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Local symmetry determines the phases of linear
chains: a simple model for the self-assembly of
peptides†

Tatjana Škrbić,ab Trinh Xuan Hoang,c Amos Maritan,d Jayanth R. Banavara and
Achille Giacometti *b

We discuss the relation between the emergence of new phases with broken symmetry within the

framework of simple models of biopolymers. We start with a classic model for a chain molecule of

spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap,

and with a pairwise attractive square well potential accounting for the hydrophobic effect and

promoting compaction. We then discuss the consequences of the successive breaking of spurious

symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard

high temperature coil phase and the low temperature collapsed phase, this results in a new class of

marginally compact ground states comprising conformations reminiscent of a-helices and b-sheets, the

building blocks of the native states of globular proteins. We then discuss the effect of a further

symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along

the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the

emergence of a novel phase within the previously obtained marginally compact phase, with the

appearance of more complex secondary structure assemblies. The potential importance of this new

phase in the de novo design of self-assembled peptides is highlighted.

1 Introduction

We unify two themes in this paper, one from statistical physics
and the other in the life sciences. The notion of phases of
matter plays a major role in statistical physics. Even the very
simplest many body system of hard spheres exhibits two phases
on varying the packing fraction. One obtains a fluid phase at
low packing fraction and a crystalline phase at sufficiently high
packing fraction. This is a purely entropic effect, which takes
into account the number of ways a system of hard spheres can
be arranged while ensuring that the hard spheres do not over-
lap. On adding a short range attraction between the spheres, the
fluid phase splits into two phases – the liquid phase and the
vapor phase.1,2

Symmetry plays a key role in determining the nature of the
ordered phase. Consider replacing a packing of spheres with
a packing of anisotropic objects such as pencils or banana
shaped objects. The spherical symmetry of the constituent
objects has been broken by hand and one can contemplate a
situation in which the translational ordering need not occur in
all three directions simultaneously. Furthermore, one may have
the possibility of orientational ordering without any accompanying
translational order.1 For example, the center of masses of the
pencils can be disordered, yet the pencils may all roughly be
oriented along the same axis.

The notion of phases and singularities associated with phase
transitions are all well-defined only in the thermodynamic limit
for an infinite sized system. For a finite sized system, the
behavior typically mirrors that of an infinite system but with
the singularities being rounded out.

The second theme that our work touches upon is the behavior
of relatively short chain molecules of amino acids (there are twenty
types of naturally occurring amino acids), proteins.3,4 Proteins are
amazing molecular machines that do the work in a living cell. The
behavior of proteins is largely governed by their native state
structure or loosely speaking their ground state geometry.
Protein native states are made up of emergent building blocks
of tightly wound helices and almost planar zig-zagging strands
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forming b-sheets. Both helices and sheets are stabilized by
hydrogen bonds as first shown by Pauling and co-workers many
decades ago.5,6 Furthermore, proteins are able to change their
geometry due to external influences such as binding to ligands
or other proteins or signalling molecules. Similar proteins are
present in all living cells and thus one might wonder whether
their very special attributes arise from their native state structures
lying in a novel phase of matter that exists for relatively short chain
molecules and which comprise the common geometrical attributes
of all proteins. Our goal is to identify such a phase, which, we will
show, exists independent of the details of quantum chemistry and
amino acid specificity.

We begin with a simple classical model of a short chain
molecule and, guided by symmetry considerations, study the
nature of the ground states using extensive computer simulations.
Guided by our experience in statistical physics, we monitor the
nature of the ground states on successively breaking spurious
symmetries. Without any additional input from quantum chemistry
or amino acid heterogeneity, we identify a novel phase of matter,
which meets the requirements we seek. We then study the behavior
of the phase diagram as a function of temperature to ensure that the
novel phase is still viable at non-zero temperatures. We then
conclude with a careful comparison of the structures in the
novel phase and assembled protein native state structures. Note
that the notion of a phase has to be treated with appropriate
caution for a finite sized system as alluded to above.

Our work has several consequences. First, it provides some
new insights into the behavior of simple models of self-avoidance
of chain molecules subject to an attractive self-interaction. Second,
it highlights the all-important role of symmetry in determining the
nature of the ground states. Finally, it has potential applications in
the design and control of the self-assembly process of peptides
yielding nanostructures with prescribed properties.7–11

A standard model of a homopolymer chain comprises N

spherical beads of diameter s tethered into a chain of total
length L. Consecutive beads are kept at a fixed distance b = s to
represent covalent bonds (L = (N � 1)b), and non-consecutive
beads are not allowed to overlap and account for excluded
volume effects.12–14 At this level of description, solvent effects are
incorporated by including a short range square-well attraction
between non-consecutive beads, so that these beads prefer to stay
close to one another, as for a chain in a bad solvent. The phase
diagram is well known and has been studied by many different
groups using various methods.12,15,16 It has a high temperature
swollen phase, where the chain is in a relatively open stretched
conformation dominated by entropy. At low temperatures, the
energy dominates resulting in a compact phase, where the
number of attractive contacts is high. For sufficiently long chains,
the ground state has a crystalline structure, usually with FCC or
HCP local symmetry.15

There is an intrinsic problem with the symmetry of the
model. Untethered spheres look the same from any direction –
they are isotropic. The act of being tethered together in a chain
causes the spherical symmetry of monomers to conflict with the
fact that there is a tangent direction at each sphere location,
which describes the direction of the chain. Thus a spherical

geometry of the tethered objects is not compatible with the
symmetry associated with a chain.

Proteins are inherently different from synthetic polymers.
A polypeptide chain is formed by a sequence of amino acids
characteristic of each protein, with repeated units formed by
several atoms rather than a single monomer entity.3,4 While, at
the simplest level, this could be accounted for within a single
bead representation, some known structural aspects do not fit
the square-well bead model described above. Consider the
simplest example of a poly(GLY) chain, where all amino acids
are glycines (GLY) having just a single hydrogen atom as a side
chain. These beads would correspond to a van der Waals sphere
associated with GLY and having a diameter of the order of 5 Å,
whereas the distance between the centers of consecutive beads,
the Ca–Ca0 distance in protein language, is known from crystallo-
graphic measurements to be approximately 3.81 Å. This alone
already suggests that b o s, unlike the previous assumption of
b = s. Real proteins are however not poly(GLY) and the chain
includes amino acids of 20 different types, differing from each
other because of distinctive side chains. Naturally occurring
side chains have, in general, different sizes (GLY is very small,
Tryptophan TRP is, on the contrary, bulky), as well as different
chemical properties. The side chains are typically oriented in a
direction perpendicular to the backbone chain and provide
additional steric constraints and chemical attributes.

