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Abstract
Electron scattering rate and electron mobility limited by LO-phonons are calculated for a cylindrical polar semiconductor
quantum wire with core-shell structure. Longitudinal optical phonons modes are developed within a dielectric continuum
model. The influence of the thickness of the shell on the electron scattering rate by phonons is studied. Numerical
calculations performed for a GaAs/AlGaAs quantum wire show that the electron–LO-phonon scattering rate changes with
the thickness of the shell layer and is reduced considerably in the quantum wires having thicker shell, leading to higher
electron mobility. The mobility can be improved up to several orders of magnitude.
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1 Introduction

Nowadays the nanoscale semiconductor structures such as
quantum wires are available thanks to the developments in
semiconductor technology and have potential applications
in high-speed devices [1–6]. Due to the reduction in
impurity scattering in these quasi-one-dimensional systems,
phonon scattering determines electron mobility at room
temperature and the dynamics of electron-phonon systems.
In these structures, the electron scattering rate is affected not
only by the confinement of electrons but also by the changes
in the phonon modes [7, 8]. These changes, therefore,
strongly affect the transport properties of electrons in
quantum wires.

In existing literature, optical phonons and their inter-
action with electrons have been developed mostly for
free-standing quantum wires [9–11] or for quantum wires
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embedded in another infinite material [12–14]. Recently,
many theoretical and experimental studies have been
devoted to core-shell quantum wires, showing a lot of their
properties related to the existence of the shell layer. The
authors of Ref. [15] showed theoretically the thermal con-
ductivity in core-shell Si/Ge nanowires can be drastically
reduced by relevant combinations of the wire cross-section
modulation and the mismatch between the core and shell
acoustic impedances. The thermal conductivity in core-shell
nanowires can also be reduced by structural defects non-
uniformly distributed in the shell [16]. Magnetoconductance
measurements at low temperature performed on GaAs/InAs
core-shell nanowires [17–19] revealed Aharonov-Bohm
type oscillations attributed to electron transport within the
shell through angular momentum states. The temperature
dependence of electron mobility measured on core-shell
InAs/InAlAs nanowires [20] is an evidence for an effect
of the shell in reducing surface states leading to reduction
in ionized impurity scattering. Santiago-Pérez D. G. et al.
[21] have considered Ge/Si and Si/Ge core-shell nanowires,
studied and discussed the role of the shell on the acoustical
phonons and their interaction with electrons via deformation
potential mechanism.

In this work, we study the effect of the thickness of the
shell layer on electron scattering and mobility limited by
LO-phonons in a quantum wire with core-shell structure.
In Section 2, we write down the expression for the relative
atomic displacement corresponding to optical longitudinal
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Fig. 1 Geometry of the circular wire: 1 and 2 are the core and shell
materials, respectively

vibrations and give the classification of possible phonon
modes in a core-shell quantum wire. We show also the
change of phonon frequencies with the shell thickness.
Section 3 is devoted to calculations of phonon scattering and
electron mobility for core-shell quantum wires with various
thickness of the shell layer. Our results are summarized in
Section 4.

2 LO-Phononmodes

Let us consider a model of a semiconductor quantum wire
of length L (assumed large) with circular cross-section
(Fig. 1). The wire has a core of the shape of a cylinder
with radius R1 made of a polar material (1). The core is
surrounded by a coaxial cylindrical layer of another polar
material (2) of thickness d = R2 − R1. The infinite space
around the wire is assumed to be vacuum. We use the polar
coordinates r, ϕ, and z with the wire axis being chosen as
the z axis. For practical dimension of quantum wires we
may employ the dielectric continuum model to develop LO-
phonon modes. The details can be found in our previous
paper [22] and some main points are outlined below for
completeness, using the same notations as in it.

The relative atomic displacement corresponding to the
eigenfields of LO-phonons can be written as

uνmq(x) = ∇
{
ψνmq(r)

1√
2πL

ei(mϕ+qz)

}
(1)

and has the explicit form

uνmq(x) = 1√
2πL

ei(mϕ+qz) uνmq(r)

= 1√
2πL

ei(mϕ+qz)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
[
q1F

′
m(q1r)er + im

r
Fm(q1r)eϕ + iqFm(q1r)ez

]
for r < R1 ,

q2
[
B F ′

m(q2r) + C G′
m(q2r)

]
er

+ im
r

[B Fm(q2r) + C Gm(q2r)] eϕ

+ iq [B Fm(q2r) + C Gm(q2r)] ez

for R1 ≤ r ≤ R2 .

