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ABSTRACT
DNA toroids are compact torus-shaped bundles formed by one or multiple DNAmolecules being condensed from the solution due to various
condensing agents. It has been shown that the DNA toroidal bundles are twisted. However, the global conformations of DNA inside these
bundles are still not well understood. In this study, we investigate this issue by solving differentmodels for the toroidal bundles and performing
replica-exchange molecular dynamics (REMD) simulations for self-attractive stiff polymers of various chain lengths. We find that a moderate
degree of twisting is energetically favorable for toroidal bundles, yielding optimal configurations of lower energies than for other bundles
corresponding to spool-like and constant radius of curvature arrangements. The REMD simulations show that the ground states of the stiff
polymers are twisted toroidal bundles with the average twist degrees close to those predicted by the theoretical model. Constant-temperature
simulations show that twisted toroidal bundles can be formed through successive processes of nucleation, growth, quick tightening, and slow
tightening of the toroid, with the two last processes facilitating the polymer threading through the toroid’s hole. A relatively long chain of
512 beads has an increased dynamical difficulty to access the twisted bundle states due to the polymer’s topological constraint. Interestingly,
we also observed significantly twisted toroidal bundles with a sharp U-shaped region in the polymer conformation. It is suggested that this
U-shaped region makes the formation of twisted bundles easier by effectively reducing the polymer length. This effect can be equivalent to
having multiple chains in the toroid.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134710

I. INTRODUCTION

In DNA condensation, extended DNA chains collapse into
highly compact structures, which contain only one or a small num-
ber of molecules.1,2 The condensation can occur spontaneously
in vitro upon adding a small amount of multivalent cations, such
as spermidine3+, to a buffered solution of low ionic strength.3 It
can also be observed by using polymeric osmolytes, such as small
peptides or PEG, as the condensing agents.4 The packing of DNA
inside a condensate is highly ordered and is akin to a nematic liq-
uid crystalline state.5 Themost commonly observedmorphologies of
DNA condensates are toroid and rod-like.6 The sizes of these struc-
tures depend on the solution condition and range from few ten to
few hundred nanometers.7 Under a certain method of preparation,

larger condensates with spheroid and V-shaped morphologies can
be observed.8 Surprisingly, the size of DNA condensates does not
depend the contour length of the DNA molecules involved in the
condensation.9

The phenomenon of DNA condensation has been consid-
ered theoretically from the perspective of the collapse of semi-
flexible polymers into compact structures, often in the form
of toroidal and/or rod-like globules. Different aspects of this
polymer collapse have been studied in order to deduce the
detailed geometry of the condensates and the resulting phase
diagram10–16 and their dependence on the forms of the elastic
potential,17,18 and the DNA–DNA interaction potential,19 as well
as to elucidate the nature of the collapse transition20,21 and kinetic
pathways.22–25
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There has been much focus on the structural organization
of DNA in toroidal condensates. In a DNA toroid, the DNA
winds around the toroid main axis, making a tight circular bundle.
The lateral packing of the filaments inside the toroid is predomi-
nantly hexagonal,26 but the structure also contains non-hexagonal
parts.27 Using cryo-electron microscopy, Leforestier and Livolant
have shown that the DNA toroidal bundle inside the bacterio-
phage capsid is twisted with a number of twist walls, the portions
of the toroid in which the hexagonal lattice is rotated, separating
non-rotated hexagonal domains.28 Earlier indirect indications of a
twisted state come from experiments29,30 and simulations,31 which
show that the path of DNA inside the toroids does not follow the
spool-like packaging, and also from the strong knotting of DNA in
phage capsids.32 Based on experimental observations, Hud et al. have
proposed a constant radius of curvature model30 for the organiza-
tion of DNA in the toroids, which is akin to a twisted bundle. Amore
elaborate model of a twisted bundle has been analyzed by Kulić et al.,
showing that twisting can spontaneously relax the bending energy of
the toroidal bundle.33 However, the formation of such twisted bun-
dles by a single or multiple DNA chains in a toroid is still not well
understood, which is part of a more general problem of packing of
twisted filament bundles.34

The present study is aimed at better understanding the twisted
state of toroidal bundles formed by semiflexible polymers. We focus
on whether the twisted bundles are competitive in energy among
several kinds of bundle organization, such as in the constant radius
of curvature model, and whether such a twisted state is the ground
state of a stiff polymer chain with self-attraction. To get insights into
these issues, we employ a combined approach of using both theo-
retical models and coarse-grained molecular dynamics simulations,
allowing a comparison between the two methods. We consider two
slightly different models for the twisted toroidal bundles, one with a
uniform and the other with a variable degree of twisting, to compare
with other models corresponding to spool-like and constant radius
of curvature arrangements. The simulations of the stiff polymers
are carried out both with the replica-exchange molecular dynamics
(REMD) method35 for finding low energy conformations and with
constant temperature molecular dynamics for studying the toroid
formation process.

