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Abstract. The parametric transformation and parametric resonance of confined acoustic phonons
and confined optical phonons in quantum wells in the presence of an external electromagnetic field
are theoretically studied by using a set of quantum kinetic equations for phonons. The analytic
expression of the parametric transformation coefficient (K1) and the threshold amplitude (Eth)
of the field in quantum wells are obtained. Unlike the case of unconfined phonons, the formula
of K1 and contains a quantum number m characterizing confined phonons. Their dependence
on the temperature T of the system and the frequency Ω of the electromagnetic field is studied.
Numerical computations have been performed for GaAs/AlAsAl quantum wells. The result have
been compared with the case of unconfined phonons which show that confined phonons cause some
unusual effects.
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I. INTRODUCTION

It is well known that in the presence of an external electromagnetic field (EEF),
an electron gas becomes non-stationary. When the conditions of parametric resonance
(PR) are satisfied, parametric interactions and transformations (PIT) of same kinds of
excitations, such as phonon - phonon, plasmon - plasmon, or of different kinds of excita-
tions, such as plasmon - phonon, will arise; i.e., energy exchange processes between these
excitations will occur [1, 2]. The PIT of acoustic and optical phonons has been considered
in bulk semiconductors [3 - 5]. The physical picture can be described as follows: due to
the electron - phonon interaction, propagation of an acoustic phonon with a frequency
ω−→q is accompanied by a density wave with the same frequency. When an EEF with
frequency Ω is presented, a charge density waves (CDW) with a combination frequency
ω−→q ±NΩ (N = 1, 2, ) will appear. If among the CDW there exists a certain wave having
a frequency which coincides, or approximately coincides, with the frequency of the optical
phonon, ν−→q , optical phonons will appear. These optical phonons cause a CDW with a
combination frequency of ν−→q ±NΩ, and when ν−→q ±NΩ ∼= ω−→q , a certain CDW causes the
acoustic phonons mentioned above. The PIT can speed up the damping process for one
excitation and the amplification process for another excitation. There have been a lot of
works on the PIT for low dimensional semiconductors in the case of unconfined phonons
[6 - 8]. However, parametric transformation and parametric resonance of acoustic and
optical phonons in quantum wells in the case of confined phonons have not been studied
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yet. Therefore, in this paper, we have studied parametric transformation and paramet-
ric resonance of acoustic and optical phonons in quantum wells in the case of confined
phonons. The comparison of the result of confined phonons to one of unconfined phonons
shows that confined phonons causes some unusual effects. To this clarify, we estimate
numerical values for a GaAs/AlAsAl quantum well, and we discuss the conditions under
which the parametric resonance occurs.

II. THE PARAMETRIC RESONANCE OF CONFINED ACOUSTIC
PHONONS AND CONFINED OPTICAL PHONONS IN QUANTUM

WELLS.

It is well known that the motion of an electron and phonon in a quantum wells is
confined and that its energy spectrum is quantized into discrete levels. In this paper, we
assume that the quantization direction is the z direction. The Hamiltonian of the electron
- confined acoustic (confined optical) phonon system in a quantum well in the second
quantization representation can be written as:
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where, L is the well width, m∗ is the effective mass. Cm−→q ⊥
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Here, V, ρ, υa, and ξ are the volume, the crystal density, the acoustic wave velocity, and
the deformation potential constant, respectively. ε0 is the electronic constant; χ0 and χ∞
are the static and high - frequency dielectric constant, respectively. The electron form
factor Imn,n′ (qz), is written as [10]
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( η (m) = 0 if m even and η (m) = 1 if m ext) In order to establish a set of quantum
transport equations for confined acoustic and confined optical phonons in quantum wells,
we use the general quantum distribution function [11] for the confined acoustic (confined
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Where 〈ψ〉t denotes a staticical average value at the moment t and 〈ψ〉t = Tr(
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being the density matrix operator) Hamiltonian Eq. (1), (7) and (8) and using the com-
mutative relations of the creation and the annihilation operators, we obtain the quantum
kinetic equation for confined acoustic (confined optical) phonon in quantum wells:
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Cm,−→q ⊥

