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Abstract. In this article, the contribution of free electrons to the specific heat capacity of met-
als in low temperature has been investigated by using the q-deformed fermi-dirac statistics. We
have obtained the analytical expressions of the specific heat capacity of metals and the value of
q-deformed parameter. Present theoretical calculations of specific heat capacity for some kinds
of alkali and transition metals have been performed and compared with the experimental results
showing the agreement.

I. INTRODUCTION

Metal is a solid which contains many electrons that can move freely throughout
the crystal. So it has a good electrical conductivity which is about 106 to 108 Ω−1m−1.
Each atom in material has only one electron, there would be about 1022 valence electrons
in a cm3. Depending on the distribution function used to consider free-electron gas we
will have different theories: If free electrons are considered as simplest classical gas which
have the same energy value, we use Drudes theory to analyze issues about metal. If the
Maxwell-Boltzmann distribution function is used to analyze classical gas, it is applied
according to Lorentzs theory. If the Fermi-Dirac distribution function is used to do this, it
is applied according to Sommerfelds theory. The specific heat capacity of the free electrons
in metals have been studied from these theories [1, 2, 3]. In present article, we propose
other plan applying the statistical distribution of Fermi-Dirac -q deformation to study the
heat capacity of free-electron gas in metals at low temperatures [4, 6]. We have obtained
the analytic expressions of the specific heat capacity of metals and the value of q-deformed
parameter. Present theoretical calculations of specific heat capacity for some kinds of alkali
and transition metals have been performed and compared with the experimental results.

II. THEORY

At very low temperature, free electron gas in metals via the fermi-dirac statistics
and the heat capacity at constant volume ratio is linear with absolute temperature [2, 3].

Ce
V = γT (1)
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In the q-deformed Fermions oscillator operators satisfying the relation contrast commuta-
tive [4, 5, 6].

b̂b̂+ + qb̂+b̂ = q−N̂ (2)

where N̂ is oscillator number operator and q is a deformation parameter.
with the q-deformed Fermions:

{n}q =
q−n − (−1)nqn

q + q−1
(3)

In statistical physics the thermal average expression of the operator F̂ is given as:

⟨
F̂
⟩
=

Tr
(
exp

{
−β(Ĥ−µN̂)

}
.F̂

)
Tr

(
exp

{
−β(Ĥ−µN̂)

}) (4)

where µ is the chemical, Ĥ is the Hamiltonian operator of the system, β = 1/kT , k
is Boltzmann constant, T is the absolute temperature. From equations (4) the average
number of particles with the same level of energy can be calculated as

⟨
N̂
⟩
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(
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Tr

(
exp
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The calculations give following results:
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(6)
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Substituting equation (6) and equation (7) into equation (5), we obtain the Fermi-Dirac
distribution function q-deform Fermi Dirac as:

n̄(ε) =
⟨
N̂
⟩
=

eβ(ε−µ) − 1

e2β(ε−µ) + (q − q−1)eβ(ε−µ) − 1
(8)

Total number of free electrons and the total energy of free electron gas at temperature T
are [1, 2].

N =

∞∫
0

ρ(ε).n̄(ε)dε (9)

E =

∞∫
0

ε.ρ(ε).n̄(ε)dε (10)

where ρ(ε) is the density of states defined as:

ρ(ε) =
g(ε).V

4π2~3
(2m)3/2.ε1/2 (11)

Here n̄(ε) is the average number of particles with energies ε and g(ε) is the multiple
degeneracy of each energy level ε.

From equations (8), (9), (10) and using α = V.(2m)3/2

2π2~3 we can be rewritten as

N = α

∞∫
0

ε1/2.
e

ε−µ
kT − 1

e2
ε−µ
kT + (q − q−1)e

ε−µ
kT − 1

dε (12)

E = α

∞∫
0

ε3/2.
e

ε−µ
kT − 1

e2
ε−µ
kT + (q − q−1)e

ε−µ
kT − 1

dε (13)

Perform calculations and when T → 0K we obtained [2].

N =
2

3
α.µ

3/2
0 (14)

E0 =
2

5
α.µ

5/2
0 =

3

5
µ0N (15)

Where µ0 is the chemical at T = 0K given as:

µ0 =
~2

2m

(
3π2N

V

) 2
3

=

(
3N

2α

) 2
3

(16)

At very low temperature T ̸= 0K, from equations (12), (13), (14), (15), (16) perform
transformations and when 0 < q < 1 we determine the total energy of free electron gas at
temperature T :

E = E0

[
1 + 5.

