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PACS 87.16.af – Monte Carlo calculations
PACS 87.16.D- – Membranes, bilayers, and vesicles

Abstract – We introduce and study the behavior of a tethered membrane of non-zero thickness
embedded in three dimensions subject to an effective self-attraction induced by hydrophobicity
arising from the tendency to minimize the area exposed to a solvent. The phase behavior and the
nature of the folded conformations are found to be quite distinct in the small and large solvent
size regimes. We demonstrate spontaneous symmetry breaking with the membrane folding along
a preferential axis, when the solvent molecules are small compared to the membrane thickness.
For large solvent molecule size, a local crinkling mechanism effectively shields the membrane from
the solvent, even in relatively flat conformations. We discuss the binding/unbinding transition of
a membrane to a wall that serves to shield the membrane from the solvent.

editor’s  choice Copyright c© EPLA, 2012

Introduction. – The structure and dynamics of sheets
or surfaces are important in diverse contexts in everyday
life, in cell biology, in field theory and quantum gravity,
and in condensed matter physics [1,2]. Previous studies
have concentrated on idealized surfaces —the thickness is
neglected principally to facilitate an analytical approach
(see the excellent work by David, Duplantier, Guitter and
Wiese, reviewed in ref. [3]) or partially captured by teth-
ering together, in a two-dimensional array, hard spheres,
whose diameter equals the surface thickness. In the latter
case, both the steric and the interactions induced by the
environment or solvent are modeled as standard two-body
potentials which become singular (Dirac delta function)
interactions in the continuum limit [4]. In this limit,
self-interacting manifolds, in 1 dimension corresponding
to a polymer chain and in 2 dimensions corresponding to
a membrane, the subject of our study, cannot be correctly
described by two-body interactions [4]. The difficulty
arises because a pair-wise interaction can only depend
on the distance between the two parts of the manifold.
One is unable to account for whether these two parts are
near each other just because they lie on adjacent parts
of the manifold or whether they are distant along the
manifold and thence truly interacting. One could solve
this problem by introducing some microscopic cut-off
such that nearby parts of the manifold, at a distance

smaller than this cut-off along the manifold, are defined
to be non-interacting. This procedure is expected not
to affect the long distance behavior but it affects many
important intermediate scale effects of interest.
Extensive studies [5–7] have shown that there are

vastly different behaviors between a conventional polymer
modeled as a chain of non-overlapping spheres and a
tube due distinct symmetries in the two cases. The latter
can be imagined as a chain of coins whose symmetry
is cylindrical. Self-avoidance of a flexible tube can be
imposed by using a three-body potential [8]. A tube
subject to maximal compaction takes on the geometry
of an optimal helix [5], whose local curvature is equal to
the tube thickness. Strikingly, this geometry is adopted by
α-helices in proteins. On the other hand, a fcc lattice is
an optimal arrangement for a chain of spheres subject to
compaction, provided the tether constraints do not conflict
with this arrangement. Surprisingly, chains of overlapping
spheres [9] behave in a manner akin to a tube. This is
because the overlap between adjacent spheres along the
chain results in a loss of spherical symmetry and endows
an anisotropy to the chain much as a tube does [10].
The principal theme of this paper is to introduce a