We will show that a moderate twisting significantly increases
the stability of a toroidal bundle, while the topological constraint
of a long polymer may affect its ability to form a twisted bundle.
Interestingly, the results obtained from the simulations are in good
agreement with the theoretical models.

II. MODELS AND METHODS
A. Twisted bundle models

In a twisted toroidal bundle within a toroid of mean radius R
and thickness radius Δ as shown in Fig. 1(a), the DNA conformation
has the parameterized form33

r(ρ, θ,ϕ) =
⎛⎜⎜⎜⎜⎝
(R − ρ cos θ) cos ϕ
(R − ρ cos θ) sin ϕ

ρ sin θ

⎞⎟⎟⎟⎟⎠
, (1)

FIG. 1. (a) Sketch of the coordinates of a toroidal bundle. The toroid’s tubular axis
(dashed circle) is set to be centered at the origin O of the Cartesian coordinates on
the xy plane. A DNA filament is shown from point 1 to point 2 inside the torus (only
half of which is shown). The filament trace is determined by the radial distance ρ
from the tubular axis, the rotation angle ϕ around the main axis z, and the rotation
angle θ within the tubular cross section. R and Δ are the toroid’s mean radius
and thickness radius, respectively. For the twisted toroidal bundle, θ = θ0 + kϕ,
where θ0 is a θ’s value at ϕ = 0 and k is the twist number. (b) Illustration of a
twisted toroidal layer formed by a single chain with k = 0.73 at two different viewing
angles.

with θ = θ0 + kϕ and the column on the right having the x, y, and z
components of the vector r. In this parameterization, r is the posi-
tion of the DNAmolecular axis, ρ ∈ (0,Δ) is the radial distance from
the toroid’s tubular axis, ϕ and θ are the rotation angles around the
main and tubular axes, respectively, and k is a parameter that sets the
degree of twisting. k defines how much the change in θ is faster than
the change in ϕ along the filament and is hereby called the twist num-
ber. Such a bundle is organized into disconnected toroidal layers of
filaments at constant ρ as shown in Fig. 1(b).

Denote r′ = dr/dϕ. It can be shown that

∣r′∣ =√(kρ)2 + (R − ρ cos θ)2, (2)

which gives the differential of the arc length s of a filament,
ds = ∣r′∣dϕ. The tangent t is defined as

t = dr
ds
= 1∣r′∣ drdϕ . (3)

The normal n and the binormal b are defined through the
Frenet–Serret equations,36

dt
ds
= c n, dn

ds
= −c t + τsb, db

ds
= −τsn, (4)

which also define the curvature c and the torsion τs of the DNA axis.
From the parameterization in Eq. (1), c can be obtained in a closed
form, whereas τs is more conveniently calculated numerically. Due
to the toroid symmetry, both c and τs are functions of ρ and θ only.

J. Chem. Phys. 158, 114904 (2023); doi: 10.1063/5.0134710 158, 114904-2

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Given that d is the lateral distance between neighboring DNA
filaments and η = π/(2√3) is the volume fraction of a hexagonal
packing, the total length of DNA in the toroid is given by

L = ηVtor

π(d/2)2 = 8πηΔ2R
d2

. (5)

One can write the bending energy of the toroidal bundle in the
volume integral form

Utor = η
π(d/2)2∫

Δ

0
dρ∫ 2π

0
ρ dθ∫ 2π

0
(R − ρ cos θ) A

2
c2 dϕ, (6)

whereA is the DNA bending stiffness.37 Note that this form of bend-
ing energy implies a uniform density of DNA inside the toroid, or
equivalently, a constant spacing d within the toroid. The latter is
an approximation since a recent experiment has shown that this
spacing decreases with increasing distance from the toroid center.38

We adopt an energy function for the toroid that includes only
bending and surface energy terms,

Etor = Utor + σStor, (7)

where σ is the surface tension and Stor = 4π2ΔR is the toroid’s sur-
face area. The present model neglects the twist degree of freedom of
the DNA double helix and also assumes that the chain is inextensi-
ble. These are reasonable approximations given that the molecule is
not under torque nor under tension. Indeed, it can be shown that
the twist energy in toroids due to the twist-bend coupling39 is negli-
gible (see Sec. IV). However, it should be noted that our model also
neglects the helical structure of DNA, which may give rise to the
twisting of DNA bundles.28

Let us call α = Δ/R the thickness radius to mean radius ratio
or, shortly, the thickness ratio. The equilibrium configuration of the
toroid is obtained by minimizing the energy with respect to α and k.
Hence, Etor plays the role of free energy at a constant temperature.
In numerical calculations, we set d = 2.8 nm and the DNA bending
stiffness A = 50 nm ⋅ kBT, with kB the Boltzmann constant and T
the absolute temperature. Energy is given in units of kBT.

