s

gi3 + gi5
2

FP1P2

qi
D3R =

∑

i=u,d,s

gi4 + gi6
2

FP1P2

qi
,

D4L = CTg9
P1P2

; D4L = CTg10
P1P2

(24)

with the Cgi
P1P2

functions are given in ([1]) but the Y charges are replaced by the gi charges.

In order to calculate the dB and dR, we have to define the Lorentz frame (frame 4) for
the three body decays [9]. This frame is the rest frame of τ+ and the z direction is the
µ+ moving direction. The decay plane is the xz plane where the x positive direction is
determined by the x component of the P1 mesons momentum with the larger energy.We
also define the energy variables x1 = 2E1/M and x2 = 2E2/M , with E1, E2 are the energy
of the P1, P2 mesons, respectively. On the basis of these energy variables and the rotational
angles (θ, φ, ψ), we obtain the branching and spin dependence terms as follows

dBτ+→P1P2µ+

=
1

Γ

M5
τG

2
F

256π5
dx1dx2d cos θdφdψX

(25)

where si, ci are presented sin i, cos i with (i = θ, φ, ψ), respectively. The X,Y, Z functions
are given as

X =
1

2

[(
|D′1L|2 + |D′1R|2

)
α1 +

(
|D2L|2 + |D2R|2

)
α2

+
(
|D3L|2 + |D3R|2

)
α3 +

(
|D′4L|2 + |D′4R|2

)
α4

+
(
D′∗4LD3L +D′∗4RD3R +H.c

)
α5 +

(
D′∗4LD2L +D′∗4RD2R +H.c

)
α6

+
(
D′∗4LD

′
1L +D′∗4RD

′
1R +H.c

)
α7 + (D∗3RD2R +D∗3LD2L +H.c)α1

+ (D∗2RD
′
1R +D∗2LD

′
1L +H.c)α8 − (D∗3RD

′
1R +D∗3LD

′
1L +H.c)α8

]
(26)

where D′1L,R =
D1L,R

Mτ
, D′4L,R = MτD4L,R and the α1−8, are given in the appendix (A).

There are eight classes of terms in our results which arise from: (i)the four fermion
coupling constants (|D′1L,R|2, |D3L,R|2, |D′4L,R|2), (ii) the photon-penguin coupling con-

stants (|D2L,R|2), (iii) the interferences between the scalar type four fermion couplings
and photon-penguin couplings (D∗2L,RD

′
1LR), (vi)the interferences between the vector type

four fermion couplings and photon-penguin couplings(D∗2L,RD3L,R), (v) the interferences

between the scalar type and vector type four fermion couplings (D∗3L,RD
′
1L,R), (vi) the in-

terferences between the scalar type and tensor type four fermion couplings (D′∗4L,RD
′
1L,R),

(vii) the interferences between the tensor type four fermion couplings and photon-penguin
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couplings (D′∗4L,RD
′
2L,R), (viii) the interferences between the tensor type and the vector

type four fermion couplings (D′∗4L,RD
′
3L,R).

Let us start from analyzing the DiL,R functions as follows

D′1L,R ∝ Y qs
1L,RX

ls
1L,Rfs ≡W s

1L,Rfs; D2,3L,R ∝ Y qv
2,3L,RX

lv
2,3,L,Rfv ≡W v

2,3L,Rfv

D′4L,R ∝ Y qt
4L,RX

lt
4L,Rft ≡W t

4,L,Rft (27)

where Y qa
iL,R, i = 1...4, a = s, v, t are the complex weak coupling constants of scalar, vector

and tensor quark currents with scalar, vector and tensor fields in beyond SM andX la
iL,R, i =