(2)

The phonon frequency ω is indexed by the set νmq (ω ≡
ωνmq ) and determined by the following dispersion equation

ε1∞q1F
′
m(q1R1)

× {
qK ′

m(qR2) [Fm(q2R1)Gm(q2R2)

−Gm(q2R1)Fm(q2R2)]
+ε2∞q2Km(qR2)

[
Gm(q2R1)F

′
m(q2R2)

−Fm(q2R1)G
′
m(q2R2)

]}
+ε2∞q2Fm(q1R1) (3)

× {
qK ′

m(qR2)
[
G′

m(q2R1)Fm(q2R2)

−F ′
m(q2R1)Gm(q2R2)

]
+ε2∞q2Km(qR2)

[
F ′

m(q2R1)G
′
m(q2R2)

−G′
m(q2R1)F

′
m(q2R2)

]}
= 0 .

The notation ν ≡ (tn) consists of two indexes: t

indicating the type of the phonon mode and the integer
n labeling the roots of (3) which are ordered decreasing
gradually (in [22] the roots are labeled in the opposite
order). Depending on whether the quantities q1 and q2 are
real or imaginary we have different phonon types. The
indexes (mn) denote different phonon branches of type t .
Table 1 gives the classification of the longitudinal optical
phonon modes in a core-shell quantum wire.

Table 1 LO-phonon modes of
core-shell cylindrical quantum
wires

Type of modes t qj ψνmq(r)

r < R1 R1 < r < R2

1 real q1, real q2 A Jm(q1r) B Jm(q2r) + C Ym(q2r)

2 real q1, imaginary q2 A Jm(q1r) B Im(ξ2r) + C Km(ξ2r)

3 imaginary q1, real q2 A Im(ξ1r) B Jm(q2r) + C Ym(q2r)

4 imaginary q1, imaginary q2 A Im(ξ1r) B Im(ξ2r) + C Km(ξ2r)
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For illustration, we consider a GaAs/Al0.3Ga0.7As
quantum wire. The parameters for AlxGa1−xAs are taken
from Ref. [23], namely:

ε∞ = 10.89 − 2.73x

ε0 = 12.90 − 2.84 x

ωL = 36.25 + 1.83x + 17.12x2 − 5.11x3 (meV)

vL = (4.73 + 0.68x + 0.24x2) (105cm/s)

The existence of phonons of a type depends on the
concrete material parameters. Numerical calculations show
that there exist only phonons of type 1 and type 3 in
quantum wires under consideration. In Fig. 2, we plot
the wave-vector dispersions of the highest branch (m =
0, n = 1) for phonons in quantum wires of the same
radius R1 but with various thickness d of the shell. As seen
from the figures, the change in the shell thickness does
not affect the q-dependence of the phonon frequencies for

Fig. 2 Dispersion curves of phonons of the uppermost branch with
(m = 0, n = 1) in a GaAs/Al 0.3Ga 0.7As quantum wire with R1 =
5 nm and with various thickness of the shell (1) d = 2 nm, (2) 5 nm,
and (3) 100 nm: a type 1 phonons, b type 3 phonons

both phonon types. The dependence of frequencies on the
shell thickness, however, is quite different for these two
types of phonons as depicted in Fig. 3. The frequency of
type 1 phonons does not vary continuously with the shell
thickness but changes abruptly at certain thicknesses which
are nearly equispaced. Meanwhile, the frequency of type
3 phonons initially increases with increasing thickness and
then, beyond the thickness of about 5 nm, it changes very
little for all values of the core radius.

3 LO-Phonon Scattering and Electron
Mobility

We can express the electrostatic potential φ(x) related to the
displacement uνmq(x) as

φνmq(x) = ηνmq(r)
1√

2πL
ei(mϕ+qz) (4)

Fig. 3 The dependence of phonon frequency on the shell thick-
ness for phonons of the uppermost branch (m = 0, n = 1) at
q = 2.0 × 106 cm−1 in a GaAs/Al 0.3Ga 0.7As quantum wire with var-
ious values of the core radius: a phonons of type 1, R1 = 5 nm; b
phonons of type 3, R1 = 3 nm (1), 5 nm (2), and 50 nm (3)
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with the radial part given by

ηνmq(r) = 4π
[
N1e

∗
1 Θ(R1 − r)

