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Università Ca’ Foscari di Venezia, Campus Scientifico,
Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy

‡Institute of Physics, Vietnam Academy of Science and Technology,
10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam

§European Centre for Living Technology (ECLT), Ca’ Bottacin,
Dorsoduro 3911, Calle Crosera 30123 Venezia, Italy

¶Dipartimento di Fisica e Astronomia, Università di Padova and INFN,
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Proteins are the common constituents of all living cells. They are molecular machines

that interact with each other as well as with other cell products and carry out a dizzy-
ing array of functions with distinction. These interactions follow from their native state

structures and therefore understanding sequence-structure relationships is of fundamen-
tal importance. What is quite remarkable about proteins is that their understanding

necessarily straddles several disciplines. The importance of geometry in defining protein
native state structure, the constraints placed on protein behavior by mathematics and
physics, the need for proteins to obey the laws of quantum chemistry, and the rich role

of evolution and biology all come together in defining protein science. Here we review

ideas from the literature and present an interdisciplinary framework that aims to marry
ideas from Plato and Darwin and demonstrates an astonishing consilience between disci-

plines in describing proteins. We discuss the consequences of this framework on protein
behavior.
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1. Introduction

Proteins1–4 are powerful molecular machines. Small globular proteins fold into their

native state structures rapidly and reproducibly and these folded forms determine

their function. The folding of a globular protein is driven by hydrophobicity, the

aversion of the protein backbone and some side chains to water. This causes a

protein to expel the water from within its folded core thereby maximizing the self-

interaction of the backbone. Furthermore, in order to enable diverse functions, one

requires many distinct folded forms. This is elegantly enabled in proteins through

their modular structures.

The building blocks of protein structures predicted by Pauling and his collab-

orators5,6 and confirmed resoundingly in experiments over the decades allow for

literally thousands of ways in which α-helices and almost planar β-sheets can be

assembled to yield putative native state structures of globular proteins. Form deter-

mines function and these proteins interact with each other along with other cell

constituents in an orchestrated manner to enable life.

Our analysis begins with elementary mathematics. Symmetry dictates a tube

as a minimalist model for our protein chain. The space-filling conformation of a

discrete tube, whose axis is made up of Cα backbone atoms, is a helix with a

specific pitch to radius ratio and a specific rotation angle. These two quantities

along with the bond length uniquely determine all attributes of the space-filling

helix including the tube radius. Remarkably, the geometries of both anti-parallel and

parallel strand arrangements are predicted mathematically by considering space-

filling arrangements of assemblies of zig-zag strand conformations (which are special

two-dimensional forms of a helix) of a tube of the same radius. The helix and

the sheet, the modular building blocks of protein structures, are thus predicted

by considerations of mathematics and physics. A zero parameter first principles

prediction of the structures of these building blocks constitutes a re-derivation of

Paulings classic results without invoking quantum chemistry, the planarity of the

peptide bond, or the nature of the hydrogen bond.

But how are these structures realized here on earth? This is where chemistry

enters the picture. We present two significant results in our paper. The first is the

near perfect accord between theory and experiment. The second is the beautiful fit

of the rules of quantum chemistry to the requirements of mathematics and physics.

We then go on to study the complementary roles of the fields of chemistry and

biology in evolution, natural selection (the proteins are the molecular targets of

natural selection), and protein structure and function. Our work here celebrates the

marvelous accord between seemingly distinct and highly complementary approaches

to protein science from the fields of mathematics, physics, chemistry and biology.

More importantly, we hope that our work will provide a new framework and a fresh

unified perspective for understanding proteins. We alert the reader that our work

is primarily concerned with the geometries of the building blocks and not their

assembly into the tertiary protein structure.
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2. Results and Discussion

2.1. Mathematics and physics

A protein is a chain molecule which provides a natural context for its parts, an

essential attribute of a machine. Thus, we can distinguish between one Cα atom and

another depending, not just on the identity of their side chain but, more generally,

on their sequential location, say from the N -terminal end. From a geometrical point

of view, it is not possible to model a protein with just a single sphere [Fig. 1(a)].