1...4, a = s, v, t are these of lepton currents. The product of Y qa
iL,R and X la

iL,R coupling
constants are denoted as follows

W a
i,L,R = Y qa

iL,RX
la
iL,R = |W a

i,L,R|eiφa (28)

and fa, a = s, v, t are the scalar, vector and tensor form factors, respectively. In general
case,the form factor can be written as:

fv = |fv|eiδ
v

; fs = |fs|eiδ
s

; ft = |ft|eiδ
t

(29)

where δa, a = s, v, t are strong phases associated with the hadronic form factors of scalar,
vector, tensor quark currents, respectively. In language of strong phase, the interference
terms can be written as

D∗iL,RDjL,R +H.c ∝

∝ 2|W a
i,L,R||W b

j,L,R||fa||fb|






cos(φb − φa) cos(δb − δa)− sin(φb − φa) sin(δb − δa)

︸ ︷︷ ︸

CPodd







(30)

and

D∗iL,RDjL,R −H.c ∝

∝ 2i|W a
i,L,R||W b

j,L,R||fa||fb|






cos(φb − φa) sin(δb − δa) + sin(φb − φa) cos(δb − δa)

︸ ︷︷ ︸

CPodd







(31)

Because of invariance of the strong interaction under charge conjugation, the differences
between the strong phase (δa − δb) is uncharged under CP conjugation. However, the
phases of weak coupling constants change sign under CP conjugation. It leads to the
underbrace terms in Eqs. (30) and (31) are CP odd terms. Hence, the branching can be
separated into the CP odd and CP even part, specially the CP odd part depends on the
imaginary part of the interference between two types of four fermion couplings, while that
even part depends on the real part of these.
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IV. CONSIDERING τ+ → π+π−µ+ PROCESS

Before considering detail τ+ → π+π−µ+ process, let us consider the pion invariant
mass available defined by s = (pµ1 + p

µ
2 )

2, the values of this available are shown in the Fig.
(1). The small values (s < 4m2

π) are nearly the edge of x1 + x2 ' 1 of the kinematical
allowed region. In this region, the chiral perturbation theory is very useful to describe the
form factor. Hence, in the next considering, we are going to consider the τ+ → π+π−µ+

process by using the chiral perturbation theory.

0.4784

0.8784

1.2784

1.6784

2.0784

2.4784

0.5 0.6 0.7 0.8 0.9
0.0

0.2
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0.6

0.8

1.0

x1

x2

Fig. 1. The values of the s available are normalized by constants in GeV unit.

Base on the previous consideration, the total contribution to the τ+ → π+π−µ+

process depends on by the photon penguin coupling and scalar, vector, tensor currents.
Because, the vector contribution is expected to be much smaller than that of the photon
penguin coupling[7], we will ignore the vector contribution and keep all of the other ones.

The pion scalar form factor at the next to leading order was performed in [4] with
the result as follows

fχPTs (s) = fs(0)

(

1 +
1

16π2F 2
(l4 −

13

12
)s+∆o,2 +O(E4)

)

fs(0) = m2
π

(

1− m2
π

32π2F 2
(l3 − 1) +O(m4

π)

)

(32)

with

∆o,2 =
1

2F 2

(

(2s−m2
π)J(s) +

s

96π2

)

J(s) =
1

16π2

[

σ ln
σ − 1

σ + 1
+ 2

]

(33)

l3, l4 are two low-energy constants which are constrained in [4] l3 = 2.9±2.4, l4 = 4.3±0.9.
At the one loop correction, fs(0) = (0.99±0.02)m2

π is very close to the tree result f
tree
s = 1
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In order to present the numerical results, we would like to remaind that the expres-
sions of D′sL,R are written as follows

D′sL,R =
W s
L,R

Mτ
fs =

W s
L,R

Mτ

2fχPTs (s)

mu +md

=
2|W s

L,R|m2
π

(mu +md)Mτ
eiφsf ′s (34)

with f ′s =
(
1 + 1

16π2F 2 (l4 − 13
12)s+∆o,2 +O(E4)

)
.