(
ωm,−→q ⊥ +NΩ

)
=

2
~
∑
n,n′

∣∣∣∣Imn,n′
∣∣∣∣2Cm−−→q ⊥Dm−→q ⊥ωm,−→q ⊥ΠN(m,−→q ⊥,ω+NΩ)Bm,−→q ⊥

(
ωm,−→q ⊥

)
ω+NΩ−νm,−→q ⊥−

2
~
∑
n,n′

∣∣∣∣Imn,n′
∣∣∣∣∣∣∣∣Dm−→q ⊥

∣∣∣∣2νm,−→q ⊥Π0

(
m,−→q ⊥,ωm,−→q ⊥

+NΩ

)
ωm,−→q ⊥

+NΩ+νm,−→q ⊥

2ωm,−→q ⊥

We obtain equations dispersion describe interaction between confined acoustic phonon and
confined optical phonon in quantum wells:ω2 − ω2

m,−→q ⊥ −
2

~
∑
n,n′

∣∣Imn,n′∣∣2∣∣∣Cm−→q
⊥

∣∣∣2ωm,−→q ⊥Π0

(
m,−→q ⊥ , ω

)
×

(ω +NΩ)2 − ν2
m,−→q ⊥ −

2

~
∑
n,n′

∣∣Imn,n′∣∣2∣∣∣Dm−→q
⊥

∣∣∣2νm,−→q ⊥Π0

(
m,−→q ⊥ , ω +NΩ

)
=

4

~2

∑
n,n′

∣∣Imn,n′∣∣4∣∣∣Cm−→q
⊥

∣∣∣2∣∣∣Dm−→q
⊥

∣∣∣2ωm,−→q ⊥νm,−→q ⊥ ∞∑
s=−∞

ΠN

(
m,−→q ⊥ , ω

)
ΠN

(
m,−→q ⊥ , ω +NΩ

)
(14)

In Eq. (14), the first terms describe the interaction between phonons that belong to the
same kind (acoustic - acoustic phonon or optical - optical phonon) while the second terms
describe interaction between phonons that belong to different kinds (acoustic - optical
phonon). We limit our calculation to the case of the first order resonance, ωm,−→q ± νm,−→q =
Ω. Because the solution to the general dispersion equation, Eq. (14), is complex. Here,
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We obtain the resonant acoustic phonon modes
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existence of a positive imaginary part of ω
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+ implies a parametric amplification of the

confined acoustic phonons. ωa and ω0 are the renormalization (by the electron - phonon
interaction) frequency of the acoustic phonon and optical phonon; ∆ (q) = q − q0, the
distance to the intersection of dispersion curves, q0 being the wave number for which the
resonance is satisfied;υa (υ0) is the group velocity of the acoustic (optical) phonon;τa τ0,
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The condition for the resonant acoustic phonon modes to have a positive imaginary part
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2

)
(31)

ImΓm,−→q
⊥

(
νm,−→q

⊥

)
= − m∗f0

2π~3q⊥

√
2m∗π

β
exp

(
−

βm∗A2
1

2~2
(−→q ⊥)2

)

× exp

(
−βπ

2~2n2

2m∗L2

)
exp

(
β
~νm,−→q

⊥

2

)
sh

(
β
~νm,−→q

⊥

2

)
(32)

Equation (30) means that parametric amplification of the confined acoustic phonons is
achieved when the amplitude of the EEF is higher than some threshold amplitude and
easy to come back to the case of unconfined phonons [7] when m→ 0.