One instead would need an object that is spatially extended to capture the chain

topology. A sphere is a region of space carved around a point, the sphere center.

A simple mathematical generalization of a sphere, resulting in an extended object,

is to replace the point by a line and carve out space within a distance ∆ from the

line. One then obtains a tube of radius (or thickness) ∆ [Fig. 1(b)]. Helices are

ubiquitous in bio-molecular structures. However, in every day life, we do not see

helices often except in the context of tubes. An example is a garden hose, which is

often wound into a helix. We will show below that a protein can indeed be usefully

viewed as a flexible tube.

It is natural to wonder whether, instead of a tube, one might equivalently con-

sider a chain of spheres with a railway train topology. There are at least two reasons

why this is not a satisfactory alternative. First, from a symmetry perspective, a

sphere looks the same when viewed from any direction. It is isotropic. However, a

chain is necessarily anisotropic. This is because there is a special tangent direction

at any given location along a chain. An anisotropic chain comprised of isotropic

Fig. 1. (Color online) Sketches of two simple geometries. (a) A sphere of radius ∆. The gener-

alization of a sphere is (b) a tube of radius ∆. The green point at the center of the sphere is
generalized to the green line, which is the axis of the tube. In (a), the sphere encloses a region of

length scale ∆ around the green point, whereas, in (b), the tube encloses a region of length scale

∆ around the green line. A garden hose is a tube and is often curled into a helical conformation.

2140051-3



April 19, 2022 18:49 IJMPB S0217979221400518 page 4

FA
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spheres results in a symmetry clash. A second reason for the inappropriateness of

a chain of spheres model is that it becomes an infinitesimally thin line in the con-

tinuum limit, whereas a tube is characterized by a non-zero thickness. Indeed, one

might imagine the tube shown in Fig. 1(b) to be a chain of coins rather than a

chain of spheres in the continuum limit.

We use a bare-bones description of a protein and treat the axis of the protein-

tube as a chain of equally spaced Cα atoms. The latter assumption is a good one

because the measured bond length (over more than 4000 experimentally determined

high resolution native state structures) is found to be (3.81± 0.02)Å.7 The thickness

of the tube can be thought of as being able to accommodate the other backbone

atoms, which we do not explicitly consider in our coarse-grained approach. We will

proceed by making a constructive hypothesis and assessing the consequences of this

hypothesis. Our hypothesis follows from the recognition that the dominant folding

mechanism of a protein is the hydrophobicity of its backbone along with the drive

to maximize its self-interaction,1–4 thereby attaining a space-filling folded state.8

Fortunately, for proteins, there is a wealth of experimental data accumulated over

the decades, which serve to validate our hypothesis.

The rest of this section is a hopefully more accessible summary of the results

of recent mathematical calculations.9 Remarkably, the theoretical analysis has no

further assumptions, no chemistry input, and no adjustable parameters, and allows

us to determine the space-filling conformations of a tube with a discrete axis with

fixed bond length. We predict three secondary structures: a tightly wound space-

filling helix; zig-zag strands packed into almost planar sheets, in two distinct man-

ners corresponding to parallel and anti-parallel sheets; and hexagonal packing of

straight backbone conformations, akin to a compact assembly of pencils. We do not

discuss the third secondary structure in the rest of this paper because the presence

of side-chains, sticking out from the backbone, results in steric clashes thereby rul-

ing out this structure.10–12 The steric clashes are deftly averted in both the helix

and in the planar sheet conformations. These two secondary structures are in fact

observed in proteins and, quite remarkably, have the same quantitative geometry

as the α-helix and two kinds of β-sheets, all elegantly predicted by Pauling and co-

workers some seven decades ago.5,6 What follows from assembling these modular

building blocks is a library of putative native state folds, each corresponding to a

distinct topological assembly through tight turns.

