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Abstract. The dielectric response function of the electron system in a cylindrical semiconductor quantum
wire (QWR) embedded in a dielectric material is derived within the random phase approximation in the
quantum limit when only the lowest electron subband is considered. The wire is studied in both finite and
infinite confining potential models. It is shown that the dielectric mismatch strongly affects the collective
excitations of the electron system and the electrostatic interaction between charged particles in the wire.
The electron screening is greatly enhanced in thin QWRs with low-κ dielectric surroundings and weakened
for high-κ dielectric environment. Thus, the impurity-limited electron mobility can be improved in small-
radius semiconductor QWRs coated with a material having a dielectric constant smaller than that of the
semiconductor, as opposed to a number of previous reports. The calculations also indicate that the model
of infinite potential barrier for thin QWRs underestimates the impurity electron mobility compared to the
finite barrier model and can be used in the case of QWRs with large radii.

1 Introduction

The quasi-one-dimensional semiconductor structures,
i.e., quantum wires (QWRs), have attracted increas-
ing attention from both experimental and theoreti-
cal points of view because of their possible appli-
cations in opto-electronic and microelectronic devices
such as quantum wire lasers [1–5], light-emitting diodes
[6–9], quantum waveguide inverters [10,11], quatum
wire transistors [12–16], memory elements [17,18], and
chemical and biological sensors [19–21]. Factors that
affect the performance of these devices include the
dielectric properties of semiconductor structures [22].

Semiconductor quantum wires are usually surrounded
with materials having the dielectric constant different
from that of the wire material. A number of studies
on the dielectric mismatch effect have been reported.
It was demonstrated that an outer dielectric environ-
ment changes the Coulomb interaction in QWRs, lead-
ing to considerable variations in hydrogenic impurity
binding energies [23–25]. The distorted Coulomb inter-
action between charge carriers results in a very large
increase in the exciton binding energy which is of order
of room temperature thermal energy [26–32]. The exis-
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tence of a two-electron bound state in a silicon deformed
quantum wire was pointed out in [33], depending on the
wire shape. It has also been shown that the dielectric
mismatch still supports two-electron localized states
for considered wire geometries, although the absolute
value of the ground-state binding energy is less than
that without dielectric effects. Konar et al. [34–36] have
analyzed the effect of the dielectric constant mismatch
on the free-carrier screening and impurity scattering
of electrons in QWRs. The authors have showed that
an environment with a dielectric constant higher than
that of the wire can reduce the free-carrier screening
and, conversely, a lower κ surroundings can enhance
the dielectric function of the system [36]. The authors
also indicated an improvement of the impurity-limited
mobility of electrons by at least one order of magnitude
in QWRs embedded in a medium with higher dielec-
tric constant [34,35]. The point is that the stronger
the screening the weaker the electrostatic interaction
between charged particles and it is expected that the
impurity mobility can be improved in QWRs with
a lower κ surroundings, contrary to the conclusion
reported in [34,35]. Therefore, it is worth reconsider-
ing the effect of dielectric mismatch on the electron
screening and impurity mobility in QWRs. In addi-
tion, the assumption of an infinite potential barrier
was adopted in the mentioned works. Machado et al.
considered the effects of the confining potential height
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for a GaAs/AlxGa1−xAs quantum wire, neglecting the
dielectric properties of the system, and pointed out that
the height of the potential has a remarkable influence
on the plasmon energy of a quasi-one-dimensional elec-
tron gas (Q1DEG) in the QWR [37]. In the case of the
finite potential barrier height, the electron wave func-
tion spreads into the barrier region and the free-carrier
screening can be modified. Therefore, in the present
paper, we investigate the effects of both the dielectric
constant mismatch and the finite height of the confining
potential on electronic properties of such QWRs.

In Sect. 2, applying the random-phase approximation
(RPA), we derive the dielectric function for the Q1DEG
in the cylindrical quantum wire (CQWR) surrounded
by the medium with a different dielectric constant. The
intrasubband plasmon dispersion is obtained as a root
of the dielectric function. The charged impurity-limited
mobility of electrons is presented in Sect. 3. Our results
are summarized in Sect. 4.