Next, we consider the effects of the vector quark current on the τ+ → π+π−µ+

process. The vector form factor at the next to leading order is given in [4] as follows

Fv(s) = 1 +
1

6
< r2 >π

v +∆1,2(s) +O(E4)

< r2 >π
v =

1

16π2F 2
π

(l6 − 1) +O(M2
π) (35)

with

∆1,2(s) =
1

6F 2
π

[

(s− 4m2
π)J(s) +

s

24π2

]

(36)

The constant l6 = 16.5 ± 1.1 is one of the low-energy parameter which is given in the
effective Lagrangian at order E4.

Now, we assume that the effects of vector current and scalar current on the d2Bτ+
→π+π−µ+

dx1dx2

are dominated and skip the effects of the other currents. The total the differential branch-
ing ratio of this decay is obtained by considering both of contribution of vector and scalar

currents is shown in Figs.(2). These results show the values of the d2Bτ+
→π+π−µ+

dx1dx2
reach

to maximal value at the x1 + x2 ' 1 and decrease when x1 turns to be larger than 0.85.
The interference between the scalar and vector currents doesn’t effect on the differential
branching ratio of this decay at the low value of the pion invariant mass.

On the other hand, the results displayed Figs.(3) show the allowed invariant mass
of the pions can not exceed 1.75 GeV and the contributions at the lower energy are
dominated.

Let us consider the contribution of CP odd terms to the d2Bτ+
→π+π−µ+

dx1dx2
. The CP

asymmetry ACP is defined as follows

ACP =
d2Bτ+

→π+π−µ+

dx1dx2
− d2Bτ−→π+π−µ−

dx1dx2

d2Bτ+
→π+π−µ+

dx1dx2
+ d2Bτ−→π+π−µ−

dx1dx2

(37)

The results displayed in Fig.(4) show the value of CP asymmetry increases if the
energy of pion with larger energy increases and maximal value of CP asymmetry is obtained
at the maximal value of x1. However, in this kinematical region, the χPT predicts the
differential branching ratio decreases. Thus, it is hard to obtain the couple of pion emitted
in kinematical region which allows the maximal value of CP asymmetry. On the other
hand, the weak phases are model dependent and the value of sin(φa − φb) is smaller
than one unit. Hence, the value of CP asymmetry in the τ → π+π−µ+ is smaller than our
predicted values given in Fig.(4). For more detail, we consider the effects of the interference
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Fig. 2. The total contributions of the vector and scalar currents to
d2Bτ

+
→π

+
π
−
µ
+

dx1dx2
normalized by constants. The figures from left to right are the

numerical results by taking sin(φs − φv) = 1; 0.5; 0.01, respectively.
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at the s = 4m2

π and s ' 1.75GeV , respec-

tively.
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Fig. 4. The CP asymmetry normalized by constants and taking sin(φs − φv) =
1. The curves from left to right represent the CP asymmetry normalized by
10−

n

2 , n = 1, 2, 3, 4, respectively.

between the scalar and vector currents on the CP asymmetry by fixing the value of the
pion invariant mass. At the low energy s ≤ 4m2

π, the CP asymmetry given in the Fig. (5)
is approximately zero. On the other hand, by taking sin(φs − φv) = 6 × 10−3, we obtain
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Fig. 5. The CP asymmetry at the s = 4m2

π.

the total contribution of vector and scalar currents to d2Bτ+
→π+π−µ+

dx1dx2
at the low energy

s = 4m2
π and s ' 0.6GeV given in the Fig. (6). These results show that the probability of

the pair of pions emitted at the lower energy are larger than that at higher energy. This is
very nice information to confirm that the chiral perturbation theory is useful to describe
the pion form factor in the τ decays to µ+π+π− at the low invariant mass of pion.