Motivated by these features, a model called a ‘‘Thick Chain’’
(TC) or ‘‘ Tube’’ model was proposed some years ago.17 In this
model, the chain of spherical beads was replaced by a flexible
(able to be bent locally below a certain threshold with no energy
cost), continuum (with no discrete granularity) tube, with a
diameter given by 2D. Here, D is defined to be the ‘‘thickness’’
of the tube18 and encapsulates the ability to house side chains
within it, with a larger D allowing for bigger side chains. Of
course, a homopolymer would be represented by a tube of
uniform thickness D. The transition from a chain of spheres to
a continuum tubular object has two important consequences
for the conformational statistics of the chain. As in the case of
the discrete chain, different parts of the tube cannot overlap. In
addition, the tube cannot be bent too severely locally with the
constraint that the local radius of curvature is no smaller than
the thickness D.

An important aspect of the TC model is related to its
symmetry. In a spherical-bead model, any given monomer is
spherically symmetric. In the TC model, the tube axis provides a
preferred directionality thus breaking the original local spherical
symmetry in favor of a cylindrical symmetry. As in liquid
crystals,1 this symmetry breaking can result in new phases, in
addition to the conventional coil (swollen) and the globular (or
crystalline) phases.

While the picture of a continuum tube is very handy from
the conceptual point of view, it cannot be used in practical
terms because a discretization is always necessary. It turns out
that the continuum tube can be recast in terms of a discrete
chain with a suitable three-body potential.17–19 The three body
potential is however very costly from the computational view
point, and several studies16,20–25 have suggested the alternative

Paper Soft Matter



5598 | Soft Matter, 2019, 15, 5596--5613 This journal is©The Royal Society of Chemistry 2019

route of allowing partial interpenetration between consecutive
monomer beads, prompted by the structural motivations
alluded to earlier. The b o s condition provides an entropic
constraint rather similar to that in the TC model. This solution,
however, does not give one the possibility of tuning the thickness,
as in the thick chain model. One possible way of approximately
accomplishing this is to add a necklace of additional spherical
beads (side chain beads) surrounding the main chain bead in
a plane perpendicular to the chain axis and tangent to each
backbone sphere, akin to fixed satellites. Upon varying the number
Nsc and the diameter ssc of the side spheres, an effect similar to
that of the thick chain model can be achieved.

Here, we build upon these ideas by studying the effect of
adding a single side chain located at a specific position in the
ring, thus further reducing the uniaxial (cylindrical) symmetry
to biaxial. We will show that this leads to an additional sub-
phase with highly unconventional properties that will be the
focus of the present study. A preliminary report of this novel
phase has been presented before26,27 – the present study
provides a complete analysis including studies of the behaviour
at non-zero temperatures.

The rest of the paper is organized as follows. Section 2 will
recall the mathematical formalism necessary for a proper
descriptions of the models. Section 3 include detailed results
and discussions. Finally, Section 4 will summarize the results
and discuss some future perspectives.

2 Model and methods
2.1 The model

Our model, inspired by past studies16,21,22,24 is displayed in
Fig. 1. It consists of a chain of N identical tethered spherical
beads of diameter s, each representing the backbone of an
amino acid centered at each Ca, and having a nearest neighbour
(along the chain) distance equal to b r s. Fig. 1 shows the case
N = 5. To each of the N � 2 internal beads, a second bead of
diameter ssc is attached tangent to the backbone bead and
located along the negative normal N̂ direction of the Frenet
frame {T̂, N̂, B̂}28 (see Fig. 1). In addition to excluded volume
involving all beads (backbone–backbone, backbone-side chain,
and side chain-side chain), a constant short range attraction of
strength e and range Rc is imposed between the main chain
beads as depicted in Fig. 1. Overall then, our model is char-
acterized by three parameters: the inter-bead distance b/s, the
size of the side chain ssc/s, and the range of attraction Rc/s.
Realistic values for these three parameters in proteins are b =
3.81 Å, ssc = 2.5 Å, and Rc = 6 Å; a realistic value for the diameter
of the backbone bead is s = 5 Å corresponding to the diameter of
the van der Waals sphere associated with glycine (GLY).

Denoting the position of the i-th Ca bead by ri, the corres-
ponding side chain bead is located at

r
ðscÞ
i ¼ ri � N̂i

sþ sscð Þ

2
; (1)

the side chain sphere and the backbone sphere are tangent to
each other (see Fig. 1). It turns out that the side chains of amino

acids in real proteins are roughly oriented along this direction
but with an average tilt of roughly 40 degrees with respect to the
negative normal direction (see Fig. 2) thus breaking the chiral
symmetry, and have different sizes. Our model is greatly
simplified – it does not have any chirality built into it, nor
any specificity of the amino acids, but rather aims at accounting for
excluded volume effects given by side chains. It is well known from
the work by Ramachandran and others29–31 that steric effects play an
important role in the formation of secondary structures. Non-
consecutive backbone beads have both steric interactions and
short-range attraction of range Rc with all other backbone beads,
whereas side chains are subject only to steric interactions.

We will use s as the natural unit of length and study the
phase diagram in the three planes of overlap 1 � b/s, size of the
side chain ssc/s, and attraction range Rc/s. A comparison with
real proteins can then be carried out by using s E 5 Å, the van
der Waals sphere of glycine.

2.2 The Frenet–Serret equations

In this section, we briefly recall the basic mathematical expres-
sions from differential geometry and local theory of curves,28 that
are routinely used in polymer theory32 and will be used to derive
the main properties of the thick chain model. Imagine a tubular
object, whose axis is described by a curve R(s) parameterized by
its arc length 0 r s r L. It proves convenient to introduce a
suitable curvilinear coordinate s and a Frenet frame of unit

Fig. 1 (a) Chain model. Each main chain sphere (cyan) has diameter s. The
side sphere (yellow) is in the negative normal direction and has a diameter ssc.
The distance between successive main chain spheres is b r s – consecutive
spheres can, in general, partially overlap. Non-consecutive main chain spheres
experience a short range attractive constant potential if their separation is
within the range of the attraction Rc. (b) Side sphere positions in Frenet frame.
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vectors {T̂(s), N̂(s), B̂(s)} for the tangent, normal and binormal
respectively, as follows

T̂ sð Þ ¼
R0 sð Þ

R0 sð Þk k

N̂ sð Þ ¼
T̂
0
sð Þ

k T̂
0
sð Þ k

B̂ sð Þ ¼ T̂ sð Þ � N̂ sð Þ;

(2)

where the prime denotes the derivative with respect to the
argument. Note that 8R0(s)8 = 1 because s is the arc length. The
Frenet coordinates satisfy the Frenet–Serret equations

@T̂ sð Þ

@s
¼ k sð ÞN̂ sð Þ

@N̂ sð Þ

@s
¼ � k sð ÞT̂ sð Þ þ t sð ÞB̂ sð Þ

@B̂ sð Þ

@s
¼ � t sð ÞN̂ sð Þ;

(3)

which automatically define the curvature k(s) and the torsion t(s)
from the first and the last equation. Note that it is conventional to
choose k(s) to be positive by absorbing the sign in the direction of
the normal vector N̂(s). In the simulations, the discrete version of
these equations will be exploited

T̂i ¼
Di þDiþ1

Di þDiþ1j j
(4)

where Di = ri � ri�1 so that |D| = b. For each of the non-terminal
backbone spheres, one defines a normal vector

N̂i ¼
Diþ1 �Di

jDiþ1 �Dij
(5)

where i = 2, . . ., N� 1. The corresponding binormal vector is then
given by

B̂i = T̂i � N̂i. (6)

From this, one can derive the discrete counterparts of eqn (3)
that will automatically define the discrete curvature kappai and
torsion ti (see below).