+N2e
∗
2 Θ(R2 − r)Θ(r − R1)

]
ψνmq(r) , (5)

where Θ(x) is the Heaviside step function.
The radial part of the electrostatic potentials associated

with LO-modes is plotted in Fig. 4 in relative units for two
highest branches, i.e., the potentials are compared with the
maximum value of the potential associated with phonon
mode (01). This maximum value is of order of 10−5 V for
oscillations of 10−3 nm in a wire with core radius R1 =
5 nm and shell thickness d = 5 nm. It is seen that the
potential is more pronounced in the core region for phonon
modes of type 1 and, on the contrary, in the shell for type
3 phonon modes. Furthermore, the potential associated with
phonons of type 1 oscillates in the shell region more rapidly
for wires with thicker shell, leading to smaller interaction
energy of electrons moving in the shell. It would be expected
that the electron being in the core region would interact
mainly with phonons of type 1 and the electron in the shell
mainly with phonons of type 3.

The scattering rates are normally calculated via Fermi’s
golden rule with the Hamiltonian

H = − e

2

(
φ(x) + φ∗(x)

)
. (6)

For an electron in state Ψα , the scattering rate by optical
phonons is given by

Γ = 2π

�

∑
Ψα′

∑
ξ

∑
ζ =±1

∣∣Bα′αξ

∣∣2
(

n(ωξ ) + 1

2
+ ζ

1

2

)

× (1 − Nα′) δ(Eα′ − Eα + ζ�ωξ ) . (7)

Here α (α′) represents the set of quantum numbers
determining the electron state Ψα (Ψα′). The notation
ξ ≡(νmq) denotes phonon modes. The electron-phonon
interaction matrix element Bα′αξ is given by

Bα′αξ = 〈Ψα′ | eηξ (r)e
i(mϕ+qz) | Ψα〉 .

Nα is the electron distribution function, n(ωξ ) is the phonon
occupation factor, and Eα is the electron energy. In (7),
ζ = +1 (−1) corresponds to emission (absorption) of a
phonon.

For simplicity, electrons are assumed to be confined in
the infinitely deep potential well

V (x) =
⎧⎨
⎩

0 for r ≤ R1 ,

V0 > 0 for R1 < r ≤ R2 ,

∞ for R2 < r .
(8)

Fig. 4 Electrostatic potentials related to phonon modes (mn) of type 1 (upper row) and type 3 (lower row) for a GaAs/Al 0.3Ga 0.7As quantum
wire with core radius R1 = 5 nm and various thickness of the shell d: a 2 nm, b 5 nm, and c 20 nm. The wave number q is taken so as qR1 = 1
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Within the effective mass approximation, the electron
envelope wave function can be written in the form

Ψα ≡ Ψlnk(x) = 1√
2πL

ei(lϕ+kz)

×
⎧⎨
⎩

AFl(υr) for r < R1 ,

B Fl(κr) + C Gl(κr) for R1 ≤ r ≤ R2 ,

0 for R2 < r .
(9)

Here, the constants A, B, and C are defined by the
normalization of the eigenfunctions. The possible values of
the electron wave vector are k = (2πm)/L with integer m.
The energy Eα ≡ Eln(k) associated with the state Ψlnk is
specified by quantum numbers l and n as subband indexes
and defined by a root of the equation

m2υF ′
l (υR1) [Fl(κR1)Gl(κR2) − Fl(κR2)Gl(κR1)]

+ m1κFl(υR1)
[
Fl(κR2)G

′
l(κR1) − F ′

l (κR1)Gl(κR2)
]

= 0 (10)

with n corresponding to the nth root of the equation. Here
we use the notation

υ =
√

2m1

�2
E − k2 ,

κ =
√

2m2

�2 (E − V0) − k2

with m1 and m2 being the electron effective mass in material
1 and material 2, respectively. In analogy with the case of
phonons in Section 2, the functions Fl and Gl are Bessel
functions Jl and Yl or modified Bessel functions Il and
Kl of order l [24], respectively, depending on whether the
quantities υ and κ are real or imaginary.