III. THE PARAMETRIC TRANSFORMATION OF CONFINED
ACOUSTIC PHONONS AND CONFINED OPTICAL PHONONS IN

QUANTUM WELLS

Parametric transformation of confined acoustic phonons and confined optical phonons
in quantum well is determined by the formula:

KN =

∣∣∣∣∣∣
Cm,−→q

⊥

(
νm,−→q

⊥

)
Bm,−→q

⊥

(
ωm,−→q

⊥

)
∣∣∣∣∣∣

Cm,−→q
⊥

(
νm,−→q

⊥

)
are determined from Eq. (13). Using the parametric resonant conditions

ωm,−→q
⊥

+NΩ ≈ νm,−→q
⊥

, the parametric transformation coefficient is obtained:

KN =

∣∣∣∣∣∣∣∣∣
1
~
∑
n,n′

∣∣∣Imn,n′∣∣∣2Cm−→q
⊥
Dm−→q

⊥
ΠN

(
m,−→q ⊥ , ωm,−→q ⊥

)
δ + iγ0

∣∣∣∣∣∣∣∣∣ (33)
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where, the quantity δ is infinitesimal. Consider the case of N = 1 and note |δ| � γ0, we
get:

K1 =

∣∣∣∣ Γ

2γ0

∣∣∣∣ (34)

with

Γ =
λ

~Ω

∑
n,n′

∣∣Imn,n′∣∣2Cm−→q
⊥
Dm−→q

⊥
ReΓm,−→q

⊥

(
ωm,−→q

⊥

)
(35)

γ0 = −1

~
∑
n,n′

∣∣Imn,n′∣∣2∣∣∣Dm−→q
⊥

∣∣∣2ImΓm,−→q
⊥

(
νm,−→q

⊥

)
(36)

Where, ReΓm,−→q
⊥

(
ωm,−→q

⊥

)
and ImΓm,−→q

⊥

(
νm,−→q

⊥

)
are determined by the formula (22),

and (32). γ0 is the decline electronic constant of the optical phonon. Equation (34) means
that parametric transformation coefficient of confined acoustic phonons and confined opti-
cal phonons in quantum well is achieved when the amplitude of the EEF is higher. When
m→ 0, easy to come back to the case of unconfined phonons, is determined by the formula:

K =

∣∣∣∣ Γ∗

2γ∗

∣∣∣∣ (37)

Where,

Γ∗ =
λ

~Ω

∑
n,n′

D
(−→q ⊥)C (−→q ⊥)ReΓ−→q

⊥

(
ω−→q

⊥

)
(38)

γ∗ = −1

~
∑
n,n′

∣∣D (−→q ⊥)∣∣2ImΓ−→q
⊥

(
ν−→q
⊥

)
(39)

ReΓ−→q
⊥

(
ω−→q

⊥

)
=

f0m
∗

2πβA2~2

[
exp

(
−βπ

2~2n′2

2m∗L2

)
− exp

(
−βπ

2~2n2

2m∗L2

)]
(40)

ImΓ−→q
⊥

(
ω−→q

⊥

)
= − m∗

3/2f0

2
√

2πβ~2q⊥
exp

(
−
βm∗A2

2

2~2−→q 2
⊥

)
exp

(
−
β~2π2A2

2

2m∗L2

)(
1− exp

(
β~ω−→q

⊥

))
(41)

A2 =
π2~2

(
n′2 − n2

)
2m∗L2

+
~2−→q 2

⊥
2m∗

+ ~ω−→q
⊥

(42)

IV. NUMERICAL RESULTS AND DISCUSSIONS

IV.1. In the case parametric resonance

In order to clarify the mechanism for parametric resonance of acoustic and optical
phonons in the case of confined phonons, we consider a AlAs/GaAsAl quantum well.
The parameters used in this calculation are as follows [12]: χ∞ = 10.9, χ0 = 12.9, L =
100A0,m = 0.067m0, (m0 being the mass of free electron), ~ν0 = 36.25mev, Ω = 2 ×
1014Hz, ξ = 13.5ev ρ = 5.32g.cm−3 υs = 5370m.s−1, E0 = 106v/m, e = 1.60219×10−19C,
~ = 1.05459× 10−34J.s

Figure 1 show the dependence of the threshold amplitude Eth on the magnitude of
wave vector −→q at temperature T = 72K. As shown in, the threshold amplitude reaches
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Fig. 1. The dependence of Eth

(
v.cm−1

)
on the q

(
m−1

)
with T = 72K

Fig. 2. The dependence of Eth

(
v.cm−1

)
on the T with q = 2.8× 108

(
m−1

)
the maximum value when q = 1.2 × 108

(
m−1

)
. Other cases of unconfined phonon, the

curve has a sub-maximal when q = 2.5× 108
(
m−1

)
. The cause of this difference is due to

the wave vector of phonon quantum chemical confined phonon. Because the wave vector
of phonon is quantized of the energy in the confined phonon direction.