2.3 Simulations protocol

In numerical simulations, we have studied the zero-temperature
phase diagram using microcanonical Wang–Landau33 and
conventional simulated annealing canonical Monte Carlo (MC)
simulations,34,35 always obtaining consistent results. In the
Wang–Landau simulations, we sample polymer conformations
according to the micro-canonical distribution by generating a
sequence of chain conformations A- B, and accepting the new
configuration B with the micro-canonical acceptance probability

PaccðA ! BÞ ¼ min 1;
wBgðEAÞ

wAgðEBÞ

� �

; (7)

where wA and wB are weight factors ensuring the microscopic
reversibility of the moves. The set of MC moves, that are
accepted or rejected according to the probability given by
eqn (7), includes both local-type moves, such as single-sphere
crankshaft, reptation and end-point, as well as non-local-type
moves, such as pivot, bond-bridging and back-bite moves,
randomly sampled so that on average N spheres (or a multiple
of it) are moved to complete a MC step.15

The density of states g(E) is then constructed iteratively by
filling suitable energy histograms and controlling their flatness.
However, in order to compute the ground state energy, the
lowest energy was consecutively selected using the acceptance
probability (7) with a bias toward less populated energy states.
This corresponds to the usual preliminary calculation carried
out without a low-energy cut-off in the usual Wang–Landau
scheme.15 In the full Wang–Landau calculation, we typically
assume convergence after 30 levels of iterations, corresponding
to a multiplicative factor value of f = 10�9. For the ground state
calculation, each run is composed of at least 109 Monte Carlo
moves per sphere. In the simulated annealing case, the moves
were the same and the temperature was gradually decreased up
to reduced temperatures T* = kBT/e = 0.01.

2.4 Order parameters

In Section 3 we will study the low temperature phase diagram of
this model that will display the rich polymorphism charactetistic
of real proteins (a helix phase, b sheet phase, as well as assemblies
of a helices and b sheets). Here, different phases will be identified
by suitable order parameters. Another way to discriminate
between different phases stems from the contact maps that will
be introduced further below.

2.4.1 Torsional order parameter s. Torsion ti, implicitly
included in the discrete counterpart of the Frenet–Serret
eqn (4), whose explicit definition can be given in terms of the
derivative of T̂i as

ti ¼
T̂i � T̂

ð1Þ

i

� �

� T̂
ð2Þ

i

T̂
ð1Þ

i � T̂
ð2Þ

i

�

�

�

�

�

�

2
(8)

Fig. 2 Normalized histograms of the tilt angles of amino acids side chain
with respect to the tangent (solid), negative normal (dashed) and binormal
(dotted) vectors. The data are obtained through the analysis of 500 refined
protein structures from the Top500 database. The side chain direction is
approximately defined as the Ca–Cb direction, whereas the vectors of the
Frenet frame are calculated based on the coordinates of the Ca atoms.
Note that the side chain direction is almost perpendicular to the tangent.
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where we have defined T̂(n)
i as the n-th (discrete) derivative of T̂i.

Here, a simple two (three) points parametrization for T̂(1)
i (T̂(2)i )

has been used.
As we will see in Section 3 the probability distribution p(t)

switches from a unimodal to a bimodal distribution below the
coil–helix transition temperature, and hence t will be mainly
used to identify the a-helix conformation.

2.4.2 Flatness order parameter. A key feature of the b-sheet
is to adopt a nearly two-dimensional conformation. Therefore
we can distinguish it by computing a flatness order parameter

hN̂i � ðN̂j � N̂kÞi ¼
� 0 for a flat phase

a0 otherwise

(

(9)

for all triplets i, j, k = 1, . . ., N of amino acids that are in the b

phase. A value lower of E0.2 of the flatness order parameter
will be taken as an indication of the b phase.

2.4.3 Radius of gyration parameter. An important order
parameter is given by the mean square radius of gyration hRg

2(T)i
that, as in conventional polymers, is able to distinguish between
the coil (extended) phase, where the radius of gyration R2 B N2n,
with 2n E 1.2 and the globule (collapse) phase, where it is much
smaller. In canonical simulations, this is directly accessible,
whereas in the Wang–Landau approach it can be obtained as

Rg
2ðTÞ

� �

¼
X

E

Rg
2

� �

E
g Eð Þe�E= kBTð Þ (10)

where hRg
2iE is the average square of the radius of gyration at fixed

energy E.

3 Results
3.1 Temperature dependence

As in conventional polymers, on cooling, here one observes a
folding of the chain resembling a second order phase transition
(signature of a transition in the case of an infinitely long chain)
signalled by a peak in the constant volume heat capacity per
monomer CV/(NkB) – as usual, the rounding of the peak stems
from a finite size effect. Unlike conventional polymers however,
where one finds either a direct transition to a crystal or a two-
step transition to a globule and then a crystal, depending on
the range of attraction Rc/s, which is the only controlling
parameter,15 here the temperature profile is considerably
richer, and depends on the selected values of the parameters.
Each set of the parameters will define a state point in the
corresponding phase diagram. For vary large values of the side
chain diameter ssc/s, the steric effect prevents the collapse
of the chain and a coil (swollen) phase is observed at any
temperature. In contrast, a high temperature coil state and a
low temperature globule phase is observed for low values of
ssc/s, separated by a Y transition point,12–14 as in conventional
polymers. At intermediate values, however, additional phases
are observed depending on the specific value of the parameters.
This is the counterpart of what has been denoted as the
marginally compact phase in the thick chain model that was
devised in a spirit similar to the present one.17 Here for a large

range of parameter values (the nature of the phase diagram will
be discussed in depth in the rest of the paper), a single helix
phase is found below a characteristic temperature Ta that
depends on the specific state point. This is shown in Fig. 3a,
where the transition to a helix state is signalled by a peak in the

Fig. 3 (a) The heat capacity per monomer CV/(NkB) as a function of the
reduced temperature kBT/e for a pathway ending in the helix phase;
(b) same as in (a) for a pathway ending into the b phase; (c and d) same
as in (a) for a pathway ending into the degenerate elixir phase. The specific
values of the parameters are: (a) 1 � b/s = 0.25; ssc/s = 0.83, Rc/s = 1.17,
transition temperature kBTa/e = 0.67; (b) 1 � b/s = 0.18; ssc/s = 0.67,
Rc/s = 1.167, transition temperature kBTb/e = 0.41; (c) 1 � b/s = 0.25;
ssc/s = 0.67, Rc/s = 1.17, transition temperature kBTelixir/e = 0.20; (d) 1 �

b/s = 0.25; ssc/s = 0.50, Rc/s = 1.17, transition temperature kBTelixir/e =
0.45. In all cases, the chain length is N = 40.
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heat capacity. Note that this is the true folded state in this region.
A different state point selected in the neighbourhood still results
in the ground state being a single helix with a distinct geometry
and a similar transition temperature. Within another wide region
of parameter space, a similar heat capacity profile is found, with a
single peak in the heat capacity per monomer CV/(NkB) but
resulting in a different, almost planar b-like folded state, as
shown in Fig. 3b. Again, neighbouring state points have the same
b-like folded ground state (albeit with distinct shapes), so there is
a one-to-one correspondence between state points and shapes of
the folded states, none of which has a geometry (radius and pitch
for the helix states, zig-zag geometry of the strand for the b-states)
comparable to those found in real proteins.