model of a thick hydrophobic membrane that encapsulates
the correct symmetry associated with its intrinsic two-
dimensional nature. The implementation of the non-zero
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thickness of the membrane is carried out through a
four-body potential [4]. Unlike the model of tethered
spheres, the membrane thickness in our model provides
a length scale that is independent of the discretiza-
tion of the membrane surface, and thus is free of the
singularity problem in the continuum limit. The inter-
action with the solvent molecules is captured through
Hadwiger’s theorem [11] as explained in [12]: the effec-
tive self-interactions of the membrane, induced by a
short-range solvent-membrane potential, can have only
four distinct contributions. Two of these interactions are
proportional to the integrals of the mean curvature and
Gaussian curvature over the entire surface. The other two
interactions pertain to an entropic contribution arising
from the volume excluded to the solvent molecules [13]
and an energy contribution measured by the area of the
membrane that is exposed to the solvent molecules. The
membrane thickness already takes into account the mean
curvature effects because, at each position on the surface,
the curvature radii have to be larger than the thickness
itself. The integral of the Gaussian curvature is constant
if the membrane topology is kept fixed. Furthermore,
because the membranes we consider are open, the volume
excluded to the solvent molecules is partly taken into
account by the buried area or equivalently by its comple-
ment, the exposed area. Thus our focus here is on under-
standing how the area of the membrane exposed to the
solvent molecules influences the nature of the conforma-
tions of a hydrophobic membrane immersed in a solvent.
We show that distinct behaviors are obtained for different
ratios between the membrane thickness and the solvent
molecule size, both in the absence and presence of an inert
wall, which serves to shield one side of the membrane from
the solvent. We find several familiar conformations that
have not been observed in previous studies of conventional
models.

Mathematical description of thick membrane. –
The notion of thickness can be introduced for a continuum
surface in 3-D. The position vector of a point on the sur-
face is given by r(�s ), where �s= (s1, s2)∈D defines the
local (curvilinear) coordinate frame on the surface. The
two tangent vectors are

∂ir(�s )≡ ∂r(�s )
∂si

, i= 1, 2. (1)

The square of the distance between two neighboring
positions on the surface, �s, �s+d�s is given by

dr2 = gijds
idsj , (2)

where
gij ≡ ∂ir(�s ) · ∂jr(�s ) (3)

is the metric tensor. We will assume that the tangent
vectors are linearly independent at all points on the surface
which is equivalent to

(
∂1r(�s )× ∂2r(�s )

)2
=det(gij)≡ g �= 0. (4)

The surface element at position �s is given by

dS(�s )≡ d2s
√
g(�s ). (5)

We also assume that the local coordinate frame is chosen
such that the normal to the surface,

n̂(�s ) =
∂1r(�s )× ∂2r(�s )
|∂1r(�s )× ∂2r(�s )| , (6)

is always on one side of the surface. If the thickness of
the surface is 2∆, then the radius of the sphere tangent at
r(�s ) and going through another point r(�t ) on the surface
(�t is a vector in the curvilinear coordinates),

R= [r(�t )− r(�s )]2
2n̂(�s ) · [r(�t )− r(�s )] , (7)

cannot be smaller than ∆ for all �s and �t (fig. 1).
For a triangulated surface with fixed connectivity corre-

sponding to the middle surface of a membrane, assume
that the vertices are denoted as i, j, k . . . whose positions
are given by ri, rj , rk . . . . A triangle of vertices i, j, and k
is denoted by (ijk). For each triangle (ijk), we assign an
orientation such that for the completely flat surface the
normal vector

n̂ijk =
(rj − ri)× (rk − rj)
|(rj − ri)× (rk − rj)| (8)

always points in the same, say up, direction. The thickness
is defined in analogy with the continuum case. The radius
of the sphere tangent to the triangle (ijk) at its the center
of mass rijk ≡ (ri+ rj + rk)/3 and going through the node
rm,

Rijkm = (rm− rijk)2
2|n̂ijk · (rm− rijk)| , (9)

is constrained to be greater than or equal to ∆∀(ijk),m �=
i, j, k.