Figure 2 shows four sketches of a helix. The axis of a continuum helix (a helix,

whose axis is continuous) [Fig. 2(a)] necessarily spans all three dimensions and

has just one character. The situation becomes more interesting, when the axis is

discrete (as in a protein). There are now three distinct geometries that a helix can

adopt: a generic helix rotation angle [Fig. 2(b)] results in the Cα atoms spanning

all three dimensions, as in Fig. 2(a); a helix rotation angle, ε0, equal to π [Fig. 2(c)]

leads to the helix axis becoming a two-dimensional zig-zag strand; and, finally, a

rotation angle equal to 2π [Fig. 2(d)] yields a one-dimensional straight line helical

axis, which we will not consider further in our analysis as mentioned earlier.

2140051-4
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Fig. 2. (Color online) Sketches of four helices. (a) The axis of a continuum helix with a rotation

angle between successive Cα atoms, ε0 → 0, spans all three dimensions as does the axis of (b) a

discrete helix with a generic rotation angle ε0. (c) depicts the axis of a discrete helix with a rotation
angle ε0 = π. The axis is a zig-zag strand spanning two-dimensional space. Alternate points along

the strand are colored blue and red, so that a straight line can be drawn through either the set

of blue dots or the set of red dots. (d) shows the axis of a discrete helix with a rotation angle
ε0 = 2π. The helix axis is now a one-dimensional straight line.

Let us consider a continuum tube (the axis of the tube is continuous) of radius

∆ and ask what its space-filling conformation is. We know, from our experience

with a garden hose, that if we bend it too tightly (with a local radius of cur-

vature smaller than the tube radius), we get a kink in the tube. So, a tightly

wound tube would have a local radius of curvature exactly equal to ∆. The self-

interaction of the tube is maximized by placing successive turns of the helix on

top of each other and alongside each other, while ensuring that there are no self-

intersections [Figs. 3(a) and 3(c)]. When viewed from the top, there is no empty

space in the middle of the helix [Figs. 3(b) and 3(d)]. The tight packing fills the

space within the helix and thereby maximizes the self-interaction. Mathematics

teaches us that the geometry of such a space-filling helix is characterized by a uni-

versal pitch to radius ratio, P/R, of 2.512 . . . 8 This is a very helpful result but it

only tells us about a dimensionless characteristic of the space-filling helix. So, how

we do make a more tangible (in this case, with actual lengths) connection with real

proteins?

2140051-5
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Fig. 3. (Color online) Sketches of two continuum space-filling helices, one with tube radius ∆1 and
the other with tube radius ∆2. (a) and (c) show the side views of the two helices whereas (b) and

(d) show the top views. The pitch-to-radius ratio takes on the universal value8,9 P/R = 2.512 . . .

for both helices. This value can be derived straightforwardly by imposing the tight-most local
bending of the tube and by requiring that successive turns of the helix lie on top of each other

and alongside each other. These conditions lead to the length scales shown in (a) and (c) being

equal to the tube diameter (of the respective tubes) and all four angles shown in (a) and (c) being
equal to 90◦. These geometrical conditions will be adapted for determining the characteristics of

the discrete space-filling helix. Note the continuum calculation predicts the dimensionless P/R

ratio but has nothing to say about absolute length scales such as the tube radius ∆.

The intrinsic discrete nature of the protein backbone yields the two motifs, the

helix and the strand. Furthermore, there is now the bond length of 3.81 Å, which

will set our length scale. We take our space-filling continuum tube wound tightly

with the magic dimensionless ratio P/R = 2.512 . . . and discretize the axis with

equally spaced Cα atoms. We then find mathematically9 that the largest rotation

angle, ε0, which ensures that the helix with the discrete axis remains space-filling,

is approximately 99.8◦ [Fig. 4]. (The procedure is very similar to that employed

by Pauling and his colleagues,5,6 who found the rotation angle allowing for the

coherent placement of hydrogen bonds.) The bond length, the value of P/R, and

the rotation angle completely specify all characteristics of the space-filling helix.

Notably, the tube radius is predicted to be ∆∼2.63 Å.