The full low temperature phase diagram as a function of the
different parameters will be discussed below. As we will see,
there exists a further phase nestled within the above two phases
and still within the marginally compact phase. This phase, that
will be denoted as elixir for reasons that will become clear
below, is in fact the most interesting one and was not observed
in any of the earlier studies, apart from in a recent preliminary
report of the present study.26,27 Here, as shown in Fig. 3c, the
heat capacity per monomer CV/(NkB) displays multiple peaks
upon cooling, first into an intermediate partially folded fea-
tureless state, then into a single helix or b- shape (the helix in
the case of Fig. 3c), and finally into a superstructure combining
both helices and bs. As in the previous cases, a similar pattern
is found for neighbouring state points; unlike the previous
cases, however, there is no one-to-one correspondence between
the state point and final fold, the ground states are now
degenerate. As we shall see below, this state point happens to
lie close to the boundary of the elixir phase. By considering a
state point deeper within the elixir phase (Fig. 3d), a higher
folding temperature of Telixir = 0.45e/kB is found. This state
points will be highlighted in the phase diagrams described below.
We note that all these transitions to secondary or assembled
secondary structures occur at temperature T E 0.2–0.45e/kB that
correspond to attractive energies e E 2–5 kcal mol�1 at room
temperature. Interestingly, this is very close to the accepted value
for the strength of a single hydrogen bonds in peptides.36

3.1.1 Contact maps. According to the Levitt–Chothia
classification,37 all known native states of globular proteins
belong to four clearly defined classes: all-a having only a helix
secondary structure, all-b having mainly b sheets, a + b where
a helix and b sheet secondary structures do not mix but tend to
segregate along the peptide chain, and a/b where conversely
tend to alternate. The two latter cases will be generally referred
to as a � b superstructures.

Contact maps can be defined by a matrix that is 1 for any two
residues that are in contact (i.e. closer than a predefined
distance) and 0 otherwise, can also be used as order parameters,
both for the all-a and all-b phases, and for the combinations of
a + b or a/b appearing in the elixir phase. Here, two residues will
be considered in contact if the distance between the corres-
ponding Cas are within the range Rc of the attractive well.

Fig. 4 and 5 report the corresponding evidence. Fig. 4b
depicts the contact map associated with the b-sheet displayed

Fig. 4 Results for a b sheet structure and an a helix, with b/s = 0.75 and
the side sphere size ssc/s = 0.83. The figure depicts a snapshot of the
ground-state (a and c) and the contact map (b and d) for the cases of
Rc/s = 1.1 (a and b) and Rc/s = 1.4 (c and d). A tube representation of
the structure, where side chains have been omitted, is shown for clarity.
Characteristic fingerprints of the b and a structures are visible in the
contact maps.
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in Fig. 4a. The fishbone pattern of the contact map can be
unambiguously ascribed to the characteristic shape of the b-sheet.
Likewise, Fig. 4d shows a pattern formed by two parallel stripes,
that again can be ascribed to the a-helix conformation. Both
patterns emerge even in a combined a � b superstructure, as
illustrated in Fig. 5, that shows the contact map and the
representative snapshot of a a/b (Fig. 5a and b) and a + b

(Fig. 5c and d). We will find that this is an important char-
acteristic of the elixir phase discussed next.

3.2 The elixir phase

We denote as ground state the stable folded state obtained below
the folding temperature and study its phase diagram in the space
of the three parameters 1 � b/s, ssc/s, and Rc/s. Fig. 6 shows the
projection of the phase diagram along the plane ssc/s � (1 � b/s),
with the additional two planes reported in Fig. S1 of ESI.† Consider
the first ssc/s � (1 � b/s) plane depicted in Fig. 6a, where the
marginally compact phase is the whole phase nested between the
coil and the globule phases. Here, two subphases (the helix and
the b) meet with the globular phase within an extended region,
denoted as the elixir phase26 and delimited by a solid line. Because
different phases meet at this ‘‘extended triple point’’, all folds
within this region (the elixir phase) must have approximately the
same energy. We will assume two folds to have the same energy
when their number of contacts do not differ by more than 5%.

A similar feature occurs in the other two planes Rc/s � (1 �

b/s) and Rc/s � ssc/s (Fig. S1 in ESI†) where in all cases there is
a well-defined region (the elixir phase) where the helix, b and
globule phases merge. The difference in shapes of the elixir
phase along the three planes can be ascribed to the fact that
they are in fact projections of a three dimensional volume along
the three different planes. The elixir phase is centered in the
state point: 1 � b/s = 0.25, ssc/s = 0.5, Rc/s = 1.167. Using s =
5 Å, the diameter of the van der Waals sphere associated with a
Glycine (GLY) residue, one deduces b = 3.81 Å, ssc = 5 Å, and
Rc = 6 Å, as previously anticipated.

Additional insights can be obtained by zooming into the
elixir phase. This is done in Fig. 6b for the 1 � b/s, ssc/s plane
of Fig. 6a. As discussed, the elixir phase is formed by super-
secondary structures of both a/b and a + b types of many
different topologies but nearly identical energies, as shown in
Fig. 6b. Outside the elixir phase, there is however a larger
region (delimited by a dashed line) that includes also the all-a
and all-b folds characteristic folds, the remaining two classes in
the Levitt–Chothia classification.37 While these have slightly
different energies (lower for all-b, higher for all-a), all different
folds within this larger region have the crucial property of
having structural parameters matching those of real proteins.
Essentially what happens is the following. On moving from an
all-b phase into the elixir phase, the structural parameters
(length of each single strand, i � i + 2 angle, etc.) gradually
changes until they match those found in real proteins upon

Fig. 5 Representative results in the elixir phase with b/s = 0.75 and
Rc/s = 1.17. Displayed are snapshots of the ground-states in tubular
representation (a and c) and the contact maps (b and d) for ss/s = 0.42
(a and b) and ss/s = 0.67 (c and d). Characteristic fingerprints of both the a

and the b conformations within the same structure are clearly visible.