We consider twomodels of twisted toroidal bundles. In the first
model, namely, the twisted bundle (TB) model, the twist number k
is independent of ρ and, thus, is uniform in the whole toroid. This
model is identical to the conventional model considered elsewhere.33
The second model allows k to be varied with ρ and, thus, is hereby
named the twisted bundle model with a ρ-dependent twist number
(TB-ρ model). In both models, k is optimized by minimizing the
toroid energy.

B. Spool-like model
The spool-like (Sp) model30 is a special case of the TB model

with k = 0. In the Sp model, the curvature is given by

c = 1
R − ρ cos θ

, (8)

and the bending energy in Eq. (6) can be exactly calculated giving

USp
tor = 8πηA

d2
(R −√R2 − Δ2). (9)

C. Constant radius of curvature model
The constant radius of curvature (CC) model30 sets a uniform

curvature of DNA within the toroid with the radius of curvature
equal to the toroidal mean radius R. Such a model is formed by loops
being deposited spirally around the toroid circular axis (see Ref. 30).
The bending energy in this model is equal to

UCC
tor = A

2
L
R2 . (10)

D. Stiff polymer model with self-attraction
We also consider a stiff polymer model for studying the toroid

formation by molecular dynamics simulations. The model considers
a chain of N beads with the potential energy given by

Ep = N−1∑
i=1 K(ri,i+1 − b)2 +

N−2∑
i=1 κb(1 − ui ⋅ ui+1)

+ ∑
i<j+2ϵ[e−2(rij−d0)/λ − 2e−(rij−d0)/λ], (11)

where the first term contains harmonic potentials for the chain con-
nectivity with the equilibrium bond length b and spring constant
K, the second term is a worm-like chain or Kratky–Porod’s type of
bending energy37,40 with κb the stiffness per bead, and the last term
corresponds to non-local interactions given by theMorse potential15
with the potential depth ϵ, the equilibrium length d0, and the decay
length λ. ri,i+1 = ∣ri+1 − ri∣ is the distance between beads i and i + 1.
ui is a normalized vector given by

ui = ri+1 − ri
ri,i+1 . (12)

rij is the distance between bead i and bead j. All the beads are
assumed to have the same mass m. For the simulations, we con-
sider b, m, and ϵ as the length, the mass, and the energy units,
respectively. The parameters chosen for the model are K = 100ϵ/b2,
κb = 22ϵ, d0 = 1.4b, and λ = 0.24b. Given that the DNA thickness is
about 2 nm, which is equivalent to b, the chosen values d0 and λ are
close to those of the intermolecular potential in multivalent cation
condensed DNA measured by osmotic stress.41

To analyze the twist degree of a toroidal structure of the
polymer obtained by the simulations, we first fit the polymer con-
formation to a perfect torus. The torus center is the center of mass of
the polymer. The main axis of the torus is determined by diagonaliz-
ing the inertia tensor of the polymer conformation. The mean radius
R is obtained by minimizing the root mean square distance of all the
beads of the polymer from the tubular axis. A local tangent vector at
the bead i of the polymer is defined as

ti = ri+1 − ri−1∣ri+1 − ri−1∣ . (13)

The local twist number of the bead i at the distance ρ from the
tubular axis and with the toroidal rotation angle θ is calculated as

ki = (R − ρ cos θ) tϕ
ρ tθ

, (14)
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where tϕ = ti ⋅ eϕ and tθ = ti ⋅ eθ are the ϕ- and θ-components of the
tangent vector, respectively, with eϕ and eθ the unit vectors along the
corresponding rotational directions.

E. Replica-exchange molecular dynamics (REMD)
The replica-exchange molecular dynamics (REMD) method35

is implemented to find the ground state of the stiff polymers. In this
method, one simulates multiple copies (or replicas) of a system at
various constant temperatures and regularly attempts swap moves
that exchange the replica conformations at neighboring tempera-
tures with associated velocity rescaling. The exchange probabilities
are determined such that the detailed balance condition is satis-
fied at each temperature.42 This parallel tempering technique has
been widely used in molecular simulations and is very efficient for
obtaining equilibrium characteristics as well as the ground state of a
system. In our REMD simulations, the constant temperature runs
for the replicas were carried out by using a molecular dynamics
method based on the Langevin equation.43 For a given polymer,
16–30 replicas were simulated at a range of temperatures that span
from a high temperature corresponding to the swollen phase of the
polymer to a low temperature near zero. The swap moves were
attempted every 10τ, where τ = (mb2/ϵ)1/2 is the simulation’s time
unit. The lengths of the simulations are of the order of 106τ for each
replica. For each polymer length, up to 24 independent REMD sim-
ulations were carried out. The ground state is considered to be the
lowest energy conformation if the same conformation was obtained
in several runs.