2 Free-carrier screening and collective
excitations of a Q1DEG

We consider a free-electron gas in a cylindrical semi-
conductor quantum wire of length L (assumed large)
and radius R made of a material with dielectric con-
stant ε1. The wire is embedded in a homogeneous infi-
nite medium (barrier region) with dielectric constant
ε2. The electrons are assumed to move freely along the
wire axis (chosen as the z-axis) and confined in the lat-
eral direction by a potential given as

V (r) =
{

0 for r ≤ R
V0 > 0 for r > R.

(1)

Here, r = |r| with r being a position in (x, y)-plane. For
simplicity, the electron effective mass m∗ is assumed to
be the same in the wire and in the surroundings. The
motion of an electron in the wire is affected not only
by the confining potential (1) but also in general by its
image potential arising from the difference in dielectric
constants of the wire and the surrounding materials.
From symmetry of the wire, it follows that the image
potential depends only on the distance r = |r| from
the wire axis for an electron at point x = (r, z). This
was actually verified by calculation [33]. That means
the dielectric mismatch does not affect the free motion
of the electron along the z-axis.

Within the effective mass approximation, the elec-
tron envelope wave function for bounded states can be
written in cylindrical coordinates (r, θ, z) as

Ψl,n,k(x) ≡ 〈x|l, n, k〉 =
1√
2πL

ei(lθ+kz) φl,n(r). (2)

The image potential can affect the electron motion in
the plane perpendicular to the wire axis. As pointed
out in [38], the change of the electron radial wave func-
tion φl,n(r) by the image potential is negligible, espe-
cially for quantum wires with small radii. Therefore, for

simplicity, we ignored the image charge effects on the
lateral motion of electron.

In the case of finite V0, the radial part φl,n(r) of the
wave function has the form

φl,n(r) =
{

AJl(υr) for r ≤ R
B Kl(κr) for r > R

(3)

and the energy eigenvalue El,n(k) is

El,n(k) = El,n +
�
2k2

2m∗ , (4)

Here, A and B are constants defined by the normaliza-
tion and continuity of the eigenfunctions. Jl(x) is the
Bessel function of the first kind of order l and Kl(x) is
the modified Bessel function of the second kind [39].

The quantities υ and κ are related to the energy El,n

and given by

υ =

√
2m∗

�2
El,n, κ =

√
2m∗

�2
(V0 − El,n). (5)

The energy El,n is specified by quantum numbers (l, n)
as subband indexes and defined by a root of the equa-
tion

υJ ′
l (υR)Kl(κR) − κJl(υR)K ′

l(κR) = 0, (6)

where n denotes the n-th root of the equation, and J ′
l (x)

(K ′
l(x)) is the derivative of function Jl(x) (Kl(x)) with

respect to argument x.
For infinite V0, the radial part of the wave function

and the energy for electrons are

φl,n(r) =

{ √
2

RJl+1(xl,n)
Jl

(
xl,n

r
R

)
for r ≤ R

0 for r > R
(7)

and

El,n(k) = El,n +
�
2k2

2m∗ with El,n =
�
2

2m∗
(xl,n

R

)2

,

(8)

respectively. Here, xl,n is the n-th zero of the Bessel
function Jl(x) of order l.

To investigate the response of a Q1DEG in a CQWR
to an external longitudinal electric field and plasmon
excitations in the system, we follow the formalism pro-
posed by Ehrenreich and Cohen [40] known as the self-
consistent field approach or RPA. This approach pro-
vides a good description for intrasubband plasmon dis-
persion in QWRs as shown in Ref. [41]. When applied
an external perturbation V0(x, t) = V0(x) exp(−iωt)
to the Q1DEG, a change δn(x, t) in the electron
density from its equilibrium value is induced, creat-
ing a screening potential Vs(x, t). The self-consistent
potential V (x, t) is composed of the external potential
V0(x, t) and the screening potential Vs(x, t). The time
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dependence of all the potentials is assumed the same
and the steady-state quantities of the system will be
calculated at t = 0.