Fig. 6 (a) The ground state phase diagram along the plane ssc/s� (1� b/s);
Here N = 40 and the third non-varying variable has been set to the center of
the elixir phase 1 � b/s = 0.25; ssc/s = 0.25; Rc/s = 1.16. (b) Blow-up of the
elixir phase displaying all four prototypical folds of real proteins: all-b (close
to the b and globular phases), all-a (close to the helix and globular phases),
a + b and a/b (inside the inner solid line). Small dots indicate computed state
points, and snapshots represent the ground state folds of that particular state
point (indicated with a larger dot). In (a), the state points corresponding to the
four transitions discussed in Fig. 3 are highlighted with stars color coded with
the corresponding colors.
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entering into the elixir phase. Conversely, on moving from an
all-a phase into the elixir phase, a morphological transition
occurs upon entering the elixir phase driven by an energetic
gain in term of the number of contacts. This transition is
anticipated by a gradual tuning of the helix structural para-
meters (radius and pitch) to the correct values matching those
of real proteins, within the larger structural basin in the phase
diagram delimited by a dotted line. This self-tuning of the
single helix allows it to have the number of contacts compar-
able with those occurring in the b-phase and hence compete in
energy.

The elixir phase has three remarkable characteristics. First,
it includes conformations with nearly identical energies that
are composed by a combination of a helices and b sheets.
Second, all the a helices and b sheets found here have geome-
trical parameters matching those of real proteins. Finally, its
spatial extension in parameter space is nearly independent of the
number N of backbone beads (i.e. amino acids). We elaborate
more on each of these points in the following sections.

3.3 Thermal switching

The energy degeneracy present in the elixir phase means that
at zero temperature (i.e. at temperatures below the folding
temperatures kBTelixir/e) it would be possible to go from one
such fold to another one due to thermal fluctuations. In order
to get further insights on this mechanism, we performed the
following thermal switching at temperatures slightly lower than
folding temperature (Fig. 7). We first identified in the central
part of the elixir phase 5 different folds of nearly identical
energies, each of them obtained upon cooling down from high
temperature to the elixir phase below the folding temperature
kBTelixir/e E 0.45. These are depicted in Fig. S2 of ESI,† in the
case of N = 56. We then used one of them (the a + 3b fold having
Nc = 185 contacts) as a starting point of MC calculations carried
out at constant temperature kBT/e = 0.35 below the folding

temperature. As clearly visible in Fig. 7, after an initial sudden
drop to a lower number of contacts, the chain starts to probe
other possible favourable folds. In the process of doing this, the
chain finds other possible folds belonging to the elixir phase,
including those other four originally shown in Fig. S2 (ESI†).
This switching from one fold to another can be exploited in
practical terms to set up nanomachines that rely on conformational
changes.22

3.4 The finite size effects in the elixir phase

Although most of the results presented here refer to the case
N = 40, we explicitly checked that the size of the elixir phase in
the phase diagram and its nature are robust to chain length
variations in the range 20 r N r 100. Fig. 8 shows three
representative examples for N = 20, N = 40, and N = 56 in one of
the three planes, clearly showing the near independence of the
spatial extent in parameter space of the elixir phase on N. The
case N = 40 shown in Fig. 8b is in fact identical to Fig. 6b.
Note that all three plots in Fig. 8 have the same scale, a clear
indication that the size and extension of the elixir phase
remains rather stable upon changing N. Representative snapshots
of the corresponding ground state conformation are also displayed
as insets. In addition to the (red) solid line indicating the boundary
of the elixir phase, where the ground states are combined super-
structures a/b and a + b, Fig. 8 (as well as Fig. 6) show a larger
region, enclosed by dotted lines, that includes also all-a and all-b
conformations that are not strictly part of the elixir phase. As we
shall see in the next sections, the elixir phase is characterized by a
degeneracy in the ground state conformations that reside in it,
whereas the larger region is characterized by the fact that each
single motif, be it a a helix or a b strand, is a unique ground state
and has parametersmatching those found in real proteins. Clearly,
this is always the case for conformations within the elixir phase as
it is always contained within the larger dotted region in Fig. 8.

3.5 The degeneracy of the elixir phase

The elixir phase can be loosely regarded as a non-zero volume
in parameter space, whose size does not vary appreciably with
chain length, within which there is co-existence of putative
ground state structures. In the elixir phase, a combination of a
and b structures is found. This was already discussed in ref. 26
and reiterated more clearly in Fig. S3 of ESI,† reporting the
number of contacts Nc (a measure of the energy) as a function
of the three parameters of the model: 1 � b/s (Fig. S3a, ESI†),
ssc/s (Fig. S3b, ESI†), and Rc/s (Fig. S3c, ESI†). The elixir phase
is marked by two vertical lines inside which Nc is nearly
constant. The fact that it is not exactly constant is due to the
combined effects of the discreteness of Nc, ultimately related to
the use of a square well attractive potential as well as finite size
effects. This is shown in Fig. S4a of ESI,† reporting Nc as a
function of 1 � b/s for different lengths N of the chain. A
further support to this finding is given by Fig. S4b (ESI†)
showing the number of contacts per bead Nc/N as N increases.
Here we clearly see that the number of contacts per bead of the
elixir phase extrapolate to the common value E4.0. In Fig. S4b
(ESI†) we also note the presence of an all-a helix conformation

Fig. 7 Thermal switching at kBT/e = 0.35. Number of contacts Nc as a
function of the MC time starting from the initial ground state a + 3b with
Nc = 185 for chain length N = 56. Snapshots corresponding to different
folds obtained via structural transitions are highlighted.
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where Nc/N- 4.5 as 1/N- 0, indicating that these structures
have more ground state contacts (of course for different parameter
values) than those in the elixir phase and hence do not belong to it.
These structures are however within the dotted region surrounding
the elixir phase in the phase diagram of Fig. 6 and 8, indicating
that they have geometries closely matching those in real proteins
(see below for a detailed discussion on this point). Likewise, the
all-b structures have lower ground state energies than those in
the elixir phase. It is only in the parameter region corresponding
to the elixir phase that, due to the correct matching of the
corresponding geometries, they eventually reach the same energy
and hence combine into a/b or a + b structures.

A comparison with a conventional ferromagnetic Ising
model can prove instructive. On cooling down from a high

temperature disordered phase, larger regions of identically
oriented spins emerge, until one of the two symmetrical ground
states (spin up or down) is selected. The Ising ground state is
then doubly degenerate. The situation is distinct in spin glasses,
where the ground state is highly degenerate. The elixir phase has
intermediate, finite but significant, degeneracy with no simple
analogues in other systems, to the best of our knowledge.

3.6 Internal structural transitions

The degeneracy of the elixir phase raises the question of how a
combination of a and b structures can favorably compare with
all-a and all-b conformations. We address this issue in Fig. 9
where we monitor the transition from an all-b ground state to a
combination of a + b conformations. Fig. 9 shows how a chain
changes its structure from a 5b chain ground state to a 2b + a + b
upon changing the interaction range driving the system from
outside to inside the elixir phase. In real proteins, this can be
realized by changing the amino acid sequence. Representative
snapshots are depicted in Fig. 9a and b. This transition is clearly
visible on comparing the contact maps of the two conformations,

Fig. 8 The elixir phase for chain length (a) N = 20; (b) N = 40; (c) N = 56.