III. RESULTS
We first studied the characteristics of the four models of

toroidal bundles: TB, TB-ρ, Sp, and CC, described in Sec. II. For a
given DNA length L and a surface tension σ, the toroid energy is
minimized with respect to the thickness ratio α = Δ/Rwith α ∈ (0, 1)
in all the models. In the TB and TB-ρmodels, the energy is also min-
imized with respect to the twist number k and k(ρ), respectively.
Typical toroids have L from 15 to 30 μm, whereas a giant toroid can
reach L ∼ 103 μm. The value of σ can be estimated from the inter-
molecular potential Φ(d) for DNA measured by the osmotic stress
experiment41 as σ = −Φ(d)

d .15 Consider an example of L = 30 μm and
σ = 0.15kBT/nm2. The TB model has the energy minimum at the
optimal twist number k∗ ≈ 0.738, as shown in Fig. 2. This energy
minimum is substantially lower than the lowest energy of the toroid
in the Sp andCCmodels with the energy difference from ∼70 to ∼150
kBT. The TB-ρmodel yields an energy of only ∼6 kBT lower than the
TB model and is the one that gives the lowest energy among all the
models. The above picture of the energy competition is qualitatively
the same for all L and σ, indicating that twisting can substantially
stabilize the toroidal bundle.

Due to the system’s geometry, the optimal twist number k∗ in
the TBmodel is a function of the thickness ratio α alone. As shown in
Fig. 3(a), k∗ is a non-monotonic but primarily decreasing function
of α. The values of k∗ are bound between the maximum of about
1.12 obtained at the limit of α = 0 and the minimum of about 0.66 at
α ≈ 0.89. Similarly, the optimal twist number k∗(ρ) in the
TB-ρ model is a function of ρ/R alone. Figure 3(b) shows that the
dependence of k∗(ρ) on ρ/R is non-monotonic with a maximum at

FIG. 2. Dependence of the toroid energy on the twist number k in the twisted
bundle model (TB) (solid) for the DNA length L = 30 μm and the surface tension
σ = 0.15kBT/nm2. For each value of k, the energy is minimized with respect to
the thickness ratio α. The energy at k = 0 corresponds to the spool-like model
(Sp). Horizontal lines indicate the toroid energy in the constant radius of curvature
model (CC) (dashed) and in the twisted bundle model with a ρ-dependent twist
number (TB-ρ) (dotted).

ρ/R = 0 and a minimum at ρ/R ≈ 0.81. The range of k∗(ρ), from
0.55 to 1.12, is slightly different from that of k∗. The ranges of k∗
and k∗(ρ) indicate that twisting is moderate in the optimal toroidal
bundles.

Figure 4 shows the curvature maps in a tubular cross section
of the toroids in the four models considered. These maps, obtained
for α = 0.66 and suitably at optimal values of k and k(ρ), show that

FIG. 3. (a) Dependence of the optimal value of the twist number, k∗, on the toroid’s
thickness ratio α in the TB model. (b) Dependence of the optimal value of the
ρ-dependent twist number, k∗(ρ), on the ratio ρ/R in the TB-ρ model.
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FIG. 4. Curvatures of DNA in modeled toroids with a thickness ratio α = 0.664.
The curvatures, with values indicated by the color bar in units of R−1, are shown
as color maps for a tubular cross section of the toroidal bundles in the TB (a),
TB-ρ (b), Sp (c), and CC (d) models. The toroid in the TB model is shown with the
optimal twist number k∗ = 0.738. The right edge of the cross section corresponds
to the inner edge of the toroid.

the TB and TB-ρ models have a broad spot of low curvatures near
the inner edge of the toroid (the right edges of the cross sections
in Fig. 4). At this region of the cross section, the curvatures are the
highest in the Sp model. This difference clearly shows the effect of
twisting on lowering the curvatures of the bundles. On increasing
α, we find that the low curvature spot in the TB and TB-ρ models is
slightly shifted away from the inner edge of the toroid (see Fig. S1 for
α = 0.9), but the qualitative picture is unchanged. No big difference
is seen in the curvature maps of the TB and TB-ρmodels, indicating
that these two models work similarly.