Neglecting retardation effects, the screening potential
Vs(x) is defined by Poisson’s equation

�2
x Vs(x) = −4πe2

ε(r)
δn(x) (9)

where

ε(r) =
{

ε1 for r ≤ R
ε2 for r > R,

(−e) is the electron charge. Within the linear response
theory and the RPA the induced charge density is given
by

δn(x) =
∑
αα′

〈α|δρ|α′〉Ψ∗
α′(x)Ψα(x), (10)

where α (α′) denotes the set of quantum numbers l, n, k
(l′, n′, k′). δρ is the correction to the single particle den-
sity operator to first order in the potential V and its
matrix element is given by

〈α|δρ|α′〉 =
f0(Eα) − f0(Eα′)

Eα − Eα′ − �ω − iγ
〈α|V |α′〉 (11)

with f0(Eα) being the Fermi–Dirac distribution func-
tion. γ is the phenomenological parameter introduced
to take into account the broadening of electron energy
levels due to different scattering processes.

We introduce the one-dimensional Fourier transform
of the screening potential Vs(x) and the self-consistent
potential V (x):

Ṽs(r, q) =
1
L

∫
dz e−iqz Vs(r, z), (12)

Ṽ (r, q) =
1
L

∫
dz e−iqz V (r, z). (13)

Substituting (10), (11) and (12) into (9), we obtain
the equation for the Fourier component Ṽs(r, q) of the
screening potential

(�2
r − q2

)
Ṽs(r, q)

= − 2e2

Lε(r)

∑
l,n,l′,n′

〈l, n, q|V |l′, n′, 0〉

×Πl,n
l′,n′(q, ω) ei(l−l′)θ φ∗

l′,n′(r)φl,n(r), (14)

where

Πl,n
l′,n′(q, ω) =

∑
k

f0(El,n(k + q)) − f0(El′,n′(k))
El,n(k + q) − El′,n′(k) − �ω − iγ

is the Lindhard function (polarization function). The
Green’s function for the above equation, satisfying the
equation

(�2
r − q2

)
G(q; r, r′) = −δ(r − r′) , (15)

is [42]

G(q; r, r′) =
1
2π

∞∑
m=−∞

eim(θ−θ′) gm(q; r, r′) (16)

with

gm(q; r, r′) = Im(qr<)Km(qr>). (17)

Here, we use the notation r<(>) = min (max){r, r′},
Im(x) is the modified Bessel function of the first kind of
order m. Using the above Green’s function, the screen-
ing potential can be written as

˜Vs(r, q) =
2e2

L

∑

l,n,n′,m

〈l + m, n′, q|V |l, n, 0〉 eimθ

×Πl+m,n′
l,n (q, ω)

∫

dr′r′
{

1

ε(r′)
gm(q; r, r′)

+

(

1

ε2
− 1

ε1

)

Um(q; r, r′)
}

φ∗
l,n(r′)φl+m,n′(r′)

(18)

where

Um(q; r, r′) =
[
(ε2/ε1)K ′

m(qR)Im(qr′)Θ(R − r′)

+I ′
m(qR)Km(qr′)Θ(r′ − R)

]
×[

Km(qR)Im(qr)Θ(R − r)

+Im(qR)Km(qr)Θ(r − R)
]

×[
(ε2/ε1)K ′

m(qR)Im(qR)

−I ′
m(qR)Km(qR)

]−1
,

where Θ(x) being the Heaviside step function.
Since we are interested in intrasubband collective

excitations, we consider only the lowest subband (0, 1).
This is applicable for QWRs in the size quantum
limit. The dielectric response function is defined as
ε = 〈V0〉/〈V 〉. From (18), we obtain the dielectric func-
tion for the Q1DEG in the quantum wire