Fig. 9 Two ground state conformations of a chain in the elixir phase on
changing the interaction range of the main chain spheres: a 5b structure
and a a + 3b structure. These were obtained for 1 � b/s = 0.25, ssc/s = 0.5
and slightly different ranges of interactions: Rc/s = 1.07 for the 5b
structure, and Rc/s = 1.10 for the 2b + a + b counterpart. The number of
contacts increases from 109 to 115 on going from the 5b structure to the
2b + a + b ground state. (a) Representative snapshot for the 5b structure;
(b) representative snapshot for the 2b + a + b structure; (c) contact maps
for the 5b structure; (d) contact maps for the 2b + a + b structure; (e)
distribution of contacts among residues for the 5b structure; (f) distribution
of contacts among residues for the 2b + a + b structure.
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as shown in Fig. 9c and d. Essentially, the difference is tanta-
mount to a transformation of a 2b section into an a section. This
increases the number of contacts by 6 units and hence is
energetically favourable. The gain is clearly visible in the dis-
tribution of the number of contacts Nc among the 40 residues,
that shows an increase from 8 to 10 contacts in the region
surrounding the 25-th residue (see Fig. 9e and f). Another
interesting example of a structural change occurs in the helix
region in Fig. S3b (ESI†), leading to a step-like discontinuity in
the number of contacts, while still preserving the (non-natural)
helical shape. This is addressed in Fig. 10 that compares the

different characteristics of the two resulting helices. Note that
they are both outside the elixir phase, so their geometrical
parameters are not natural (i.e. not matching those in real
proteins). The helix in Fig. 10a (denoted as helix I) has a shape
that vaguely resembles that of the b-helix, and has 128 contacts,
and it is found just after the elixir phase, as shown in Fig. S3b of
ESI.† The helix in Fig. 10b (denoted as helix II in Fig. S3b of
ESI†), has 111 contacts, and is found for larger values of ssc/s.
From the contact maps of Fig. 10c and d we see that helix I is
able to achieve a larger number of contacts by switching
periodically the number of contacts from 6 to 10 as a function
of residue number, at variance with helix II where the bulky side
chain prevents this and the number of contacts is 6 in the
interior (see Fig. 10e and f). Fig. 10g and h show in practice how
this is achieved in helix I, with internal beads having 10 contacts
and external beads having 6.

3.7 Characteristic geometries in real proteins

As previously noted, the structures found in the elixir phase
display a remarkable similarity with those found in real proteins.
The aim of the present section is to illustrate this point by
comparing each of the structural units (helix and b-strands) of
the elixir phase with those of real proteins that are all identical,
irrespective of the amino acid specificity of any given protein.

Fig. 11 shows an all-a conformation of a real protein (the
1ROP protein), both for each single helix (left) and the association
of two helices (right). Note that the single helix on the left is one
of the two helices considered on the right. Hydrogen bonds and

Fig. 10 The helixI- helixII structural transition that is displayed in Fig. S3b
of ESI.† Helix I has a higher (E128) number of contacts than helix II (E111)
because of the smaller sizes of the side spheres thus allowing for higher
coordination. Representative snapshots helixI (a) and helixII (b); contact
maps helixI (c) and helixII (d); distribution of contacts among residues helix I
(e) and helixII (f). The last two bottom panels show how the helix I can
achieve 6 (g) or 10 (h) contacts.

Fig. 11 Example of all-a structures in real proteins. (left) One of the
a-helices of the all-a 1ROP protein. Ci

a–C
i+4
a distances (in Å) of the hydrogen

bonded amino-acids along the helix are highlighted in red. The characteristic
lengths of an a-helix are: distance between the neighbouring turns (E6 Å) and
its diameter (E5 Å). (right) Association of the two a-helices of 1ROP protein:
distances (in Å) of the neighbouring amino-acids (E5–6 Å) from the reference
amino-acid (located in the helix on the right); the distances from all other
amino-acids are Z8 Å. Note that here the highlighted contacts include both
two hydrogen bonds within the same helix (in red) and hydrophobic contacts
withinE6 Å from the reference amino acid (in blue). Six of the contacts shown
are within the same a-helix, whereas the remaining three are formed with
amino-acids belonging to the adjacent a-helix. In total, this amounts to a
typical coordination number of ncoord = 9 for a backbone sphere inside an
all-a environment.
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Ci
a–C

i+4
a distances within E6 Å are highlighted. Note that there

are exactly 3.6 residues for each turn in a single helix of a real
protein, and this results in the well-known twist in the red dotted
lines (turn angle E100) appearing in the left panel figure.
Consider now the local environment seen by one of the residues
located at the inner edge of one of the helices in the full all-a
parallel arrangement of the 1ROP protein, as shown in the right
panel of Fig. 11. As in the previous case, we have highlighted in
red the two hydrogen bonds that the residue forms with the two
residues one turn distant along the chain. In addition to that,
however, we have also highlighted in blue all residues that are
within a range of E6 Å from that residue, both within the same
helix and in the parallel one. Because of the out-of-phase parallel
arrangement, that residue has 3 contacts with the neighbouring
parallel helix, as well as other 6 (3 above and 3 below) within the
same helix, for a total of 9 possible contacts within a spherical
region of diameter E6 Å. We will refer to this region as the
hydrophobic box for reasons that will become clear as we proceed.
This bonding pattern can be compared with the counterpart in the
elixir phase shown in Fig. 12. Here there are no hydrogen bonds,
and hence all highlighted contacts (in blue) are those within the
interaction of range Rc E 6 Å, corresponding to the hydrophobic
box previously alluded to. Hence, in the elixir phase the interplay
between the spherically symmetric attractive interaction of
range Rc E 6 Å and the steric hindrance provided by the side
spheres with diameter ssc E 2.5 Å (the typical value within the
elixir phase) combine together to provide an effect similar
to that of directional hydrogen bonds present in real proteins,
for s E 5 Å, the experimental value for the diameter of the van
der Waals sphere of glycine. Outside the elixir phase, Rc and ssc

do not have the correct values and the matching is no longer
achieved. Note that there are exactly 4 spheres per turn in the

helical model, corresponding to a turn angle ofE90 resulting in
the parallel pattern of the dotted lines in Fig. 12 (left panel), at
variance with the values of 3.6 and E100 found in real proteins
(see Fig. 11 left panel). Another important difference is that both
right and left hand helices appear in the elixir phase, due to the
achirality of the present model, at variance with real proteins.
This is visible by comparing the right panels of Fig. 11, where
the two helices have opposite handedness, and Fig. 12 where
they have the same handedness. A similar comparison for an
all-b conformation proves also particularly instructive. Fig. 13
displays the case of a 1OSP protein that has an all-b native
structure. Here too, hydrogen bonds with parallel strands have
been highlighted in red, and neighboring residues within the
hydrophobic box (size E6 Å) have been highlighted in blue.
This shows that inside a b-sheet, each residue is typically
surrounded roughly by 8 other residues within the hydrophobic
box, two of which are hydrogen bonds with parallel strands.
Again, this can be contrasted with its all-b counterpart in
the elixir phase. Fig. 14 depicts an all-b environment within

Fig. 12 Example of all-a structure in the elixir phase. (left) One of the
a-helices where each i-th residue is within E6 Å from the i � 4 and i + 4
neighboring residues (highlighted in blue) in accord with the correct
geometry of the helix. (right) Association of two a helices, where there
are 6 contacts within each helix and 3 additional contacts with the
adjacent parallel helix, as in proteins (see Fig. 11). Helices have structural
parameters (radii and pitches) such that the average coordination number
for a sphere embedded in all-a environment is ncoord = 9, as in proteins.