Figure 5 shows the dependence of the optimal twist number, k∗,
on the DNA length, L, and the surface tension, σ, as a heat map for
the toroidal bundles in the TBmodel. It can be seen that k∗ gradually
decreases from the top values to someminimum value on increasing
L or σ with the gradient in σ much higher than in L. There is a region
in the top right of the σ–L plane where k∗ is constant and equal
to 0.667. This region corresponds to the toroids with α = 1 or the
toroids with no holes (see also Fig. S2). The boundary of this region
is found to have a shape of L ∼ σ−3 in the σ–L plane, indicating an
invariance of α and, hence, k∗ by rescaling σ with L1/3.

In fact, in all the models considered, the properties of toroidal
bundles are invariant with the scaled quantity (σ/A)L1/3. Figure 6
shows that the thickness ratio α increases with (σ/A)L1/3 in all the
models considered, but the toroids in the TB and TB-ρmodels have
a higher thickness ratio than in the CC and Sp models for the same(σ/A)L1/3. The value of α, therefore, reaches 1 faster in the TB and
TB-ρmodels on increasing L or σ. These two twisted bundle models
also yield very similar values of α, as shown in Fig. 6.

Finally, we carried out REMD simulations of stiff polymers
with self-attraction to study the toroid formation. We fixed the stiff-
ness per bead of these polymers to be κb = 22ϵ and studied various
chain lengths of N = 64, 128, 256, and 512 beads. For the stiffness
and length considered, the simulations show that the polymers form

FIG. 5. Dependence of the optimal twist number, k∗, on the DNA length, L, and the
surface tension, σ, of toroidal condensates in the twisted bundle model. The values
of k∗ are shown by a heat map with colors indicated by the associated color bar.
The dashed line indicates the boundary of a map region in which k∗ is constant(k∗ = 0.667). In this region, the toroid has no hole (α = 1). The boundary has
the shape of L ∼ σ−3.

toroids at low temperatures and rods at intermediate temperatures.
Figures 7(a)–7(d) show the lowest energy conformations obtained
by the simulations for these systems, all of which have a toroidal
shape. For N = 64, 128, and 256, the conformations shown in Fig. 7
are very likely the ground state of the corresponding system as we
have obtained very similar conformations of similar energies in sev-
eral independent simulations. For N = 512, this is less likely due to
the large system size and the decreased dynamical accessibility of the
lowest energy states [the lowest energy conformation in Fig. 7(d) was
obtained only once]. Interestingly, all these ground state and lowest
energy structures appear as twisted toroidal bundles with the poly-
mer winding repeatedly from the outer perimeter to the inner hole of

FIG. 6. Dependence of the thickness ratio α on the scaled and dimensionless
quantity (σ/A)L1/3d8/3 for toroidal bundles in the TB (solid), TB-ρ (dotted), CC
(dashed), and Sp (dotted) models, as indicated. In all models, the toroid energy is
minimized with respect to geometrical parameters.
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FIG. 7. (a)–(d) Toroid conformations obtained by REMD simulations in the self-attractive stiff-polymer model with κb = 22ϵ. The conformations shown are the lowest energy
conformations for the chain lengths N = 64 (a), N = 128 (b), N = 256 (c), and N = 512 (d). Each conformation is shown at two different viewing angles. (e)–(h) Fits of the
bundles from left into a perfect torus shown at two different angles. The analyses of the bundles (see Sec. II and Fig. S3) give the estimated values of α and the average
twist number, ⟨k⟩, for each conformation (numbers in parentheses). (i) Dependence of the average twist number, ⟨k⟩, on the thickness ratio α for the toroidal bundles shown
in (a)–(d) (squares). The data points are labeled with the corresponding chain lengths. For comparison, the dependence of the optimal twist number, k∗, on α from the TB
model is also shown (dashed).

the toroid. They look remarkably similar to the ideal twisted bundle
shown in Fig. 1(b).

In order to quantitatively estimate the twist degrees of the low-
est energy toroidal bundles, we fitted the polymer conformation to
a perfect torus for each system and then calculated the local twist
numbers from the local tangent vectors of the polymer (see Sec. II
and Fig. S3). The images of the fits are shown in Figs. 7(e)–7(h).
Our analysis gives the average twist number ⟨k⟩ ≈ 0.73, 0.67, 0.69,
and −0.7, for the N = 64, 128, 256, and 512 systems, respectively.
The minus sign for the average twist number of the N = 512 system
stands for an inverse twisting direction of this bundle compared to
other bundles. For all the bundles shown in Fig. 7, ⟨k⟩ falls within
the range of k∗ predicted by the TB model. By plotting ⟨k⟩ vs α
for the lowest energy toroids obtained by simulations, as shown
in Fig. 7(i), we find that ⟨k⟩ < k∗ for all systems considered, but
the data points are quite close to the curve of k∗ given by the
TB model.