ε(q, ω) = 1 − 〈0, 1, q|Vs|0, 1, 0〉
〈0, 1, q|V |0, 1, 0〉

= 1 − 2e2

L
Π0,1

0,1(q, ω)F (q), (19)
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Fig. 1 The form factor for a quantum wire with finite or
infinite confining potential as a function of wire radius for
the ratio of dielectric constants a ε2/ε1 = 0.5, b ε2/ε1 =
3.0 (solid line). Asterisks show the radius dependence of
the relative difference of form factors. The linear electron
density is n = 106 cm−1, the wave vector q = 106 cm−1, the
temperature of the system T = 300 K

where the form factor F (q) is given by

F (q) =
∫

dr

∫
dr′ rr′ φ∗

0,1(r)φ0,1(r)φ∗
0,1(r

′)φ0,1(r′)

×
{

1
ε(r′)

g0(q; r, r′) +
(

1
ε2

− 1
ε1

)
U0(q; r, r′)

}
.

(20)

The form factor F (q) takes into account the effects
of both the confining potential and the dielectric mis-
match.

All the numerical calculations in this work are per-
formed for a GaAs quantum wire with the following
values: ε1 = 12.9, m∗ = 0.063me with me being the
free electron mass. The parameter γ is chosen to be
10−4EF where EF is the Fermi energy [43], the barrier
height V0 = 237mV.

In Fig. 1, we present the change of the form factor
F (q) as the wire radius R changes for different values of
the ratio ε2/ε1 for two models of the confining poten-
tial: finite and infinite barriers. It can be seen that F (q)
gradually decreases with increasing wire radius for infi-
nite barriers, while for finite barriers it reaches a max-
imum at some radius value and then decreases. Fig-
ure 1 also illustrates the radius dependence of the rela-
tive difference of form factors ΔF , i.e., the difference of
the form factors for finite and infinite potential barriers
compared to the form factor for the infinite barrier. It is
seen that ΔF varies with radius R in almost the same

Fig. 2 Dependence of the measure of the effect of dielec-
tric mismatch on dielectric constant ε2 for a quantum wire
calculated in both two models of confining potentials. The
linear electron density is n = 106 cm−1, the temperature of
the system T = 300K

way for different values of ratio ε2/ε1 and the larger the
radius, the smaller the relative difference. The relative
difference is approximately 0.6, 0.3, and 0.2 for radius
of 4, 12, and 20 nm, respectively. This means that the
model of infinite barrier height is applicable to large
radius quantum wires regardless of the ratio ε2/ε1.

We define the quantity η(q) which is the ratio of the
form factor F (q) for a wave vector q calculated for a
quantum wire embedded in a medium with a dielec-
tric constant ε2 and the form factor F (q) for the same
quantum wire coated with a medium having ε2 = ε1.
The ratio represents the measure of the effect of dielec-
tric mismatch on the form factor. The more this ratio
differs from 1, the stronger the effect of dielectric mis-
match. The dependence of η on dielectric constant ε2
for QWRs of radii of 3 and 10 nm is plotted in Fig. 2.

The figure indicates that the effect of dielectric mis-
match is stronger for quantum wires with low-κ dielec-
tric surrounding media (ε2 < ε1). The quantity η differs
more from 1 in the model of finite potential barrier than
in the model of infinite barrier. In addition, the mea-
sure η is approximately 25% different from 1 for the
QWR with a radius of 3 nm and 3% for R = 10nm.
This means the dielectric mismatch is more effective
in QWRs with a small radius and in the finite barrier
model.

Since the polarization function Π0,1
0,1(q, ω) is inde-

pendent of the dielectric properties of the system, the
dielectric mismatch affects the dielectric function (19)
through the form factor (20). In Fig. 3 the curves
describe the static dielectric function of a QWR as a
function of the dielectric constant ε2 of the surround-
ings for QWRs with different radii.

The static screening decreases strongly with increas-
ing ε2 in the range of ε2 < ε1. For larger ε2, the screen-
ing is slowly decreasing and approaches a constant. The
change in the screening in the considered range of ε2
is noticeable for thin QWRs and is small for QWRs
of large lateral size. This fact indicates again that the
effect of the dielectric mismatch is more pronounced for
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Fig. 3 Static dielectric function as a function of dielectric
constant ε2 of the surrounding environment for quantum
wires of different radii with a finite potential barrier or b
infinite barrier. The linear electron density is n = 106 cm−1,
the wave vector q = 106 cm−1, the temperature of the sys-
tem T = 300 K

QWRs with small radius and low-κ dielectric surround-
ings.