Exposed area of thick membrane. – Assume that
the solvent molecule is a spherical paint brush of radius R
(fig. 1). The exposed area of a membrane is defined as the
membrane’s surface area accessible by this spherical paint
brush. Each membrane has two sides, + and −, defined
by two triangulated surfaces, S+ and S−, at a distance ∆
from the middle surface. We assign a normal to each node
ri of the middle surface as the average normal of all the
triangles sharing the i-th node:

n̂i =

∑
jk n̂ijk

|∑jk n̂ijk|
, (10)

where the sum is over all oriented triangles sharing the
i-th node. The number of such triangles is six in the bulk
and less than six at the boundary. Each n̂i, by definition,
is oriented in the direction of S+. Thus we define the nodes
of the surfaces S± as

p±i = ri±∆n̂i. (11)
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Fig. 1: (Colour on-line) Cartoon of a thick membrane and a
solvent molecule. Each side of the membrane is at a distance ∆
from the middle surface (dashed line). Self-avoidance requires
that any sphere tangent to the middle surface at one point
and passing through another point on this surface must have a
radius r�∆. The solvent molecule is considered as a spherical
paint brush of radius R. The membrane exposed surface area
is defined as the area on both sides of the membrane that is
accessible to that spherical paint brush.

To calculate the exposed area of the surfaces S±, one
places a sphere of radius R tangentially to each triangle
on the surfaces S± at its center of mass, and then checks
whether the sphere overlaps with any of the other points
on these two surfaces. If there is no overlap the triangle is
said to be exposed to the solvent. The following quantity
can be calculated for each triangle (ijk) in the S± surfaces:

B±ijk =min
mλ
|p±ijk±RN̂±ijk−pλm|, (12)

where p±ijk and N̂
±
ijk is the center of mass and the normal

of that triangle, respectively, and λ can be + or −. The
exposed areas in the surfaces S± are defined as

Σ± =
1

2

∑
(ijk)

|(p±j −p±i )× (p±k −p±j )| Θ
[
R−B±ijk

]
, (13)

where Θ() is the step function, and the sum is taken over
all triangles on a given surface.

Model of thick hydrophobic membrane. – Follow-
ing standard practice, here we model the thick membrane
as a set of points forming a triangular lattice representing
the membrane’s middle surface. The links on the lattice
are fixed and have lengths that are allowed to vary freely
between 0.9l and 1.1l, where l is the unit length. Self-
avoidance is implemented through an effective four-body
potential (eq. (9)) to ensure the membrane thickness of
2∆. Due to the effects of discretization, this procedure
is accurate as long as ∆/l� 0.5. Note that ∆ provides
a length scale that is independent of the discretization
length l. The continuum limit can be approached by
decreasing l while keeping ∆ constant.
We consider a membrane that is hexagonal in shape

when it is perfectly flat with the edge length of L.
The solvent molecule is modeled as a spherical paint
brush with radius R. The interaction between solvent
molecules is not considered in our study and yields a

higher-order correction. For a hydrophobic solvent, there
is a tendency to minimize the exposed area by appropriate
folding of the membrane, which, at non-zero temperatures,
is counteracted by an entropic contribution promoting
relatively flat conformations. An effective self-attraction
is thus introduced through a potential energy:

E = (ε/l2)(Σ++Σ−), (14)

where ε provides an energy unit and Σ± are the exposed
areas of the + and − sides, respectively.
Monte Carlo simulations are carried out to study the

behavior of the membrane at various temperatures. In a
Monte Carlo move, one node in the triangulated lattice of
the membrane’s middle surface is selected and displaced in
a random direction by a random displacement. The magni-
tude of the displacement is constrained to be less than 10%
of the lattice constant l. The move is rejected immediately
if 1) a new bond length on the lattice due the displacement
is smaller than 0.9l or larger than 1.1l, or 2) the membrane
thickness constraint is violated. Otherwise, the move
is accepted with probability P =min[1, exp(−∆E/kBT )],
where T is the temperature, and ∆E is a change in the
effective energy. A parallel tempering scheme with 16 to 20
replicas is adopted to get efficient sampling of the confor-
mational space.