Note that we have also obtained many competing toroidal con-
formations from independent REMD simulations. Some of them are
shown in Fig. 8 for theN = 256 andN = 512 systems. The energies of
these conformations are only slightly (less than 2%) higher than the
energies of the lowest energy conformations shown in Figs. 7(c) and
7(d). Note that though having low energies, some of these toroidal
bundles are only weakly twisted [Figs. 7(c), 7(d), and 7(f)]. Interest-
ingly, some other toroidal bundles are strongly twisted. For example,
the conformations shown in Figs. 8(a), 8(b), and 8(e) are even more
twisted than the lowest energy conformations in Figs. 7(c) and 7(d).
Note that the strongly twisted bundles in Fig. 8 [conformations (a),

(b), and (e)] have a sharp U-shaped region in the polymer con-
formation. It seems that this U-shaped region makes the polymer
effectively shorter and, hence, allows easier access to the twisted
bundle conformation with some cost in energy.

FIG. 8. Some low-energy toroidal conformations obtained in REMD simulations
for stiff polymers of lengths N = 256 [(a)–(c)] and N = 512 [(d)–(f)] with κb = 22ϵ.
The energies of these conformations are higher than but within 2% of the energy of
the conformations shown in Figs. 7(c) and 7(d). The two numbers in parentheses
under each conformation correspond to the thickness ratio α and the average twist
number ⟨k⟩, respectively, obtained from the analysis of the bundle. The local twist
numbers of the residues in the U-shaped regions are discarded in calculating ⟨k⟩.
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The REMD simulations carried out above are efficient for
energy minimization, but they contain unrealistic conformational
changes due to the replica exchange moves. In order to study the
toroid formation process with true dynamics, we carried out mul-
tiple constant-temperature MD simulations of the stiff polymer of
N = 256 beads at temperatures T below the collapse transition tem-
perature, which is roughly ∼2.7 ϵ/kB. At T = 0.5ϵ/kB and T = 1ϵ/kB,
nearly 40% of the trajectories succeeded in forming a toroid within
the simulation time limit of 106τ for each temperature. Other trajec-
tories ended up in hairpin-like and rod-like conformations (see Fig.
S4), which are known to be metastable states of stiff polymers.23 At
T = 2ϵ/kB, almost all the trajectories ended up in a toroid within the
above time limit. From these simulations, we find that toroids can be
formed from extended conformations either through a direct path-
way (without intermediates) or through an indirect pathway (with
intermediates).

A typical direct pathway can be described by the trajectory
shown in Fig. 9, which is obtained at T = 0.5ϵ/kB. In this trajec-
tory, the extended chain spontaneously forms a loop that nucleates a
growth process, resulting in a rapid folding of the chain into a toroid.
Once formed, the toroid continues to undergo a quick tightening
process and then a slow tightening process, which reduce the toroid
diameter and increase its thickness (see conformations in Fig. 9). A
sharp drop in energy is associated with both the growth and the
quick tightening processes, whereas the slow tightening decreases
the energy only slightly and stops when the structure is fully relaxed.
Interestingly, the toroid is seen to be twisted early in the tight-
ening processes and in the final structure, indicating that toroidal
bundles are prone to twisting with any toroid diameter. Most of
the toroids formed with the above-mentioned pathway have no
U-shaped region in the final structure. However, depending on the
trajectory, the chain may also form a U-shaped region during the
growth process (see the example in Fig. S5).

An example of an indirect pathway is shown in Fig. 10 with
a trajectory obtained at T = 1ϵ/kB. In this trajectory, the chain first
forms a long hairpin-like conformation (also called one-head rac-
quet conformation23), with a length equal to half of the DNA length,
as the intermediate state. The hairpin-like conformation then spon-
taneously forms a loop, which then quickly tightens into a twisted
toroidal bundle (the growth process is lacking in this trajectory
because the nucleated loop has the full length of the hairpin). The
toroid formed via this pathway typically contains the U-shaped
region initially belonging to the hairpin. It can be expected that
rod-like conformations are the possible intermediates in the toroid
formation since they appear as long-lived states in the simulations
(Fig. S4). However, the rod to toroid transition can be extremely slow
at low temperatures due to high energy barriers. In fact, we did not
observe this transition at T = 0.5ϵ/kB and T = 1ϵ/kB within the given
simulation time limit. However, by increasing the temperature, one
can easily observe the rod to toroid transition. For example, in a tra-
jectory at T = 2ϵ/kB shown in Fig. S6, the chain first forms a rod-like
structure that progressively becomes more compact and then trans-
forms into a toroid. It is also found that, on average, the polymer
collapse is faster as the temperature is increased within the low-
temperature range considered. It can be understood that increasing
the temperature makes the stiff polymer more flexible and promotes
conformational changes, resulting in shorter times for nucleation
loop formation and transitions between metastable states. Note that
the change in temperature in our model is equivalent to an inverse
change in the interaction strength between DNA segments, which
can be modulated by the solvent condition.