Figure 2 (solid line - confined and dot line - unconfined) show the dependence of the
threshold amplitude on the temperature T for both the confined phonon and unconfined
phonon. From the graph shows, at the same temperature, the confined phonons makes
the threshold amplitude increases.

IV.2. In the case parametric transformation

In order to clarify the mechanism for the parametric transformation of acoustic
and optical phonons in the case of confined phonons, in this section, we will consider
quantum wells. The parameters used in this calculation are as follow [12]:χ∞ = 10.9, χ0 =
12.9, L = 100A0,m = 0.067m0, (m0 being the mass of free electron), ~ν0 = 36.25mev,
Ω = 2 × 1014Hz, ξ = 13.5ev ρ = 5.32g.cm−3 υs = 5370m.s−1, E0 = 106v/m, e =
1.60219× 10−19C, ~ = 1.05459× 10−34J.s

Figure 3, and Figure 4 shows the influence of confined phonon on the changing phe-
nomenon of the parameter between the acoustic phonon and optical phonon. Concretely,
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the confinement of phonon makes an increase of the coefficient-changing parameter be-
tween the acoustic phonon and optical phonon in quantum well. In a same range of
temperature T, (in the case confined phonon) the coefficient oscillation around the unit,
with the case unconfined phonon the threshold amplitude is very small . Because, when
phonon is confined, the energy bands of phonon are divided into mini-bands like electrons
in potential well. Therefore, the probability of occurrence greater resonance conditions .
In other words, the chance of changing acoustic phonon into optical phonon and vice versa
becomes bigger. In short, the coefficient of parametric transformation between acoustic
phonon and optical when phonon is confined is more stronger than unconfined phonon.
From all figures above, we can see clearly the effect of confined phonons on the parameter
transformation coefficient. Namely, the confined phonons increase the phonon transfor-
mation coefficient in quantum wells.

Fig. 3. The dependence of K1 on the T (In the case confined phonon)

V. CONCLUSIONS

In this paper, we analytically investigated the possibility of parametric transforma-
tion and parametric resonance of confined acoustic phonons and confined optical phonons.
We obtained a general dispersion equation for parametric amplification and transformation

Fig. 4. The dependence of K1 on the T (In the case unconfined phonon)
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of phonons. However, an analytical solution to the equation can only be obtained within
some limitations. Using these limitations for simplicity, we obtained dispersions of the
resonant confined acoustic phonon and confined optical phonon modes and the threshold
amplitude of the field for acoustic phonon parametric amplification and optical phonon
parametric amplification. Similarly to the mechanism pointed out by several authors for
bulk semiconductors, parametric amplification for acoustic phonons in a quantum well
can occur under the condition that the amplitude of the external electromagnetic field
is higher than some threshold amplitude. We have numerically calculated and graphed
the threshold amplitude and the parametric coefficient for AlAs/GaAsAl quantum well
clearly show the predicted mechanism. Parametric amplification for acoustic phonons and
optical phonon and the threshold amplitude depend on the physical parameters of the sys-
tem and are sensitive to the temperature. Calculated result shows that the confinement
of phonon makes an increase of the coefficient changing parameter between acoustic and
optical phonon. Based on this idea, we can put forward a capability about changing the
functions of low - semiconductors. It plays important sense in application especially in
material science, electronics. In addition, we can manufacture super mini (based nanos-
tructures) and multi - functions (based on devices properties which could be controlled
from outside.
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