Large vs. small solvent size. – Figure 2 shows
typical conformations of a membrane in the large and
small solvent size regimes. At high temperatures, the
entropy dominates, there is no tendency for minimizing
the area exposed to the solvent, and the conformations
in both regimes are flat. On lowering the temperature,
the membranes tend to become compact by minimizing
their exposed area to the solvent but their behaviors
are remarkably different for the two cases of small and
large solvent molecule sizes. The correlations between
the normal vectors of the membranes also show a major
difference between the low-temperature conformations in
the large and small solvent regimes (fig. 3).
When R is larger than ∆, the low-temperature phase

is crinkled and contains many different conformations.
The crinkling is essentially a local deformation that
does not violate the local bending constraint of a thick
membrane yet excludes the large paint brush from access-
ing the surface. Locally, below the persistence length,
the membrane is essentially flat yet crinkled. At the
lowest temperature, the crinkled conformations are almost
completely buried (fig. 2(a)). We have verified that, for
the same solvent-induced energy function, the impenetra-
ble plaquette model [14], behaves similarly to the thick
membrane in the large solvent molecule limit —i.e. the
thickness is not relevant when the solvent molecules are
large. Interestingly, for large solvent size, the local crin-
kling mechanism induces a stiffening of the membrane in
the flat phase (fig. 3).
When R is considerably smaller than ∆, the membrane

exhibits a transition from the high-temperature flat phase
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∆R=0.5   , T=0.2

∆

∆R=0.5   , T=0.1

R=5   , T=0.1 R=0.5   , T=0.4∆

(a)

(c) (d)

(b)

Fig. 2: (Colour on-line) Conformations of a hydrophobic
membrane immersed in water. The membrane has an edge
length of L= 7l and a thickness 2∆= 1.6 l. (a) Two views of a
conformation found at T = 0.1ε/kB for a membrane when the
solvent radius, R= 5∆, is large. The triangular lattice shown
indicates the membrane’s middle layer. The membrane is fully
buried due to the local crinkling mechanism. Note the the
membrane surface is rough but the overall shape is flat. (b)–(d)
Three typical folded conformations at low temperatures for a
membrane in the small solvent regime. The solvent radius is
R=∆/2, and the temperatures are T = 0.4ε/kB (b), 0.2ε/kB
(c), and 0.1ε/kB (d) as indicated. The buried fractions are 0.31,
0.37 and 0.44 for the three cases (b), (c), (d), respectively. Note
that folding occurs predominantly along one axis.

to the low-temperature folded phase characterized by a
few different folded geometries (fig. 2(b), (c), (d)). The
membrane undergoes a spontaneous symmetry breaking
within the plane of the membrane. The folding of the
membrane occurs multiple times along a dominant folding
axis.

Ribbons in 2-D. – We have carried out also simula-
tions of solvophobic ribbons in 2-D (fig. 4). The ribbons
have a thickness of 2∆ and the solvent molecule in this case
is considered as a circular disc of radius R. We consider a
discretized ribbon axis described by a set of equally spaced
points separated by b=∆/2. The self-avoidance constraint
is imposed by requiring that none of the radii of the circles
passing through each of the triplets of the points on the
ribbon axis is smaller than ∆. All triplets of points are
considered. Like for membranes, we found two regimes
related to the solvent size. For R>∆, the ground state
of the ribbon is a straight conformation with local crin-
kling (fig. 4(a)). For R�∆, one finds folded conformations
with some local crinkling on the outer perimeter (fig. 4(b),
(c)). The folded conformations of the ribbon correspond
to a folded membrane in a dimensionally reduced repre-
sentation. For sufficiently small solvent size, the ground
state of the system is akin to a rolled carpet (fig. 4(c)).
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Fig. 3: (Colour on-line) Correlation between normal vectors.
Dependences of the correlation between normal vectors,
〈nxnx+r〉− 〈nx〉〈nx+r〉, on r, the distance between them, are
shown for the large solvent (R= 5∆) and small solvent (R=
0.5∆) cases. The small solvent case is shown as inset figure.
The membrane has the same characteristics as the one shown
in fig. 2. The correlation functions are shown for two differ-
ent temperatures: very high, T = 100ε/kB (solid line) and low,
T = 0.1ε/kB (dotted line), as indicated. The data shown for
each temperature are calculated from 100 statistically inde-
pendent conformations sampled in parallel tempering Monte
Carlo simulations under equilibrium conditions. The oscilla-
tion in the correlation function for small solvent size at low
temperature reflects the folding along a preferential axis. Note
that in the large solvent case, the correlation, at fixed distance,
is larger as temperature decreases demonstrating a stiffening
of the membrane due to local crinkling.

