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Abstract. Specifics heats at constant volume of molecular cryocrystals of N2 type are studied
by combining the statistical moment method and the self-consistent field method taking account
of lattice vibrations and molecular rotational motion. Theoretical results are applied to molecular
cryocrystals of N2 type such as N2, CO, N2O and CO2 cryocrystals and numerical results are
compared with the experimental data.

I. INTRODUCTION

The study of specific heat for cryocrystals of nitrogen type is interested experimen-
tally by many researchers. For example, specific heat of solid nitrogen in the interval of
16-61K is determined firstly by Eucken [1]. Specific heat of nitrogen in low temperatures
is measured by Bagatskii, Kucheryavy, Manzhelii and Popov [2] (2.6-14.5K), Burford and
Graham [3](0.8-4.2K) and Sumarokov, Freiman, Manzhelii and Popov [4](1.8-8K). Theo-
retically, specific heat of solid nitrogen and monoxide carbon is investigated by the the-
ory accounting anharmonic and correlational effects, the self-consistent field theory, the
quasianharmonic theory [5] and the statistical moment theory (SMM) [6,7]. Analogous
research results for α-CO, CO2 and N2O cryocrystals also are summarized fully in [5]. In
our previous papers [6, 7], the specific heat at constant volume of cryocrystals of nitrogen
type is calculated by the statistical moment method taking account of only lattice vibra-
tions and not molecular rotations. Our calculated results only agreed qualitatively with
experiments. Idea of applying the self-consistent field method (SCFM) in order to describe
phenomena relating to orientation transition is firstly proposed by Frenkel [8] and Fowler
[9]. First quantitative calculations of crystals N2, CO based on the SCFM are carried out
by Kohin [10], where he calculated the energy of basic state and the energy of librational
excitations at zero temperature. More full calculations of thermodynamic properties for
crystals of nitrogen type are performed in [11-13]. In the present study, specifics heats
at constant volume of molecular cryocrystals of N2 type are studied by combining the
statistical moment method and the self-consistent field method taking account of lattice
vibrations and molecular rotational motion. Theoretical results are applied to molecular
cryocrystals of N2 type such as N2, CO, N2O and CO2 cryocrystals and numerical re-
sults are compared with the experimental data. The format of the present paper is as
follows: In Sec.II, we present the statistical moment method in deriving the specific heat
at constant volume of crystals with fcc structure taking account of lattice vibration and
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the self-consistent field method in the study of specific heat at constant volume of crystals
of nitrogen type taking account of molecular rotation. Our calculated vibrational and
rotational specific heats for molecular cryocrystals of N2 type such as N2, CO, N2O and
CO2 cryocrystals are summarized and discussed in Sec.III.

II. THEORY OF SPECIFIC HEAT AT CONSTANT VOLUME FOR
MOLECULAR CRYOCRYSTAL OF NITROGEN TYPE

II.1. Theory of vibrational specific heat at constant volume for crystal with
cubic structure

Using SMM, only taking account of lattice vibration, the specific heat at constant
volume of crystals with the fcc structure is determined by the following expression [14]
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where kB is the Boltzmann constant,k γ,γ1 and γ2 are the crystal parameters depending
on the structure of crystal lattice and the interaction potential between particles at lattice
knots,ϕi0 is the interaction potential between ith particle and 0th particle,uiβ is the dis-
placement of ith particle from equilibrium position in the direction β(β,γ=x,y,z,(β 6=γ)and
N is the number of particles per mole or the Avogadro number.

II.2. Theory of rotational specific heat at constant volume for molecular cry-
ocrystals of nitrogen type

We describe the ordered phase of crystals of nitrogen type from [12, 13]. These
calculations in analytic form permit to derive more clear relation between proposals for
intermolecular potential and obtained physical results. For considered crystal group, the
quadrupole interaction Uqq has the most important contribution to electrostatic
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where ~ω1, ~ω2 are unit vectors orientating towards the molecular axis, ~n is the unit vector
orientating to the line connecting two quadrupoles,Q is the quadrupole moment and R
is the distance between inertial centers of molecules. If ignoring the crystal field and in
the approximation considered in [5], the potential energy U is a bilinear function of the
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quadrupole moment and is the distance between inertial centers of molecules. If ignoring
the crystal field and in the approximation considered in [5], the potential energy is a
bilinear function of the quadrupole moment Qαβ=ωα ωβ-13δ

αβ.The Hamiltonian for the
system of interaction rotators is the sum of the kinetic energy of rotational motion and
the potential energy
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where B= ~
2I . I is rotational constant, is the inertial moment of molecule,~f is the number

of lattice knot, ~n is the unit vectors in the direction ,~f − ~f ′,θf ,ϕ′f are polar and azimuthal

angles determining the orientation of molecule at the knot ~f and the parameters V1 V2
and V3 depend on molecular and crystal constants [5].

