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발표자
프레젠테이션 노트
In this talk, we discuss how to describe non-perturbative physics in strongly correlated electrons.
We claim that an emergent holographic description appears naturally for the description of non-perturbative physics in strongly correlated electrons.


dhe main message of
the present talk



FIG. 2. Comparison between the Ryu-Takayanagi formula
based on the emergent metric [Eqgs. (31) and (32)] and the
entanglement entropy based on the lattice model [Eq. (2)].
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발표자
프레젠테이션 노트
This is a typical phase diagram of quantum phase transitions in heavy-fermion systems. Tuning external parameters such as magnetic fields and pressures, we see a quantum phase transition from an antiferromagnetic metal to a heavy-fermion Fermi-liquid state. Our final goal is to show natural emergence of a black hole for non-Fermi liquid physics in the vicinity of a quantum phase transition, where the black hole carries huge entropy, thus which serves as a source of strong inelastic scattering. This would give rise to the linear electrical resistivity, the hall mark of non-Fermi liquid physics near metallic quantum criticality.
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The Large-N Limit of Superconformal Field
Theories and Supergravity

Juan Maldacena'

 Solving strongly coupled quantum field theories - putting
Landau-Ginzburg-Wilson-type order-parameter field theories
on emergent curved spacetimes (black holes) with an extra
dimension and solving classical equations of motion in order
to find correlation functions in a non-perturbative way

cf. Solving "weakly coupled” quantum field theories =
solving L6GW semi-classical field theories
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From AdS/CFT correspondence to hydrodynamics

Giuseppe Policastro
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ity of Washington

Strong inelastic scattering = Fast thermalization = Effective
hydrodynamics: AdS, ., classical dual field theory


발표자
프레젠테이션 노트
When you solve such holographic Landau-Ginzburg theories, you obtain liquids with very high viscosity like honey, described by hydrodynamic equations of motion. Recall, it is not easy to reach such high viscous liquids perturbatively from electron gases, i.e., quantum field theories. 


dtydrodynamic transport
phenomena axe quite difficult
to zealize in metals.
Tel—-el < T < Tel—ph Tel-imp
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발표자
프레젠테이션 노트
Generically, we have three time scales: el-el inelastic scattering time scale, el-ph inelastic time scale, and el-imp elastic time scale. Recall that hydrodynamic equations consist of equations of three conserved quantities (three conservation laws): momentum, energy, and number. Electron number is always conserved. However, electron momentum conservation breaks down due to el-imp scattering. Electron energy conservation does not hold, either, due to el-ph scattering. In this respect el-el inelastic scattering time scale should be shortest. Then, this regime allows an effective emergent hydrodynamics.
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발표자
프레젠테이션 노트
Recently, effective hydrodynamics regime has been observed in Dirac fluid systems. When the chemical potential is tuned around the Dirac point, el-el correlations may not be screened and remain strong at least in an intermediate temperature range. …… Although it is not completely clarified yet that this regime can be accessed by a perturbative calculation of QED3 with phonons and non-magnetic impurities, a common wisdom as far as I know is that this huge viscous liquid is beyond the perturbative calculation of QED3.
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R Interactions between particles in quantum many-body systems can lead to collective behavior
0.0 - : ’ | ; . described by hydrodynamics. One such system is the electron-hole plasma in graphene near
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plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the
~2 thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics.
N (/_]m ) Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude
increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the
thermally populated charge-neutral plasma in graphene. This result is a signature of the Dirac
(a) fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.
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발표자
프레젠테이션 노트
Indeed, a holographic description can explain a transport data in graphene. 
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발표자
프레젠테이션 노트
Indeed, a holographic description can explain a transport data in graphene. 
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발표자
프레젠테이션 노트
As the BCS theory clarifies the bridge between Landau’s Fermi-liquid theory for a normal metallic state and Landau-Ginzburg theory for symmetry breaking phase transitions, we find the connection between strongly coupled quantum field theories and emergent holographic descriptions, applying Wilsonian renormalization group transformations in a non-perturbative way.


Wilsonian wenortmalization g’cou,o "
t‘zanbfotmationb

« To introduce order parameter fields for

(interacting) quantum field theories

« To separate low- and high- energy degrees of

freedom for all fluctuating fields

« To integrate out all high-energy degrees of
freedom, controlled by the region of

integrations dA

« To introduce order parameter fields once again

for emergent effective interactions
Sung-Sik Lee, JHEP 2016, 44 (2016)
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발표자
프레젠테이션 노트
Let us describe this part in more details. Here, k is the kth iteration of Wilsonian renormalization group transformations. Sk is an original effective action with kth renormalized interacting vertex function. Sbulk is an emergent bulk effective action with order parameters rho and coupling functions varphi. Separating low- and high- energy degrees of freedom, and integrating out high-energy degrees of freedom, we obtain an effective action with additional emergent effective interactions. Performing HS transformations once again, we rewrite the renormalized kth effective action in terms of k+1th order parameter fields and coupling functions. This is the k+1th effective action. The evolution of k+1th order parameters and coupling functions from kth ones is given by recursion relations via the Wilsonian RG transformation.
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발표자
프레젠테이션 노트
First, we apply this framework into the Kitaev superconductor model, which is non-interacting, but showing a quantum phase transition. The non-interacting property allows us to find everything easily. The existence of a quantum phase transition implies that such a holographic description may not be trivial, which serves as a good reference in understanding a mathematical structure.