F (q)(kT )2

µ2
0

]
(17)
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From equation (15) and equation (17)we obtained.

E =
3

5
Nµ0

[
1 + 5.

F (q)(kT )2

µ2
0

]
(18)

where

F (q) =
−1

q2 + 1

[
q(q − 1)

∞∑
k=1

(q)k

k2
+ (1 + q)

∞∑
k=1

(−q)k

k2
− q

∞∑
k=1

(q)k

k3
+

∞∑
k=1

(−q)k

k3

]
(19)

Heat capacity at constant volume of free electrons gas in metals for the case of the
deformation-q.

Cel
V =

(
∂E

∂T

)
V

= 6.
NF (q)k2T

µ0
= γbdT (20)

So at very low temperatures, the heat capacity of free-electron gas in metals when deformed
q-ratio is linear with temperature. From equation (1) and equation (20) we inferred
expressions as:

F (q) =
µ0γ

6NK2
(21)

γbd = 6.
N.k2.F (q)

µ0
(22)

The experimental values of the Fermi energy and electron thermal constants of metals as
Table 1 [7].

III. NUMERICAL RESULTS AND DISCUSSIONS

We replace the experimental values of the Fermi energy and electron thermal con-
stants of metals (Table 1) in expression (21) and (22), find out the expression for F (q)
by using the software Maple estimates, and obtain the value of strain-q parameter for
metals presented as table 2. Present calculation results also suggest that for alkali and
earth metals with the same number of outer electrons layer, the value of the parameter q
and the function F (q) are larger than those of the transition metal, and contribute to the
electron heat capacity is larger, while for the transition metals the outer electron layer of
the layered d, f , the value of deformation parameter q and the function F (q) that it is
smaller than the alkali metals the electron contribution to heat smaller. Table 2 shown
that the value of the parameter q are the same equaling 0.642 for the alkali metals, and
the value of q are the same equaling 0.564 for the transition metals. We used these values
of the parameter q for each metal and draw the graph in Fig. 1.1 to Fig. 1.5, shows the
results fit well with the experiment.



144 VU VAN HUNG, DUONG DAI PHUONG, LUU THI KIM THANH

Table 1. The experimental values of the Fermi energy and electron thermal con-
stants of the metals.

Metal Cs K Na Ba Sr Ca Li Ag
µ0(eV ) 1.58 2.12 3.23 3.65 3.95 4.68 4.72 5.48
γ(mJ.mol−1.K−2) 3.20 2.08 1.38 2.7 3.6 2.9 1.63 0.646

Metal Au Cu Cd Zn Ga Al Be Mg
µ0(eV ) 5.51 7.0 7.46 9.39 10.35 11.03 11.11 17.1
γ(mJ.mol−1.K−2) 0.72 0.59 0.68 0.64 0.595 1.35 0.17 1.3

Table 2. Experimental and theoretical values of parameters γ and deformation
parameters of the electrons in metals.

Metal γTN (mJ.mol−1.K−2) γbd(mJ.mol−1.K−2) q F (q)
Na 1.38 1.379 0.642 1.036662
K 2.08 2.079 0.627 1.025545
Rb 2.41 2.409 0.642 1.036954
Cs 3.20 3.199 0.835 1.175845
Be 0.17 0.215 0.279 0.559054
Cu 0.595 0.594 0.563 0.968659
Ag 0.646 0.645 0.442 0.823320
Au 0.729 0.728 0.531 0.934189
Cd 0.688 0.562 0.570 0.975432

IV. CONCLUSIONS

The heat capacity of free-electron gas in metals at low temperatures has been inves-
tigated by applying the statistical distribution of Fermi-Dirac -q deformation. We have
obtained the analytic expressions of the specific heat capacity of metals and the value
of q-deformed parameter. Present theoretical calculations of specific heat capacity for
some kinds of alkali and transition metals have been performed and compared with the
experimental results.
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Fig. 1. Temperature dependence of the specific heat capacity of electrons for sodium.

Fig. 2. Temperature dependence of the specific heat capacity of electrons for potassium.
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Fig. 3. Temperature dependence of the specific heat capacity of electrons for sexi.

Fig. 4. Temperature dependence of the specific heat capacity of electrons for silver.
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Fig. 5. Temperature dependence of the specific heat capacity of electrons for gold.
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