Regarding the dependence on QWR radius, we plot-
ted in Fig. 4 the static dielectric function as a function
of QWR radius for several values of the ratio ε2/ε1. The
screening is a decreasing function of the QWR radius for
all values of ratio ε2/ε1 in the model of infinite potential
barrier, while this does not apply to the finite barrier
height model. In the later model, the dielectric function
has a maximum at a small radius. The smaller the ε2/ε1
ratio, the more pronounced the maximum. As the ratio
ε2/ε1 increases, the peak blurs and its position shifts to
larger radii. For both models of confining potential, the
dielectric function decreases with increasing wire radius
in the range of large radii, tending to a limit which is
almost the same for all values of ε2/ε1. This means the
effect of dielectric mismatch weakens with increasing
radius of the QWR and is washed away in QWRs of a
large radius.

The dispersion of collective longitudinal electronic
excitations (called plasmons) in a Q1DEG is obtained
as a root of the dynamical dielectric function, ε(q, ω) =
0.

The curves in Fig. 5a represent the plasmon dis-
persion calculated for both models of confining poten-
tials for a quantum wire embedded in a medium with

Fig. 4 Static dielectric function as a function of QWR
radius for a quantum wire with a finite potential barrier
or b infinite barrier for different values of the ratio ε2/ε1.
The linear electron density is n = 106 cm−1, the wave vector
q = 106 cm−1, the temperature of the system T = 300 K

Fig. 5 a Plasmon dispersion in a QWR in the models of
finite and infinite confining potentials and b deviation of
plasma frequencies of a QWR in a surrounding environment
of dielectric constant ε2 �= ε1 from the plasma frequencies
in the case with ε2 = ε1 in the model of finite potential
barrier. The radius of the QWR is R = 3 nm, the linear
electron density is n = 106 cm−1, the temperature of the
system T = 300 K
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ε2/ε1 = 7.5. In the long-wavelength limit, the plasma
frequency is linearly dependent on the wave vector q
and is reduced to zero, as experimentally found in [44].
The plasma frequency in the model of finite poten-
tial barrier is higher than in the infinite barrier model.
The frequency difference is 2meV at q = 106 cm−1 and
higher at larger wave vectors. For collective excitations
in the Q1DEG, the electrostatic interaction between
electrons and background positive charges plays a role
of the restoring force. The stronger the restoring force,
the higher frequency of the collective oscillation. As
seen from Ref. [30], the Coulomb potential of a charge
located in the wire changes little in the wire region with
a change in ε2 (i.e., is almost independent of ε2). On
the other hand, the wave function for electrons in the
lowest subband is confined mostly in the wire (more-
over, in the vicinity of the wire axis in the case of an
infinite confining potential) [29]. Therefore, the interac-
tion between electrons and the positive background in
the wire changes mainly by the free-electron screening
as ε2 changes. Since the free-electron screening increases
with decreasing dielectric constant ε2 of surroundings
as seen in Fig. 3a, resulting in weakening the inter-
action between charged particles, it is expected that
the plasma frequency is lower in QWRs surrounded by
lower κ media. It actually happened as Fig. 5b showed,
where the difference of the plasma frequency in the
QWR coated with a ε2-dielectric environment from the
plasma frequency of the dielectric homogeneous QWR
(i.e., with ε2 = ε1) is plotted as a function of wave vec-
tor q. The calculation was performed for the model of
finite potential barrier. The result is similar for the infi-
nite potential barrier model. This mode softening with
decreasing dielectric constant ε2 is in contrast to what is
given in [36] according to which the mode has softened
with increasing dielectric constant of the surrounding
media (see Fig. 2b therein).

In Fig. 6, we plotted the dependence of plasma fre-
quency ω(q) on the QWR radius in both models of
confining potentials. From the figure, it is clear to see
the influence of the height of the potential barrier on
the variation of the plasma frequency with the QWR
size.