Using simple analytic calculations, we find that when
R>∆(2− b2/∆2), a ribbon can adopt a virtually straight
conformation with local crinkling that buries the perime-
ter completely. Such a conformation is shown in fig. 4(a)
for R= 2∆ (the buried fraction does not reach 1 only
because of edge effects). In an optimal local crinkled
conformation, the radius of curvature is equal to ∆ at all
points. In the continuum, one can approximate a crinkled
conformation of the ribbon axis as being formed by join-
ing semicircles of radius ∆, the first convex upwards, the
second concave upwards, and so on. The buried fraction
of such a continuum crinkled ribbon is given by f = 1−
(2/π) arcsin( 2

2+R/∆ ), which converges to 1 as R/∆→∞.

Membrane near a wall. – We have also studied the
behavior of a tethered membrane of non-zero thickness
near a wall which provides a new mechanism for burying
the area of a membrane adsorbed on it. For small solvent
molecule size, there is a competition between the bind-
ing to the wall and folding for reducing the exposed area.
Our simulations show that below a temperature, which
increases with membrane size, and is higher than the fold-
ing temperature, the membrane is adsorbed on the wall
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R=∆ R=0.25 ∆

R=2 ∆

(b) (c)

(a)

Fig. 4: (Colour on-line) Conformations of a solvophobic ribbon
in 2-D in the presence of a solvent. In the regime where the
membrane is folded (fig. 2) this is a simpler (dimensionally
reduced) representation. The ribbons shown are of thickness
2∆ and length L= 25∆ (a) and L= 75∆ (b), (c). The solvent
is comprised of circular discs of radius R whose value is
indicated. The ribbon axes are shown as dashed lines. The
ribbon perimeters are shown in thinner (thicker) solid line
depending on whether they are buried from (exposed to) the
solvent. The buried fractions are 0.94 (a), 0.82 (b), and 0.72 (c)
for the three cases shown. Conformations (b) and (c) are the
ground states obtained in Monte Carlo simulations that seek to
minimize the exposed perimeter of the ribbons. Conformation
(c) corresponds to the familiar rolled carpet conformation of
membranes in 3-D in which the normal vectors lie isotropically
within the plane perpendicular to the folding axis.

(fig. 5). An adsorbed membrane would be flat at inter-
mediate temperatures and folded at lower temperatures.
Similar considerations suggest that multiple hydrophobic
membranes would adhere to each other, at any tempera-
ture, to shield much of the surface from the solvent yield-
ing an effectively rigid assemblage of membranes. For large
solvent molecules, the adsorption happens below a temper-
ature, that is higher than the temperature of effective local
crinkling. At very low temperatures, the membrane is crin-
kled while remaining bound to the wall.