Armed with these results, we now proceed to an analysis of the second building

block of protein structures, strands assembled into sheets. We consider a zig-zag

strand, a discretized helical conformation of a tube of radius ∆ (now known through

the helix analysis to be ∼2.63 Å) with ε0 = π. A straight tube axis can be drawn

through a strand in two ways — either through the blue points (we will denote this

as a blue tube) or the red points (a red tube) [Figs. 2(c) and 5]. A single strand is

not space-filling by itself. In order to maximize self-interactions, we need to pack

strands together while ensuring that the side chains do not clash sterically. There

are two distinct ways of doing this packing: the first is a blue tube alongside a

blue tube (or equivalently red next to red); and the second is a blue tube next to

a red tube (or equivalently red next to blue). These two packings yield distinct

geometries (Fig. 5). A three-dimensional packing of strands is forbidden because

of side-chain clashes, but the two types of assembly into planar sheets are both

2140051-6
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Fig. 4. (Color online) Sketch illustrating the derivation of the geometry of a space-filling discrete
helix. The axis of a space-filling continuum helix with pitch to radius ratio P/R = 2.512 . . . is

decorated with equally spaced Cα atoms of bond length of 3.81 Å, with a constant rotation angle

ε0. The value of ε0, the bond length, and the P/R ratio uniquely specify the geometry of the
space-filling discrete helix and the tube radius ∆. Just as Pauling determined ε0 by allowing the

coherent placement of hydrogen bonds, here we determine the largest ε0 of around 99.8◦ to ensure

three space-filling conditions (for all i) adapted from the continuum calculations: the (i, i + 3)
distance between Cα atoms is 2∆, and the two angles subtended by (i−1, i, i+3) and (i, i+3, i+4)

Cα atoms are both equal to 90◦.

sterically allowed. One can construct mathematical arguments that other plausible

packings, such as two or three helices twisted together or a helix alongside a strand

do not fill space as efficiently as the unique space filling helix and the two kinds

of sheets assembled from zig-zag strands. Interestingly, a pair of helices of opposite

chiralities pack better than those with the same chirality. However, this is not a

factor in protein native state structures because, as is well-known experimentally,

there is a chiral symmetry breaking in protein α-helices due to the left-handed

nature of the constituent amino acids.

This is the essence of the theoretical analysis9 that enables a slew of zero-

parameter predictions with the only inputs being the constructive hypothesis entail-

ing the maximization of the self-interaction of the protein backbone along with

setting the characteristic length scale through the bond length of 3.81 Å.

2.2. Chemistry provides a good fit to the dictates of mathematics

Table 1 presents a comparison of our theoretical predictions with experimental data.

For our analysis, we used 4416 structures (with complete information pertaining

to all backbone atoms) from Richardsons Top 8000 set of high-resolution, quality-

filtered protein chains (resolution < 2 Å, 70% PDB homology level).13 The protein

PDB codes are listed in the Supplementary Information of Škrbić et al.7 Hydrogen

bonds were identified using DSSP14 to extract 3595 helices, 8473 antiparallel pairs

2140051-7
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Fig. 5. (Color online) Sketches illustrating the pairing of zig-zag strands. A zig-zag strand can

be thought of as representing one of two tubes of radius ∆, whose value is determined from the

helical analysis. Mj denotes the mid-point of sites j−1 and j+1. The two candidate tubes are the
red tube whose straight line axis goes through the red points or the blue tube whose axis passes

through the blue points [see Fig. 2(c)]. A space-filling pairing of strands can naturally happen in

two different ways with distinct geometric constraints — a red (blue) tube alongside a red (blue)
tube or a red (blue) tube alongside a blue (red) tube. These arrangements are shown in the two

panels and lead to predictions amenable to experimental validation.

and 4639 parallel pairs. Helices were defined to be 12-residue segments with intra-

helical hydrogen bonds (NiH•••Oi−4 and Oi•••HNi+4) at each residue. Antiparallel

strand pairs were identified by three inter-pair hydrogen bonds at (i, j), (i+ 2, j− 2)

and (i − 2, j + 2), i∈ strand 1, j ∈ strand 2. To avoid possible end effects, only

(i, j) residue pairs were used. Parallel strand pairs were identified by four inter-pair

hydrogen bonds between (i, j − 1), (i, j + 1), (i + 2, j + 1) and (i − 2, j − 1), i ∈
strand 1, j ∈ strand 2, and only the ith residue was considered. Table 1 shows the

excellent accord between the mathematical predictions and experiments.