In the case of an infinite barrier height, the plasma
frequency increases gradually with the radius of the
QWR. Meanwhile, the radius dependence of plasma
frequency for QWRs with a finite potential barrier is
quite different. The plasma frequencies decrease rapidly
with the QWR size within small radii and then increase
slowly. This is due to the different size dependence of
the electron screening in the two models of confining
potentials illustrated in Fig. 4, which results in dif-
ferent dependence on QWR radius of restoring force
for plasmons. For both models of confining potential,
plasma frequencies tend to the same limit in QWRs
of large lateral size despite the dielectric constant ε2
of the surrounding environment. This means that the
dielectric mismatch is ineffective in QWRs of large
radii.

Fig. 6 Plasma frequency for a fixed q = 106 cm−1 as a
function of the QWR radius for different values of the ratio
ε2/ε1 in the model of confining potential with barrier height
a finite and b infinite. The linear electron density is n =
106 cm−1, the temperature of the system T = 300K

3 Impurity-limited mobility of a CQWR

We assume that the electrons in a CQWR are scattered
by an impurity of charge e located on the axis of the
wire. Without loss of generality, the impurity position
can be taken as the origin of the coordinate system. The
electrostatic potential ϕ(x) of the ionized impurity is a
solution of Poisson’s equation

�2
x ϕ(x) =

4πe

ε(r)
δ(x). (21)

The Fourier component of the function ϕ(x) respect to
z is given by

ϕ̃(r, q)

= −4πe

ε1L

{

K0(qr) +
(ε1 − ε2) K′

0(qR)

ε2K′
0(qR) I0(qR) − ε1K0(qR) I ′

0(qR)

×[

Θ(R − r)K0(qR)I0(qr) + Θ(r − R)I0(qR)K0(qr)
]

}

.

(22)

It is seen that the dielectric inhomogeneity is captured
in the second term in braces.

The electron mobility μ is given as

μ =
e

m∗ τ. (23)
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Fig. 7 Ionized-impurity scattering rate a as a function of
temperature for a QWR of 3 nm radius for several values
of ratio ε2/ε1 and b as a function of dielectric constant
ε2 for various radii of QWRs at temperature T = 300K.
The calculation was performed for QWRs in the model of
finite potential barrier. The linear electron density is n =
106 cm−1, the linear impurity density ci = 106 cm−1

where τ denotes the relaxation time describing electron
momentum decay due to scattering of various kinds.
The Hamiltonian for scattering of electrons by ionized
impurities is

Hint = −e

ε
ϕ(x), (24)

where ε is the dielectric function (19) reflecting the
screening by free electrons in the QWR and the dielec-
tric mismatch. To calculate the relaxation time τ , we
adopt the memory function formalism proposed by
Götze and Wölfle [45]. In the size quantum limit, we
obtain the expression for the electron relaxation time
limited by impurity scattering

1

τ
=

16π�ci

m∗nkBT

∑

kk′
(k − k′)2

∣∣〈0, 1, k|Hint|0, 1, k′〉∣∣2

× f0(E0,1(k
′))

[
1 − f0(E0,1(k))

]
δ(E0,1(k

′) − E0,1(k)).

(25)

Here, ci is the linear density of impurities, kB the Boltz-
mann constant.

The temperature dependence of the charged-impurity
scattering rate calculated for a thin QWR with a finite

Fig. 8 Impurity-limited electron mobility a as a function
of temperature for ratio ε2/ε1 = 3.0 and b as a function of
dielectric constant ε2 at temperature T = 300K. The calcu-
lation was performed for QWRs in both models of confin-
ing potentials. The linear electron density is n = 106 cm−1,
the linear impurity density ci = 106 cm−1, the wire radius
R = 3nm