Fig. 13 Example of all-b structure in proteins. (a) A 100 residue long all-b
section of a 1OSP protein. The typical coordination number is ncoord = 8 for
a residue inside a b-sheet, and neighbors contained within E6 Å, are
shown by dotted blue lines, two of which are typically hydrogen bonded
(highlighted in red). Characteristic distances between adjacent strands are
E5 Å, and between consecutive residues at the same height are E6 Å.
The displayed configuration corresponds to the antiparallel case but the
resulting picture is also valid for the parallel case. (b) A side view of the
same configuration illustrating the characteristic in-phase arrangement of
parallel strands, as well as the zig-zag conformation of consecutive
residues with an angle of E120 degrees.
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the elixir phase. Here too the combined effect of Rc E 6 Å and
ssc E 2.5 Å provides the same local arrangement for a bead in
the b conformations of real proteins of Fig. 13. Note however the
different arrangement between parallel strands (in-phase in real
proteins, see Fig. 13b; out-of-phase in the elixir phase, see
Fig. 14b), constituting one of the main shortcomings of the model
in mimicking reality. This flaw can be corrected by incorporating a
binormal–binormal interaction between the Frenet coordinate
systems of main chain spheres in close spatial proximity with
each other, along the lines suggested in ref. 38–40. This notwith-
standing, the similarity of the local environment in the elixir
phase and in real proteins is striking. The slight difference in
local coordination number (ncoord = 8 for an all-b environment;
ncoord = 9 for an all-a environment) is in agreement with the
statistics of the extrapolated number of contacts per beads Nc/N
at large N discussed in Fig. S4b of ESI.†

The above results illustrate how the geometries of the a and
b conformations self-tune in the elixir phase to match char-
acteristic lengths of protein native state structures, so that even
a simple aspecific potential, combined with steric effects given
by the presence of the side chain with the proper symmetry,

provide an effect akin to that of directional hydrogen bonding
and allows one to achieve the correct local coordination. This
permits the a and b motifs to coexist with each other and form
combined a + b or a/b structures found in the elixir phase, as in
proteins. This is displayed in Fig. 15, both for a protein and in
the elixir phase. Fig. 15a depicts the local environment seen by
a residue of a real protein lying on a b strand and having a
parallel a helix. As before, there are 8 neighbours within the
hydrophobic cell, two of which are hydrogen bonds (highlighted
in red). This can be contrasted with its counterpart within the
elixir phase given in Fig. 15b, where the pattern is exactly the
same, notwithstanding the absence of hydrogen bonds.

Outside the elixir phase, this special geometrical confluence
does not occur, as shown in Fig. S5 (ESI†), making coexistence
impossible. Here the size of the side chain is too large or the
range of interactions is outside the correct range, or the helix
does not have the correct shape, or a combination of all these
features prevent the possibility of maintaining a local environment
with the correct number of contacts within the hydrophobic
box. In the example given in Fig. S5a (ESI†), the single helix has
a shape different from that in the elixir phase, and when in the
vicinity of a single b strand (see Fig. S5b in ESI†) one bond
(highlighted in orange) turns out to be outside the hydrophobic
box and hence matching cannot occur. The incompatibility of
packing in the general case illustrates the challenge of the

Fig. 14 Example of an all-b configuration in the elixir phase. (a) Each
sphere has a typical coordination number of ncoord = 8 originating from
neighboring spheres within E6 Å, highlighted with blue dotted lines, in
view of the accord between the geometry of the strands in the model and
in proteins (see Fig. 13). (b) A side view of the same configuration displaying
the characteristic out-of-phase arrangement of parallel strands constituting
the main difference with strands in proteins. The geometrical parameters
(length of the strands, intrastrand separation and zig-zag i � i + 2 periodicity)
are however the same in the model and for proteins.

Fig. 15 Compatibility of the a � b configurations in a protein and in the
elixir phase. (a) A protein; (b) elixir phase. Typical coordination number of
ncoord = 8 for a sphere embedded in the a/b environment, showing that
this combined structure is comparable in energy with both all-a and all-b
configurations of Fig. 11–14.
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harmonious coexistence of the two building blocks of protein
structures.

3.8 Comparison of structural parameters with real proteins

A word of caution is in order. While all folds found in the elixir
phase (and not outside it) have topologies and geometries
matching those of real proteins, they are not the native states
that can only be achieved incorporating the crucial information
included in the sequence. Our aim here is not to try to
reproduce the complexity of the protein folding mechanism,
something that clearly requires more detailed approaches.41,42

Rather, we aimed at showing how in life-as-we-know-it evolutionary
biology has provided the existence of this special phase as a
backdrop to build proteins that can achieve their optimal structure
to perform their functions. The existence of this special phase of
matter, the elixir phase, where real proteins structures may be
poised to reside, allow proteins to achieve their optimal topology
by using only non-specific interactions, selecting from a relatively
large but limited number of possible folds. Use of the specificity of
the sequence allows each protein to reach their final native state by
choosing from the possible folds determined independent of
sequence specificity. As mentioned in Section 3.9, the existence of
this phase could play an important role in the self-assembly process
of several such chains.

How does a chain fine-tune its parameters to be poised in
the elixir phase? It is interesting to compare the geometries of
the structural units obtained in our model with those found in
proteins. In order to do this, we fix b = 3.81 Å, the (Ci

a,C
i+1
a )

distance, and rescale all other lengths in our model accordingly.
Table S1 (ESI†) reports the average values of the radius and
pitch of a a helix in real proteins as obtained from a statistical
analysis,43 as well as the angle between (i, i + 2) residues in a b

strand. As we know, the distance between the hydrogen bonded
amino acids in native helices of real proteins is d(Ci

a,C
i+4
a ) E

5.5 Å (see Fig. 11), corresponding to the pitch of these helices
reported in Table S1 of ESI.† The helix radius is E2.3 Å leading
to a ratio c = P/R E 2.4. These values are compared in Fig. 16
with those obtained in our model upon increasing one of the
three parameters (1 � b/s) and keeping the other two fixed to
their values at the center of the elixir phase (ssc/s = 0.5 and
Rc/s = 1.167). Each point in Fig. 16 represents the result of at least
10 independent simulations, with the error bars representing the
statistical fluctuations. Fig. 16 compares the helix pitch P with the
gray strip representing the values from real proteins as discussed
in Table S1 (ESI†). Fig. 16b and c display the analogous compar-
ison for the helix radius R and the ratio c = P/R. It is clear how all
values within the elixir phase are compatible with those in real
proteins. However, we further note that compatibility also
occurs slightly outside the elixir phase, and leads to the region
surrounding the elixir phase delimited by dotted lines in the
phase diagrams of Fig. 6 and 8.