The kinetic pathways described above are in agreement with
many previous simulation studies of semiflexible polymers22–25,31
and are supported by the in vitro kinetic studies of DNA
condensation.2,6,44,45 A plausible new finding from the present sim-
ulations is of the tightening processes, which are subsequent to the

FIG. 9. A simulation trajectory leading to
a toroid formation without intermediates.
The trajectory was obtained at temper-
ature T = 0.5ϵ/kB for a stiff polymer of
N = 256 beads with the bending stiff-
ness κb = 22ϵ. The time dependence of
the potential energy Ep and a number
of conformations drawn from the trajec-
tory at selected points (open circles) are
shown. The observed stages of the poly-
mer collapse include nucleation, growth,
quick tightening, and slow tightening, as
indicated.
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FIG. 10. A simulation trajectory showing
the toroid formation through a hairpin-
like intermediate. The trajectory was
obtained at temperature T = 1ϵ/kB for
the stiff polymer of N = 256 beads with
the bending stiffness κb = 22ϵ. The time
dependence of the potential energy Ep

and several conformations drawn from
the trajectory at selected points (open
circles) are shown. The stages of the
polymer collapse include an intermediate
state, nucleation, quick tightening, and
slow tightening, as indicated.

growth process if the nucleation loop has a large size. Interestingly,
these tightening processes dynamically facilitate the formation of the
twisted toroidal bundles. It is understood that the twisting requires
a polymer to thread through the toroid’s hole many times. Dur-
ing the growth process, it is unlikely that the extended part of the
polymer can make a threading through the hole. In the tightening
processes, the threadings are possible and easier as the polymer ends
are located on the toroid and they are pushed through the hole by
the same forces that drive the tightening. In principle, a non-twisted
toroidal bundle can also convert into a twisted bundle by a struc-
tural relaxation without the tightening, but such a relaxation process
is much slower and more difficult due to the polymer’s topological
constraint. Indeed, we find that some trajectories that lack or almost
lack a tightening process, like the one shown in Fig. S5, only result
in weakly twisted toroidal bundles.

IV. DISCUSSION
The twisted bundle model represents a smooth nematic flow

field. Mapping the model to a single chain conformation requires
more than a discretization. As described before, the toroidal bun-
dle in this model is organized into disconnected layers of filaments.
The bundle in a single layer could be formed by a single filament,
such as the one shown in Fig. 1(b), but this may not happen, in gen-
eral. Connecting the filaments from different layers leads to localized
defects.33 Thus, a single polymer conformation of perfectly uniform
twist vector k inside the toroid does not exist. The polymer toroidal
bundles obtained in our simulations are far from the perfect one as
shown by a strong variation of the local twist vector (Fig. S3). This
variation can be due to various factors, such as the small system size,
the chain discretization, and the surface effect.

It can be expected that the twisted bundles in the TB-ρ model
would lead to a distortion of the hexagonal lattice of filaments as
the filament layers in ρ are not twisted in phase. Such a distortion
would not be favorable by the intermolecular potentials.46 Interest-
ingly, our study shows that the TB-ρ model yields only a marginal
stability of a few kBT compared to the TB model. Thus, the uniform
twisting should be more favorable if the distortion of the hexago-
nal lattice in non-uniform twisting comes with a sufficiently high
energy cost.

Knotting and unknotting are rare events in polymer dynam-
ics.47 In a twisted toroidal bundle, as shown in Fig. 1(b), the DNA
chain threads through the hole of the toroid many times making the
conformation highly knotted. Given n = η(Δ/d)2 is the number of
filament crossings found within a toroid tubular cross section, the
number of threadings through the hole is roughly equal to n ⋅ k,
with k the twist number. As an estimate, a toroid of 100 nm dia-
meter and a thickness ratio α = 0.6 would have about 31 threadings
at its optimal twist number. Such a high knotting state would be
dynamically inaccessible for a toroid formed by a single chain. How-
ever, the situation should be much easier if the toroid is formed
by multiple chains. For example, if there are ten chains in the
toroid, then each chain would have to make only about three
threadings.