As far as we know the chiral perturbation theory reproduces the experimental data
for the strong phase in the low energy region, however fails above

√
s ∼ 500 MeV, where

the ρ− resonance starts to dominate. In order to account for this, we need to use an
effective theory with explicit resonance fields as degrees of freedom, namely resonance
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+

dx1dx2
by taking sin(φs − φv) = 0.6 × 10−3 at the

low energy s = 4m2

π and s ' 0.6GeV , respectively.

chiral effective theory. In this theory, the vector pion form factor is given in [12] as follows

Fv(s) =
M2

ρ

M2
ρ − s− iMρΓρ(s)

× exp− s

96π2F 2

(

ReA(
m2
π

s
,
m2
π

M2
ρ

) +
1

2
ReA(

m2
K

s
,
mK

M2
ρ

)

)

(38)

where A(
m2

p

s
,
m2

p

M2
ρ
) is given in [12]. With choice of vector form factor given in (38), we

obtain a distribution of the vector quark current including role of the rho meson to the
d2Bτ+

→π+π−µ+

dx1dx2
described in the Fig.(7). It is clearly to see the maximal contribution of

vector current obtained at the
√
s = Mρ. For

√
s > Mρ, this contribution decreases very

quickly but for
√
s < Mρ, it decreases inch by inch and these values are the same order as

these of the chiral perturbation theory.
The total contribution of the scalar and vector currents including role of the rho

meson is shown in the Fig. (8). The interference term does not effect much on the
d2Bτ+

→π+π−µ+

dx1dx2
in the vector dominated region but it’s effect is more clearly in the scalar

dominated region.
The CP asymmetry including role of rho meson are displayed in the Fig.(9). If the

weak coupling constants are pure imaginary, the maximal contribution of CP odd term can
be larger than ten percents of the total contribution. By fixing the invariant mass s =M 2

ρ ,
we obtain the value of the CP asymmetry given in the Fig. 10. The CP asymmetry closes
to it’s maximal value at the largest value of x1. This maximal values can be reached to
0.2 if the weak phase is taken by sin(φs − φv) = 1.
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to sin(φs − φv) = 1; 0.5, respectively.

V. CONCLUSIONS

In this work, the general differential cross sections for t+t− → fAfB with fB = νπ−

and fA = µ+PP are presented. For τ+ → µ+PP , we obtain the P and T odd asymmetries
of three body decays as being done in [3]. However, we show the existence of both of CP
odd and CP even parts in each of P and T odd asymmetries. The CP odd terms are given
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Fig. 9. The CP asymmetry including role of the rho meson normalized by
constants at sin(φs − φv) = 1. The top part of the figure, from left to right, the
curves are normalized by 10−3, 10−2, 10−1, respectively. The below part of the
figure, from left to right, the curves are normalized by 10−3, 10−2, respectively
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Fig. 10. The CP asymmetry including role of the rho meson normalized by
constants at sin(φs − φv) = 1 and

√
s =Mρ

by interference between two kinds of quark currents and they depend on the imaginary of
weak coupling constants.

We also considered very detail of τ+ → µ+π+π− process by assuming the dominance
of resonance vector meson. We show that chiral perturbation theory is very well to consider
this semilepton τ decay up to s < 4m2

π. At the large invariant mass values, the role of
the ρ meson becomes important. The Dalitz plot not only displayed the kinematical
region where the contribution of vector current dominates but also shown the kinematical
region where that of the vector current dominates. As large as s-values, the dominance
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contribution of scalar current is more precisely. The maximal value of the CP asymmetry
is approximately twenty percents at s =M 2

ρ .
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Appendix A. THE KINEMATICAL FUNCTIONS

α1 = 2− x1 − x2; α2 = −
(x1 − x2)

2 + x1 + x2 − 2

x1 + x2 − 1

α3 = x1(3− 4x2) + 3x2 − 2; α4 = (1− x1 − x2)
(
(x1 − x2)

2 + x1 + x2 − 2
)

α5 = (x1 + x2 − 2)(x1 + x2 − 1); α6 =
(
(x1 − x2)

2 + x1 + x2 − 2
)

α7 = (x1 − x2)(x1 + x2 − 1); α8 = x1 − x2 (39)
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