Normal Superconductor
Topological Superconductor

Vll
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AdS geometry C; = Vi1 + Vi

A.Y. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003)


발표자
프레젠테이션 노트
Applying the Jordan-Wigner transformation into the transverse-field Ising model, we obtain a p-wave superconductor model in terms of spinless fermions, which represent domain wall excitations. If we rewrite this effective Hamiltonian in terms of Majorana fermions, we find a topological phase transition as follows. …… Here, everything is clear since it is non-interacting. We just reformulate this problem in terms of an emergent metric tensor.
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발표자
프레젠테이션 노트
For this problem, we apply the Kadanoff’s block-spin transformation. 
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발표자
프레젠테이션 노트
The bulk action is given by an order parameter field and a coupling function, describing their evolutions under the Wilsonian RG transformation. Here, the emergent extra dimension z is nothing but the iteration index k of the Wilsonian RG transformation. The evolution equation of the coupling function is nothing but the beta-function and the evolution equation for the order parameter field is nothing but the Callan-Symanzik equation for the vacuum expectation value.
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발표자
프레젠테이션 노트
The bulk action is given by an order parameter field and a coupling function, describing their evolutions under the Wilsonian RG transformation. Here, the emergent extra dimension z is nothing but the iteration index k of the Wilsonian RG transformation. The evolution equation of the coupling function is nothing but the beta-function and the evolution equation for the order parameter field is nothing but the Callan-Symanzik equation for the vacuum expectation value.
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Physical picture
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발표자
프레젠테이션 노트
The coupling parameter at UV evolves through the beta-function resulting from the bulk effective action with an extra dimension. A fully renormalized coupling function appears in the IR effective action. Here, we are dealing with a non-interacting theory. If there are correlations, the linear-z derivative would change into the second order z-derivative and the IR boundary condition is given by the saddle-point analysis of the IR effective action. This is the holographic Landau-Ginzburg theory, which includes vertex corrections self-consistently.
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발표자
프레젠테이션 노트
An emergent metric tensor with an extra dimension can be extracted out, based on the so called Callan-Symanzik equation, which matches Hamilton-Jacobi formulation for holographic renormalization in this description. Here, we will not go into technical details. Let me give some impressions to you. An essential ingredient is the fully renormalized coupling function. Here, it determines hopping of fermions as a function of an RG scale zf. Intuitively, one can translate the hopping integral into a metric. However, an important thing is that this translation should be performed with a bulk action, here the first term of the bulk action. The consistent treatment between the bulk action and IR boundary condition is the Hamilton-Jacobi formulation, which is identical to the Callan-Symanzik equation in our description. As a result, we can read out the metric tensor in the normal coordinate system.
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FIG. 1.

(4 = 2.05), and nontrivial (4 = 1.95) superconducting phases.
We emphasize that the Ricci curvature diverges at 7 —
topological superconducting phase, which may be identified with
a horizon. The emergence of such a horizon in a dense phase 1s
consistent with a recent study [23], where the existence of the
horizon 1s a fingerprint of a quantum phase transition.
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All equivalent equations

« UV/IR & bulk equations of motion

« Hamilton-Jacobi theory (Equation for
counter terms, Callan-Symanzik equation
for free energy, and equation to define
energy-momentum tensor)

* The latter turns out to be just a
reformulation of the former.

 Consistent with Einstein equation =
Under investigation
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To evaluate the entanglement
entropy based on Ryu-
Takayanagi formula with the

AdS/CFT

emergent metric tensor

|CFT; | Ad. S{ -

To find the entanglement y
A 74

entropy of our system, solving

the corresponding UV theory

numerically i ‘
U

To compare these two

entanglement entropies and S, oM iﬂ[:"\l‘i;}a]
confirm the emergent metric

structure

S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006);