Figure 5 illustrates the dispersion of the two lowest
electron energy subbands. It should be noted that if one

Fig. 5 Electron energy dispersion of the two lowest subbands (01) and
(11) for a GaAs/Al 0.3Ga 0.7As quantum wire with radius R1 = 5 nm
and shell thickness d = 2 nm. Conduction band discontinuity at
GaAs/Al 0.3Ga 0.7As heterointerface is V0 = 0.237 eV

assumes the same electron effective mass meff in both core
and shell materials, the subband dispersion is parabolic

Epar = Eln(0) + �
2k2

2meff

. (11)

The k-dependence of the subband energy, in fact, differs
from the parabolic law as depicted in Fig. 6. It is evident that
the subband non-parabolicity is stronger in the wire with
thicker shell (Fig. 6a) and for higher subbands (Fig. 6b). The
deviation from parabolic law can reach several percent of V0

at reasonable values of k. As seen in Fig. 6b, the deviation
is 0.4% and 3% for subband (01) and 1.2% and 8% for
subband (11) at the wave vector k with kR1 = 1.25 and
kR1 = 3, respectively, in the wire with the shell thickness

Fig. 6 Deviation of the actual electron subband energy from the
parabolic one when assumed the electron mass in the shell and in the
core is the same (meff = m1): a as a function of electron wave vector
k for subbands (01), the shell thickness is 2 nm (1), 5 nm (2), and 20 nm
(3); b as a function of shell thickness for subbands (01) and (11) at
electron wave vector k with kR1 = 1.25 and kR1 = 3. The numerical
calculation is performed for a GaAs/Al 0.3Ga 0.7As quantum wire with
the core radius R1 = 5 nm
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of 5 nm. The deviation increases as the shell thichness
increases and almost does not change for larger thickness.
It is worth to note this non-parabolicity is coming from the
difference in electron effective masses of the constitutive
materials, not from the energy band non-parabolicity of the
materials.

As pointed out in [25–27], the non-parabolicity of
the energy bands leads to large optical nonlinearity by
conduction electrons in bulk semiconductors. It would,
therefore, be expected this effect is a new origin of large
optical nonlinearity in lower dimension systems such as
quantum wires and is the subject of another study.

In Fig. 7, we plotted the electron scattering rate by
phonons of type 1 and of type 3 separately. For convenience,
we express the rates in terms of the characteristic rate Γ0 =
8.7 × 1012 s−1 for bulk GaAs. It is seen that the former is
nearly two orders of magnitude greater than the latter. This
means type 1 phonons play a dominant role in interaction
with electrons which, from what mentioned below Eq. (5),
move in the core. On the other hand, in the wire of thicker
shell, the electron wave function spreads into the shell
region and, therefore, the probability for an electron being
in the core is smaller. This reduces the electron-phonon
interaction, leading to smaller scattering rate in wires with
thicker shells.

Figure 8 illustrates the variation with the electron wave
vector in the total electron scattering rates by LO-phonons
for a quantum wire with radius of 5 nm at temperature of
300 K for various values of the shell thickness. It is seen
that the rate in the wire with thinner shell is greater than the
rate in the wire with thicker shell, as discussed above. The
peaks in scattering rates at kR1 ≈ 1.25 (corresponding to
electron energy of 0.232 eV and 0.213 eV for the wire with
shell thickness of 2 nm and 5 nm, respectively) is due to
resonant phonon emission. This is evident from Fig. 9 where

Fig. 7 Electron scattering rate by LO-phonons of type 1 (a) and type
3 (b) as a function of its wave vector k in a GaAs/Al0.3Ga0.7As wire.
The radius of the core is 5 nm; the thickness of the shell is 2 nm. The
electron is in the subband (l = 1, n = 1)

Fig. 8 Scattering rate by LO-phonons of an electron as a function of its
wave vector k in a GaAs/Al0.3Ga0.7As wire at temperature T = 300 K
for various values of the thickness d of the shell material. The radius
of the core is 5 nm. The electron is in the subband (l = 1, n = 1)

scattering rates subject to phonon absorption or emission
separately are plotted as a function of electron wave vector.

The electron mobility μ is usually given by

μ = e

m∗ τ (12)

where m∗ is the effective mass of electron defined by the
subband energy via the expression

1

m∗ = 1

�2

∂2Eln(k)

∂k2

∣∣∣∣
k=0

. (13)

τ is the relaxation time which is a measure for electron
momentum decay due to various kinds of scattering. We
will adopt the memory function formalism [28] to calculate
the relaxation time τ . Dropping the electron-electron
interaction and restricting ourselves to the lowest order
of electron-phonon interaction, we obtain the expression