Let us begin with the α-helix. Our central predictions9 are the rotation angle

of around 99.8◦, the tube radius ∆ of around 2.63 Å, and the pitch to radius

ratio of 2.512 . . . It is straightforward using these predictions to deduce a host

of other quantities pertaining to the space-filling helix including the bond angle

θ∼91.8◦ and the dihedral angle µ∼52.4◦ [Figs. 6(c) and 6(d) and Table 1]. It is

interesting to note that the experimental helix is slightly squished compared to

the theoretical prediction. The experimental mean value of the dihedral angle, µ,

is about 5% smaller than that predicted by theory, while, the mean experimental

distance between the (i, i + 3) Cα atoms is about 3% less than that predicted by

theory. (All these quantities nevertheless are equal to the predicted values within

error estimates.) This helix squishing can be rationalized in two ways. Qualitatively,

the atomic nature of the protein chain allows for space-filling to be accentuated

by squeezing the helix more tightly. Quantitatively, this can arise because of the

2140051-8
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Table 1. A quantitative comparison of the mathematical predictions and

experimental data from protein structures.

Continuum tube diameter from theory 2∆ = 5.26 . . . Å

Quantity Theory PDB data

HELIX

Rotation angle ε0 [◦] 99.8 99.1 ± 3.4

Number of residues per turn 3.61 3.63 ± 0.13
Helix radius R [Å] 2.27 2.30 ± 0.07

Helix pitch P [Å] 5.69 5.47 ± 0.49

Pitch to radius ratio c = P/R 2.51 2.37 ± 0.29
∠(π(i− 1, i, i+ 3), π(i, i+ 3, i+ 4)) [◦] 215.5 213.1 ± 5.9

d(i, i+ 3) [Å] 2∆ = 5.26 5.12 ± 0.16

θ [◦] 91.8 91.3 ± 2.2
µ [◦] 52.4 49.7 ± 3.9

SHEET

Parallel β-sheet

θ [◦] flexible 121 ± 10

µ [◦] ∼180 191 ± 17

d(i,Mj) [Å] 2∆ = 5.26 5.26 ± 0.16
d(j,Mi) [Å] 2∆ = 5.26 4.90 ± 0.31

Antiparallel β-sheet

θ [◦] flexible 127 ± 10

µ [◦] ∼180 186 ± 20

d(i, j) [Å] 2∆ = 5.26 5.26 ± 0.20

Notes: The angle ∠(π(i − 1, i, i + 3), π(i, i + 3, i + 4)) is the dihedral angle
between the two planes formed by the points (i− 1, i, i+ 3) and (i, i+ 3, i+ 4)

respectively, as shown in Fig. 6(b). Mj denotes the mid-point of sites j−1 and

j+ 1 [see Fig. 5(b)]. The anti-parallel β-sheet has a ladder-like hydrogen bond
structure with a close pair of hydrogen bonds connecting symmetric sites (i, j)

(and (i− 2, j + 2) and (i+ 2, j − 2)). The parallel β-sheet, on the other hand,

has an array of zig-zag hydrogen bonds with, for example, i connected to j−1
and j + 1 by a wide pair of hydrogen bonds but with j not hydrogen bonded

with i + 1 or i − 1. This breaking of symmetry between i and j is reflected

in distinct mean experimental values of d(i,Mj) and d(j,Mi). The inputs to
the theoretical predictions are one constructive hypothesis that the building

blocks of protein structures are space-filling and the mean bond length (the

average distance between adjacent Cα atoms) is 3.81 Å. The predictions are
parameter-free and do not have any chemistry input. The quantities studied

are illustrated in Figs. 5 and 6. The excellent accord between theory and

experiment confirm the validity of the hypothesis that self-interactions are
maximized in the building blocks of protein native state structures.

partial covalent bond character of a hydrogen bonded donor–acceptor pair allowing

for a mutual distance a bit smaller than the sum of the van der Waals radii.