Discussion. – Previous computational studies of
membranes have considered, in essence, models in the
infinitesimal thickness limit or 2-D array of spherical
particles. The key finding of studies of traditional
models (for a review see ref. [3]) is that a self-avoiding
tethered membrane always exists in a flat phase even
without any bending rigidity [14–16]. The inclusion of
self-attraction [17] leads to several folded phases at
intermediate temperatures along with hints of a crumpled
phase [18] and an isotropic collapsed phase at low temper-
atures. A recent study [19] with a Lennard-Jones potential
yielded folded sheets and cylindrical conformations. The
crumpled state has been also studied for an elastic sheet
confined in an impenetrable sphere [20] or folded under
external forces [21]. Studies of self-intersecting membranes
(or phantom membranes) predict a crumpled phase in
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Fig. 5: (Colour on-line) Adsorption of a membrane on the
wall. (a) Temperature dependence of the specific heat for
the system of a hydrophobic membrane and a wall. The
membrane is hexagonal in shape and has the edge length
L= 5l and the thickness 2∆= 1.2l. The solvent radius is R=
∆/2. Adsorption is induced by the shielding of membrane
surface from the solvent when it is found near the wall.
The adsorption transition is observed at temperature T ≈
2.5 ε/kB . Membrane conformations are shown for selected
temperatures as indicated. Both the bound and unbound
states at intermediate and high temperatures are flat. The
ground state however is a folded membrane bound the the
wall, and can be found only at very low temperatures (T =
0.1 ε/kB). (b) The dependence of the effective free energy,
F , on the distance, zcm, of the membrane center of mass
to the wall for three temperatures: above, below and at the
adsorption transition as indicated. The effective free energy is
calculated as F (T, zcm) =−kBT lnP (T, zcm), where P (T, zcm)
is the probability of finding the membrane at the distance zcm
of its center of mass to the wall at temperature T .

which the membrane’s radius of gyration, Rg, grows as√
lnL, where L is the membrane’s linear size [22,23].
With an increase in bending rigidity, phantom membranes
undergo a second-order transition from the crumpled
phase to the flat phase [24,25]. The flat, crumpled, and
collapsed phases have been observed experimentally
in red cell membrane skeletons [26], graphite oxide
membrane [27], and molybdenum disulfide [28].
Here we show that incorporating non-zero thickness

yields qualitatively new behavior of a hydrophobic
membrane seeking to minimize the area exposed to the
surrounding solvent molecules. Our simulations show
that in the small solvent molecule regime, the thickness
of the membrane introduces a spontaneous symmetry
breaking within the plane of the membrane. The folding
of the membrane occurs multiple times along a dominant
folding axis. This is akin to the everyday experience
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of the greater ease of folding a sheet of paper in a
fluted manner compared to first folding the paper along
one axis followed by folding the now two layered sheet
along a perpendicular axis and so on. A rolled carpet
conformation is also effective in burying much of the
surface from the solvent molecules (fig. 4(c)). Note that
the folded structures obtained here are similar to the
those in the tubule phase [29] —even in the absence of
any anisotropic bending energy, we observe spontaneous
symmetry breaking. For a large membrane, one obtains
uncoordinated folding at the edges into metastable confor-
mations. The structures of the folded thick membrane are
qualitatively similar to those observed in molybdenum
disulfide films [28] and in folding of viscous sheets and
filaments [30].
For large solvent molecules, the local crinkling mech-

anism effectively shields the surfaces of the membrane
from the solvent, while preserving the overall flat topol-
ogy. Similar local deformations are observed in real
membranes. Wrinkled rigid structures have been observed
experimentally upon cooling partially polymerized phos-
pholipid membranes [31] and have been interpreted as
resulting from quenched curvature disorder leading to
a glassy phase. Studies of wrinkled patterns of polymer
films [32] have indicated that thickness plays a role in the
formation of these patterns.
We note that the our study considers paint brush sizes

in two distinct regimes: smaller than or larger than the
membrane thickness. Membranes thicker than the size
of a water molecule (≈ 2.8 Å) are quite common. The
other limit is obtained when the role of solvent is played
by large complexes such as proteins (3–10 nm), t-RNA
(7 nm), antibodies (12 nm) and ribosomes (20–30 nm).
Interestingly, for a relatively dilute concentration of these
complexes, even of the order of 10% in volume fraction
according to Asakura-Oosawa theory [33], the entropy
depletion effect alone is sufficient to create a tendency to
fold the membrane leading to minimization of the exposed
area.
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