potential barrier is depicted in Fig. 7a. At low temper-
atures, the scattering rate is almost independent of the
dielectric constant ε2 of the surroundings of the QWR
and increases with temperature. The scattering rate is
then a decreasing function at high temperatures and
its value is affected by the dielectric constant ε2. How-
ever, the dielectric mismatch is effective only in QWRs
of small radii, as seen in Fig. 7b, where the scattering
rate as a function of ε2 is shown for QWRs of different
radii. The scattering rate increases with the dielectric
constant ε2 and its variation for ε2 in the range from
1 to 100 is 20% and 6% for R = 3 and 10 nm, respec-
tively, where a large change occurs for ε2 < ε1. The
ε2 dependence of the scattering rate is consistent with
the dependence of the electron screening on the dielec-
tric constant ε2 illustrated in Fig. 3a. From the same
arguments as for the ε2 dependence of the plasma fre-
quencies, the reduction of the screening with increas-
ing ε2 results in the increase of the screened electric
potential of charged impurities seen by electrons, lead-
ing to an increase in the impurity scattering rate with
the dielectric constant ε2. It should be noted that this
ε2 dependence of the scattering rate is in contrast to
that reported in [35,36] (see figures numbered 3 therein)
according to which the scattering rate decreases with
increasing ε2.

We plotted the impurity-limited electron mobility as
a function of temperature in Fig. 8a and as a func-
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Fig. 9 Coulomb scattering rate as a function of QWR
radius calculated in both models of confining potential. The
linear electron density is n = 106 cm−1, the linear impu-
rity density ci = 106 cm−1, the ratio of dielectric constants
ε2/ε1 = 3.0, the temperature T = 300K

tion of dielectric constant ε2 in Fig. 8b for a QWR of
3 nm radius. The calculation is for a QWR with a finite
or infinite potential barrier. The mobility decreases
rapidly at low temperatures and in the range of ε2 < ε1.
This behavior is the same for both models of confin-
ing potentials, but the impurity mobility is approxi-
mately four times greater in the finite barrier model
in comparison with the infinite barrier model. In Fig.
9, the Coulomb scattering rate is plotted as a func-
tion of QWR radius for both finite and infinite barrier
height models. The scattering rate in the later model is
higher than in the first model for QWRs with a radius
of less than 10 nm and is the same for larger QWRs.
The results show the infinite barrier model underes-
timates (overestimates) the impurity-limited mobility
(the Coulomb scattering rate) in QWRs of small radii
and is applicable for QWRs with large radii.

4 Conclusion

In summarizing, we have calculated the dielectric func-
tion for a quasi-one-dimensional electron gas in a
cylindrical semiconductor quantum wire coated with a
dielectric material, taking into account the difference
in dielectric constants of the wire and the surround-
ings. It is assumed that electrons are confined in the
lateral direction by a potential well of finite or infinite
height and have the same effective mass in the core and
the surrounding material. It was found that the effect
of the dielectric mismatch on electron screening, plas-
mon dispersion and charged-impurity scattering rate of
electrons is significant in thin QWRs with low-κ sur-
rounding materials. The plasma frequency varies with
the dielectric constant ε2 of the surroundings and its
change can be of several meV in thin QWRs. Since
the Coulomb interaction between charged particles is
poorly screened in QWRs embedded in high-κ envi-
ronment, the charged-impurity scattering rate is an
increasing function of the dielectric constant ε2 and
changes strongly for ε2 < ε1 in QWRs of small radii

and slowly in otherwise. The electron mobility, there-
fore, is higher in QWRs with low-κ dielectric surround-
ings (ε2 < ε1), in contrast to the conclusion in pre-
vious studies [35,36]. Regarding the confining poten-
tial, we have found that the assumption of an infi-
nite height of the potential barrier results in the dif-
ferent radius dependence of the electron screening and
the plasma frequency compared to that in QWRs with
a finite potential barrier. This difference is mitigated
for large QWRs. In addition, the infinite barrier model
overestimates the Coulomb scattering rate and, there-
fore, underestimates the impurity electron mobility for
QWRs with small radii. For QWRs with large radii,
both models of confining potentials give approximately
the same results. This means that the model of infinite
potential barrier is applicable to QWRs with large lat-
eral dimension. We hope that our results can be useful
for the selection of appropriate dielectric surrounding
materials to improve transport properties of semicon-
ductor quantum wires.
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