The two triangles (i− 1, i, i+ 3) and (i, i+ 3, i+ 4) are predicted to be congru-

ent [Fig. 6(b)]. The sides (i− 1, i) and (i+ 3, i+ 4) are both equal to the bond

length. The side (i, i+3) is common to both triangles. The angles (i−1, i, i+3) and

(i, i+ 3, i+ 4) are both equal to 90◦. Theory predicts that the two triangles do not

2140051-9
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Fig. 6. (Color online) Sketches of quantities presented in the table for the space-filling discrete

helix. (a) illustrates the rotation angle ε0, the rise per residue p, the pitch P and the helix radius R
for the space-filling discrete helix. (b) denotes a prediction pertaining to the dihedral angle between

the planes defined by two congruent triangles defined by the triplets of Cα atoms (i− 1, i, i+ 3)

and (i, i+ 3, i+ 4). Mathematics predicts this angle to be 215.5◦ whereas chemistry (experimental
data) yields the result (213.1± 5.9)◦. (c) and (d) show the definitions of the bond angle θ and the

dihedral angle µ between the planes formed by two successive triplets of Cα atoms (i, i+ 1, i+ 2)

and (i+ 1, i+ 2, i+ 3), respectively.

lie in a plane but rather that the planes of the triangles make an angle of approx-

imately 215.5◦ with each other in excellent accord with the experimental data of

(213.1± 5.9)◦.

We now turn to the pairing of two strands. Unlike in a helix, the pairing of

strands is necessarily nonlocal. As noted earlier, the chain topology of a protein

naturally provides a context for the location of a Cα atom. There is a distinction

between whether two paired strands are parallel to each other (meaning proceeding

in the same direction) or are antiparallel to each other. As pointed out by Pauling,

there are two distinct hydrogen bonding patterns for parallel and antiparallel sheets.

The two distinct pairing patterns emerge from the simple tube picture as well

without invoking any chemistry. The distances required by the tube constraints of

being placed parallel and alongside each other (but with the correct choice of the

tube axes) are very well satisfied experimentally (see Table 1).

2.3. Biology and chemistry

Our discussion so far has been limited to the backbone atoms, common to all pro-

teins, and to the secondary structures that are the modular building blocks of

protein folds.15–18 So, what of the amino acids and their side-chains? Amino acid

sequences play a major role in facilitating amazing functionalities.1–4 To illustrate

a concrete example, let us consider the enzymatic function of enhancing reaction

rates. The rate enhancement often arises by a lowering of the free energy of the tran-

sition state of the reaction through specific binding of the enzyme to the substrate

or the reactant(s). The native state fold of the enzyme (selected from the prede-

termined library) has an active site, where just a few amino acids are responsible

for the catalytic activity. The binding to the substrate is of course highly specific.

2140051-10
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Proteases, which are responsible for the degradation of proteins through the hydrol-

ysis of peptide bonds, undergo convergent evolution (e.g., the digestive enzyme

chymotrypsin and subtilisin, an enzyme made by soil bacteria) using distinct native

state folds from the pre-sculpted library but having the same catalytic triad due to

sequence design. The catalytic triad in both cases comprises three amino acids, ser-

ine, histidine, and aspartate, bound to each other by hydrogen bonds, resulting in

the proton being moved away from the serine along with the creation of a reactive

alkoxide ion.