DNA is known to have a torsional stiffness associated with
elastic responses of the molecule to twist deformations, which corre-
spond to either overwinding or underwinding of the DNA double
helix.48 The torsional stiffness plays an important role in DNA
supercoiling, for example in the wrapping of DNA around the his-
tone protein core in nucleosomes.49 Marko and Siggia39 showed
that the elasticity of DNA also includes a twist–bend coupling aris-
ing from the asymmetry between the major and minor grooves
of the double helix. Due to this coupling, bending the molecule
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induces an unwinding of the helix, whereas overwinding it increases
the helix’s bending stiffness. There is also a softening of the bend-
ing rigidity due to the twist–bend coupling. In Marko and Siggia’s
model of B-DNA,39 the twist strain Ω3 is defined as a deviation of
the local twist density from (ω0 − τs), where ω0 = 2π/l = 1.85 nm−1
is the twist density of DNA in the absence of deformations
(l = 3.4 nm is the DNA helical pitch) and τs is the torsion of the
molecular axis [see Eq. (4)]. The torsion in the twisted bundle model
can be calculated giving ∣τs∣ < 0.04 nm−1 for toroids of typical sizes.
For the DNA conformations with a constant curvature c and a con-
stant torsion τs, Marko and Siggia showed that the equilibrium
excess twist per helix repeat is ⟨Ω3⟩/ω0 = −0.5(D/C)2(c/ω0)239 for
τs = 0, where C is the torsional stiffness andD is the twist–bend cou-
pling constant. It was also shown that the case of τs ≠ 0 leads only
to a small correction for ⟨Ω3⟩/ω0 (Fig. 2 of Ref. 39). A recent study
has estimated that C = 110 nm ⋅ kBT and D = 40 nm ⋅ kBT.50 For
the DNA in a toroid with the mean radius R = 40 nm, using the
constant radius of curvature approximation, we get c = 0.025 nm−1,
giving ⟨Ω3⟩ ≈ −2.2 × 10−5 nm−1. It comes that the twist energy of
the toroid, calculated as L 1

2C⟨Ω3⟩2, is less than 0.03kBT. Thus, the
contribution of the twist energy in toroids is negligible. This result
is much different from that for the DNA supercoil on the nucleo-
some, for which the radius of curvature of DNA is just ∼4.5 nm.With
such a small radius, the twist–bend coupling can lead to measurable
effects.39,51

V. CONCLUSION
We have studied several theoretical models for the organiza-

tion of DNA in toroidal condensates. The results from these models
show that the twisted toroidal bundles provide the best stability for
toroidal condensates. The twomodels of twisted bundles considered,
one with uniform and the other with non-uniform twisting, yield
similar results upon energy minimization. These models show that a
moderate twisting can substantially lower the bending energy of the
toroid. The degree of twisting of the bundle can be quantified by the
twist number k, which determines how quick the change in the rota-
tion angle θ around the toroid tubular axis is compared to the change
in the rotation angle ϕ around the toroid main axis along the trace of
a DNA filament in toroidal coordinates. The uniformly twisted bun-
dle model shows that the optimal twist number k∗, for the toroid
energy is minimized, ranges from 0.66 to 1.12 and depends only on
the toroid thickness ratio α.

Interestingly, our REMD simulations show that the ground
states of stiff polymers with self-attractive potentials are twisted
toroidal bundles, which confirms the finding of the theoretical
models. Furthermore, the average twist numbers calculated for the
twisted bundles obtained by simulations are close to the optimal
twist number k∗ predicted by the uniformly twisted bundle model.
The constant-temperature simulations of the stiff polymers show
that toroids can be formed through a direct pathway or via a
hairpin-like or rod-like intermediate with the collapse governed
by the nucleation-growth mechanism. The formation of twisted
toroidal bundles is dynamically facilitated by the toroid’s tighten-
ing processes that happen subsequently to the growth process if
the toroid formation starts with a large nucleation loop. Due to
the topological constraint of the polymer, it is increasingly difficult

for a polymer with an increased chain length to access the lowest
energy twisted bundle state, as found for the chain of 512 beads.
The observation of strongly twisted bundles with sharp U-shaped
regions in the simulations suggests that the problem of dynami-
cal accessibility of the twisted bundles can be reduced if the toroid
is formed by multiple chains as found in multimolecular DNA
condensates.

It has been found that the formations of twisted bundles of fil-
aments and columns are often driven by molecular chirality.34 The
present study, as well as the early one,33 indicates that toroidal bun-
dles are prone to twisting due to the effect of bending stiffness, in the
absence of molecular chirality. It is also shown here that folding of a
polymer into the non-trivial structures of twisted toroidal bundles is
not as difficult as it seems to be.

SUPPLEMENTARY MATERIAL
See the supplementary material for the curvature maps of the

toroids with a thickness ratio α = 0.9; for the dependences of the
optimal twist number k∗, the mean radius R, and the thickness
radiusΔ on the surface tension σ of the toroidal condensate in the TB
model; for the analysis of the local tangent vectors of the stiff poly-
mers in the toroidal bundles obtained by REMD simulations; for the
observation of long-lived metastable states in constant-temperature
simulations; for a simulation trajectory showing the formation of
a U-shaped region during the toroid growth; and for a simulation
trajectory with a conversion from rod to toroid.
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