Equations of self-consistent field are simply obtained by the variational principle
Bogoliubov [15]. We write the Hamiltonian (7) in the form H = H0 +H1 where
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Here Hαβ
~f

is the kinetic energy of rotators,H~fkin
is the self-consistent field, which is con-

sidered as the variational parameter and H1 = H+H0Therefore, the free energy F satisfies
the inequality

F ≤ F0 +H1 (9)

where F0 is the free energy corresponding to the Hamiltonian H0 and H1 denotes the
mean value of H1 according to the Gibbs assemble with the Hamiltonian H0 Minimizing

the right part of (9) on Q
αβ
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If substituting (10) into (8), the free energy determined by the right part of (9) is the free
energy calculated with the Hamiltonian
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For the lattice Pa3 the solutions of SCF equation (10) have the form [5]
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< p2cosθ >is the mean value of p2cosθ and η is the ordered parameter of system because
ignoring zero vibrations at T=0 and η = 1 in the orientational ordered phase,cos2θ = 1

3 ,η =
0After substituting (12) into (11), we obtain the Hamiltonian for the system of rotators in
SCF approximation. In the approximation of two first coordinative spheres and putting
the wave function ψ(θ, ϕ)=Θ(θ)Φ(ϕ) where Φm(ϕ)=(2π)−1/2eimϕ , m = 0;±1;±2 . . . we
find the equation as follows
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where U0 is the constant of molecular field. We consider a pseudoharmonic approxima-
tion. In the limit U0η/B � 1, θ = 0, π, sinθ = θ and putting forward variables
v = θsinϕ,u = θcosϕwe can transform Eq.(13) into an equation describing two uninterac-
tive harmonic oscillators
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Energy levels of the system in the pseudoharmonic approximation can write in the form
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The appearance of factor 4 in logarithm relates with the degeneracy of states. Minimizing
the free energy (16) on the ordered parameter η we obtain the condition of self-consistency

η = 1− 3B
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this together with (15) set up a closed system of equations. After substituting (15) into
(17), we obtain an expression relating temperature with given value of ordered parameter
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From the expression of free energy (16) counting the condition (17) and the definition of

specific heat at constant volume Cv = −T (∂
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∂T 2 )v we obtain
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paragraphSo, the anharmonicity of initial system of rotators determined in the SCF ap-
proximation is expressed in clear dependence of ε on temperature. That gives a supple-
mentary contribution to the Einstein specific heat CEv
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III. NUMERICAL RESULTS AND DISCUSSION

In order to apply the above theoretical results to cryocrystals of nitrogen type, we
use the Lennard-Jones potential
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= 218, 9K;σ = 3, 996.1010m for α − CO2 The dependence of the ordered

parameter η on temperature for cryocrystals of N2 type is presented in Tables 1-4 [5].
Values of parameters U0 and B for these crystals are presented in Table 5. The dependence
of the specific heat Cv on temperature for cryocrystals of N − 2 type is represented in
Figures 1-4. In these figures, Cvrot is the specific heat Cv taking account of only molecular
rotations from SCFM, Cvvib is the specific heat Cv taking account of only lattice vibrations
from SMM, Cvrot + Cvvib is the specific heat Cv taking account of both lattice vibration
and molecular rotations from SCFM and SMM and Cvexpt is the specific heat Cv from the
experimental data. In comparison with experiments, the specific heat Cv taking account
of both lattice vibrations and molecular rotations gives better results than the specific
heat Cv taking account of only lattice vibrations or only molecular rotations.

Table 1. The dependence of the ordered parameter η on temperature for α−N2

T(K) 0 10 15 20 24 28 30 32 34
η 0.8633 0.861 0.8544 0.8404 0.8244 0.8038 0.7916 0.7778 0.7621

Table 2. The dependence of the ordered parameter η on temperature for α− CO
T(K) 10 20 30 36 42 48 52 56 58 60
η 0.909 0.906 0.894 0.883 0.869 0.851 0.836 0.818 0.808 0.797

Table3. The dependence of the ordered parameter η on temperature for α−N2O

T(K) 25 50 75 100 125 150 160 170 175 180
η 0.986 0.983 0.978 0.972 0.964 0.955 0.951 0.946 0.943 0.941

Table 4. The dependence of the ordered parameter η on temperature for αCO2

T(K) 0 25 50 75 100 125 150 160 17
η 0.9878 0.9859 0.9822 0.9775 0.9718 0.9880 0.9622 0.9590 0.9556
T(K) 180 190 200
η 0.9619 0.948 0.9652
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Table 5. Values of parameters U0,B for cryocrystals of N2 type

Crystal α−N2 α− CO α−N2O α− CO2

U0[K] 325.6 688.2 5844.5 7293.8
B[k] 2.875 2.778 0.6059 0.56355

Fig. 1. Specific heat Cv of α−N2

Fig. 2. Specific heat Cv of α− CO2
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