Divergent evolution also occurs in proteins whose native state structure and the

catalytic triad are the same, yet the nature of the binding site is not. A notable

example is the family of proteins including chymotrypsin (which hydrolyses the

peptide bonds on the carboxyl side of aromatic or large hydrophobic amino acids

such as Trp, Tyr, Phe, Met and Leu), trypsin (a digestive protein made in the pan-

creas which cleaves after positively charged amino acids lysine and arginine), elas-

tase (made both in the pancreas and by white blood cells, which specifically targets

elastin, a building block of blood vessel walls), thrombin (which cleaves proteins only

at arginine-glycine linkages and helps curb bleeding by creating a blood clot), plas-

min (an enzyme which cleaves proteins after lysine and arginine and dissolves blood

clots), cocoonase (which also cleaves after lysine and arginine in the silk strands of

the cocoon facilitating the emergence of the silk moth), and acrosin (which creates

a hole in the protective sheath around the egg to allow sperm-egg contact). Key

functional sites of proteins exhibit a high degree of conservation19,20 and coevolu-

tionary analysis has been helpful in identifying protein–protein interactions.21–24

In accord with our findings, experiments have shown that not only can the

topology of the native state be preserved on significantly changing the amino acid

sequence,25–44 but also the rate of protein folding does not change appreciably.

Indeed, there is an evidence from experiments38,39,41,42,45,46 that the structures of

the transition states do not change much for proteins with similar native state

structures. Experiments have shown that many protein sequences can have the same

native state conformation.47–50 Interestingly, the same fold (e.g., the TIM (Triose

phosphate IsoMerase) barrel) can facilitate multiple distinct functionalities.51–53

Also, the protein structure prediction method of threading54 relies on the notion

that a given protein does not fashion its own native state fold but rather selects

from a predetermined library of folds.

Evolution, along with natural selection, allows nature to use variations on the

same theme to perform myriad tasks in the living cell. Note that molecular evolution

would not be able to work in this manner if protein structures changed continuously

and were themselves subject to evolution. If protein structures were themselves

to evolve and were also directly implicated in function, as we know they are, the

structures of two interacting partners would have to co-evolve harmoniously so

as not to disrupt function. Such an unlikely scenario would thwart evolution, as

we know it. Our derivation of the building block geometries of protein structures

from first principles provides proof that the menu of folds is in fact immutable.
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The mutation of a single amino acid at a time results in a random walk that forms

a connected network in sequence space. However, there is no similar continuous

variation in structure space.55,56

3. Conclusion

Here we have shown that while mathematics alone is able to quantitatively pre-

dict the building blocks of protein structures, the results of chemistry and biology

are remarkably consilient with the constraints placed by mathematics and physics.

There have been many hints over the years that this might be true. More than eight

decades ago, Bernal57 highlighted the common characteristics of all proteins. Some

seventy years ago, Pauling,5,6 the master of quantum chemistry, founded the field

of molecular biology by predicting the geometries of the building blocks of protein

structures using just the backbone atoms. Several years later, Ramachandran and

his colleagues10 showed that the same building blocks were selected for by follow-

ing quantum chemistry rules (without the need to invoke hydrogen bonds) while

carefully avoiding steric clashes. As the number of protein sequences with known

structure is growing enormously, the number of distinct protein folds is not. All this

suggests that even as Darwin’s evolution is a major player in determining protein

behavior, there is a great simplicity in the protein problem because Plato’s ideas of

the preeminence of geometry and symmetry are still very relevant when it comes

to the library of putative native state folds.

Sequences and even functionalities evolve in order to fit within the constraints

of these geometric structures, which are determined by mathematics and physics

and are Platonic and not subject to Darwinian evolution. One cannot but marvel

at the interplay of sequence, structure, and function of proteins and celebrate the

consilience of mathematics and the sciences in shaping the field of protein science.

Understanding the fit between sequence and structure in a precise mathematical

manner remains an outstanding challenge.

We are delighted to dedicate this perspective to a dear friend Nitant Kenkre —

an erudite scholar and a marvelous gentleman. We have all read his papers and one

of us (JRB) has experienced the great pleasure of joyously interacting with Nitant.

His knowledge of philosophy and mathematics and his humanity are inspiring.

4. Materials and Methods

The PDB codes of the proteins used for our analysis are presented as Supplementary

Information in Škrbić et al.7
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