S. Ryu and T. Takayanagi, JHEP 0608, 045 (2006)
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발표자
프레젠테이션 노트
This shows the entanglement entropy as a function of the chemical potential lambda. The subsystem size l is very large. In the vicinity of the quantum critical point we obtain the ln l behavior with the central charge ½. This is not surprising: The holographic entanglement entropy gives rise to the ln l behavior with the central charge c. An interesting result is that even away from the quantum critical point, but near it, we reproduce the Cardy’s result based on the Ryu-Takayanagi formula.
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Ki-Seok Kim, Suk Bum Chung, and Chanyong Park, arXiv:1705.06571
“An emergent holographic description for the Kondo effect: The role of an extra dimension
In a non-perturbative field theoretical approach”



THE ELECTRICAL RESISTANCE OF GOLD
BELOW 1°K

by W. J. DE HAAS, H. B. G. CASIMIR and (. J. VAN DEN BERG
Communication No. 251¢ from the Kamerlingh Onnes Laboratory at Leiden

Dedicated to Professor Max Planck on the occasion
of his eightieth birthday

Summary

The resistance of gold was determined at temperatures below 1°K,
obtained by adiabatic demagnetization of iren-ammoninm-alum.. The
increase observed at ordinary liguid helinm temperatures is much more
pronounced below 1°K and our results suggest, that the resistance may
become infinite at the absolute zero-point.
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Physica 5. 225 (1938)

PHYSICA

H.v.Lohneysen, APCTP lecture on heavy — fermion quantum criticality (2016)


발표자
프레젠테이션 노트
When you dope one magnetic impurity into a metallic host, the whole electrons at the Fermi surface are going to form a many-body spin singlet, referred to as a Fermi-surface instability. In real space electrons with the Kondo-screening length scale near the magnetic impurity position form a many-body spin singlet, giving rise to the Kondo effect. It is not easy to describe the Kondo effect from the decoupled local moment fixed point to a local Fermi-liquid fixed point. This is a strongly coupled field theory problem. 
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mergent gtavity desctiption
Fentyg . Lp
for the Kondo effect

- iz f —|— £ "' l N \ . o . .
Z=7"Z. | Dfs(T)Db(T,2)exp | — dz d TJ —(0.07(1,2) ) (0.b(7.2)) + NSg.b(r,2)0-b (7, 2)
h Jal\l, . . - 0 1 I JAN . . . .

gp \

A7 FHO(r, 2)GelT = TV (7, 2) fo (7') + F3(7) (0 = A7) ) £ (7)

4=2 / D fo(T)exp [ - / ‘ﬂjr{ d7’ f1(7)b(1,0)Ge(T — 7O (7. 0) fo (77)
. J0 J 0

+. ;‘;_I (1) ( Or — i\(T) ) fo(T) +1NSA(T) + 7 bl (7,0)b(7,0) H
. y ‘j’\'



Physical picture

25N B
Z ;'KQFC}XE}T(T’:]L:” —|—/O dr'G. (7 — T’)E}T(T’,:f)(_?f(r’ —7)=0



Correspondence between a mean-field theory with
1/N quantum corrections and the emergent gravity
description in the zs = dz — 0 limit
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N. Read, J. Phys. C: Solid State Phys. 18, 2651 (1985)



Conclusion

Mean-field (BCS) theory + "Full" quantum (vertex) corrections in
a self-consistent way = Holographic Landau-Ginzburg theory on
an emergent curved spacetime with an extra dimension

Holographic LG theory = Bulk action + UV & IR boundary
conditions

UV B.C. + IR B.C. with z; = 0 © Mean-field theory

UV B.C. + IR B.C. + Bulk eq. of motion with z; = dz = Mean-field
theory + 1/N quantum corrections

Bulk action: RG equations for coupling functions

IR boundary condition: Effective field theory with a fully
renormalized coupling function

The role of an extra dimension: Introduction of “full” quantum
corrections in an itferative way

Hamilton-Jacobi formulation = Callan-Symanzik equation:
Emergent metric tensor = Holographic entanglement entropy

Holographic entanglement entropy = Field-theory entanglement
entropy even away from criticality ??
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Connection to MERA (multi-scale
entanglement renormalization ansatz as a
tensor network variation approach)

Emergent space-time
MERA AdS/CFT
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Picture from M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193

MERA entropy ~ Ryu-Takayanagi prescription

R. Orus’ lecture on entanglement injEldearardo) vy



Picture from G. Evenbly, G. Vidal,

(2011) JSTAT 145:891-918 JG|U

(time slice)

Bulk is a discretized

(and we were not thinking AdS space

about gravity at all...)

For a scale-invariant MERA, the tensors
of a critical model with a CFT limit correspond to a

,gravitational® description in a discretized AdS space: R. Orus’lecture

Jattice” realization of AdS/CFT correspondence on entanglement
in APCTP 2017
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Ab initio holography Horizon as critical phenomenon

Sung-5ik Lee

Peter Lunts,”" Subhro Bhattacharjee,” Jonah Miller,® Erik Schnatter,®"
Yong Baek Kim® and Sung-Sik Lee®"
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