Fig. 9 LO-phonon absorption and emission rates as a function of
electron wave vector k in a GaAs/Al0.3Ga0.7As wire with shell
thickness of 2 nm at temperature T = 300 K. The radius of the core is
5 nm. The electron is in the subband (l = 1, n = 1)
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for the electron relaxation time limited by LO-phonon
scattering

1

τ
= 2πm∗

kBT �3neL

∑
αα′ξ

(
∂Eα

∂k
− ∂Eα′

∂k′

)2

| Bα′αξ |2

×Nα (1 − Nα′) n(ωξ ) δ
(
Eα′ − Eα − �ωξ

)
. (14)

In the above equation, ne is the electron linear density.
Figure 10 shows the temperature dependence of the

total electron mobility and of the mobility subject to
only intersubband or intrasubband scattering in core-shell
GaAs/Al0.3Ga0.7As quantum wires. We have assumed the
electrons occupy the subband (l = 1, n = 1). The linear
electron density is taken as 1.0 × 106 cm−1. The mobility
decreases with increasing temperature. Moreover, it is seen
that the intersubband scattering has the main contribution
to the total mobility and, therefore, is the dominating
mechanism in electron–LO-phonon interaction.

In Fig. 11 we plot the electron mobility as a function
of temperature in core-shell GaAs/AlGaAs quantum wires
with the same core dimension but different thickness of the
shell.

It is shown that the electron mobility is higher in the
wires with larger shell thickness in accordance with lower
scattering rate mentioned above. Numerical calculation
shows that electron mobility can be improved by two orders
of magnitude in the wire with 5 nm radius when increasing
the shell thickness from 2 to 5 nm.

The increase of electron mobility with increasing
shell thickness in core-shell GaAs/AlGaAs nanowires was

Fig. 10 The total electron mobility and the mobility subject to only
intersubband or intrasubband scattering as a function of temperature
in the GaAs/Al0.3Ga0.7As wire with the core radius 5 nm and the shell
thickness of 2 nm. Electrons occupy subband (l = 1, n = 1) with the
linear density of 1.0 × 106 cm−1

Fig. 11 Temperature dependence of phonon-limited electron mobility
in a GaAs/Al0.3Ga0.7As wire. The radius of the core is 5 nm; the
thickness of the shell is of 2 nm (1), 3 nm (2), and 5 nm (3). It is
assumed the subband (l = 1, n = 1) is occupied by electrons with the
linear density 1.0 × 106 cm−1

revealed experimentally and reported in Ref. [29]. The
authors suggest that the improvement in carrier mobility can
be attributed to the reduction of carrier scattering by charged
surface states since thicker shells give greater separation of
carriers from these scattering sites. In the present work, we
suggest and explain another mechanism leading to higher
electron mobility in quantum wires with thicker shell. The
spreading of the electron wave function into the shell region
leads to weaker interaction of electrons with phonons of
type 1 and, therefore, to higher electron mobility.

The calculated mobility is rather higher than available
experimental data in Ref. [29]. As shown in Fig. 12, the
number of phonon branches increases rapidly when the
size of the quantum wire increases. This opens up more

Fig. 12 Number of branches Nph of type 1 phonons with m = 0 and
m = 1 for a core-shell GaAs/Al0.3Ga0.7As quantum wire as a function
of the core radius. The thickness of the shell is of 2 nm
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scattering channels, leading to an increase in scattering
rates. Therefore, one can expect the values of mobility to be
closer to experimental ones when considering larger size of
wires available in experiment.

4 Conclusion

In this paper, the longitudinal optical phonon modes in
cylindrical core-shell quantum wires are developed within
the dielectric continuum approach. In general, there may
exist four types of LO-phonons in a wire in dependence on
the concrete parameters of materials the wire is made of
and are classified according to the behavior of the radial
amplitude of vibrations. Numerical calculations performed
for GaAs/AlxGa1−xAs quantum wires with x = 0.3 showed
that there are only two types, type 1 and type 3, of
phonon modes in such wires. These modes have the same
oscillating feature of amplitudes in the shell region. The
electrostatic potential originating from the optical vibrations
has also been obtained. The phonon mode dispersion and
the associated potential are modified with the change of
the shell thickness and, therefore, influence the electron-
phonon interaction. One may expect electron scattering is
reduced considerably in the quantum wires having thicker
shells due to electron spreading into the shell region since
electron scattering rate is governed mainly by the interaction
with phonons of type 1 which produce the electrostatic
potential emerging significantly in the core. Therefore,
higher mobility can be achieved by coating the core with
thicker shell.
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