Additional insights can be obtained by comparing the pitch
of the helix in the elixir phase (i.e. the distance d(Ci

a,C
i+4
a ) E 6 Å

seen in Fig. 12) (right panel) and the distance d(i, i + 2) E 6 Å
between two next-to-consecutive beads in the strands of a b in
the elixir phase (see Fig. 13). This is reported in Fig. 17 as a

function of 1 � b/s, showing once more that only in the elixir
phase (and in fact also slightly outside it) compatibility occurs
and a/b and a + b structures can be found.

Interestingly, this result is in perfect accord with recent
suggestions given in ref. 44, that a peak in the radial distribution
function atE6 Å is indeed a distinct feature of protein-like folds.
Two further points are worth noting. First, in the entire b/s range
of the elixir phase (E0.7–0.8 or equivalently the overlap (1 � b/s)
E 0.2–0.3) and using b = 3.81 Å, the values of Rc characteristic of
the elixir phase are found to be in the range 5.6–6.3 Å, that
coincide with the hydrogen bond length derived from quantum
chemistry. Second, there is a significant difference between the

Fig. 16 Changes in the values of the pitch P (a), radius R (b), and
dimensionless ratio c = P/R (c) for helices crossing the elixir phase along
the overlap 1 � b/s axis. Highlighted in gray are values found on the basis
of a statistical analysis of proteins of all sizes.45 Representative snapshots of
structures in different phases are also displayed. On crossing into the elixir
phase, the values found in proteins are approximately realized. We note
that the increase of both the pitch and the radius in the helix (a) region
arises from the need to avert steric clashes. As b/s decreases (and 1 � b/s
increases), the effective distances between side spheres decrease, and
hence the pitch tends to increase to accommodate their packing. Note
that as Rc/s effectively increases, the number of contacts (and hence the
energy) do not increase smoothly but in a step-like fashion in view of the
all-none character square-well attractive potential.
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ground states in the elixir phase and native states of protein
structures in the way contacts occur. In our model structures, the
most frequent contacts occur between i and i + 2 beads and those
play a significant role in driving the folding of the chain. This is
at odds with actual protein structures where favorable inter-
actions between i and i + 2 residues are infrequent.

3.9 Discussion and future perspectives

The elixir phase emerges as a new phase due to the elimination
of the cylindrical symmetry that resulted in the marginally
compact phase. By a harmonious combination of non-specific
attraction between non-consecutive beads in the chain, and
of the excluded volume effect provided by the presence of the
side chain, the system is able to find a ground state where the
ground state conformations have remarkable similarity with
those obtained via a very different path in real proteins. In
essence, the elixir phase is able to reproduce the same delicate
balance found in real proteins as a result of many different non-
covalent interactions, using a much reduced set of parameters
and ingredients.

Let us consider a specific example. Consider protein ColE1
rop protein (PDBid 1ROP), whose native state has the all-a
conformation shown in Fig. 18 (top left panel). We can now
scan the elixir phase ground states (see Fig. S6 in ESI†) for a
representative gallery of the structures found in the elixir phase
and in the immediate region surrounding it where the single
units (a helix and b sheet) have structural parameters matching
those found in real proteins. This is the region delimited by
dotted lines in the phase diagrams of Fig. 6 and 8 that include
the elixir phase. An all-a helix is clearly visible in the bottom
right part of the gallery of Fig. S6 (ESI†). Clearly, this includes
only the Ca–Cb beads along the chain. However it is possible to
reconstruct the same sequence of protein 1ROP using the
PULCHRA tool46 that reconstructs the full-atom protein model
starting from its coarse-grained representation. The result is
shown in the top right panel of Fig. 18. As expected, the similarity
is striking. One important difference can be seen when comparing

the details of the two parallel helices, that have opposite
handedness in protein 1ROP (top left) and same handedness
in the elixir ground state (top right). Yet, each single unit is
essentially identical, as shown again in the top central panel of
Fig. 18 where the real and the model helices are superimposed
to one another. Many other examples with different topologies
and number of residues can be found. The bottom left panel of
Fig. 18 shows Protein G (PDBid 3GB1) as an example of an a/b
conformation. Again, it is possible to find an elixir ground state
having a similar topology (see second right in the central row of
Fig. S6 in ESI†), leading to the reconstructed artificial protein
depicted in Fig. 18 bottom right panel. Even in this case, the
central panel at the bottom shows the superimposition of the
real and the model units that in this case include also b strands.

The two examples given in Fig. 18 compare the exact ground
state of the elixir model with the native folds of two real proteins,
and show that the elixir phase includes conformations with
topologies similar to the native ones, albeit with some differences.
This similarity suggests that these elixir ground states could also
be regarded as approximate molten globule phase47 of the
corresponding real proteins, where the general topologies has
already self-assembled but the native state is still to be reached.
Unlike the coil state, the ground state obtained here is at the
bottom of the funnel landscape,48 and constitutes then a much

Fig. 17 Changes in the values of the distance i � i + 2 of the main chain
spheres in the elixir phase (and adjoining b phase) upon increasing the
overlap 1 � b/s (blue points). The range of values found in a statistical
analysis of real proteins of all sizes is shown in gray. Representative
snapshots of different ground states are also displayed. Also shown (in
red) is the pitch of the a helix phase to highlight the coexistence of the
building blocks within the elixir phase.

Fig. 18 Examples of comparison between ground state structures in the
elixir phase and the native folds of proteins comprised of N = 56 amino
acids. For the model, the sequence information was incorporated after the
ground state was determined. (top) ColE1 rop protein (PDBid 1ROP), whose
native state is formed by two a helices connected by an unstructured strand
(left), and the corresponding ground state in the model with parameters:
s = 5 Å, 1 � b/s = 0.28, ssc/s = 0.533 and Rc/s = 1.167. The root-mean-
square deviation (RMSD) between the native state of the protein and the
ground state of the model is E4.1 Å. (bottom) Protein G (PDBid 3GB1),
whose native state is formed by two b antiparallel hairpins connected by a
single a helix (left) and the topologically similar ground state in the model
with parameters: s = 5 Å, 1 � b/s = 0.25, ssc/s = 0.416 and Rc/s = 1.167. The
root-mean-square deviation (RMSD) between the native state of the protein
and the ground state of the model is E7 Å. The central panel shows the
fidelity of the overlap of the building blocks of the protein structures
(a helices and b hairpins) to those in the elixir phase (RMSD)r2.0 Å. Structural
units of real proteins are shown in red, those from the model are in cyan.
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more convenient starting point toward amore detailed calculation.
This idea is illustrated in Fig. 19, where we consider the 2b + a + 2b
ground state reported in the Fig. 18 as having the overall
topology very close to the actual native state of Protein G (PDBid
3GB1), as well as three other different ground states (decoys):
the 6b, the 2a, and the a/b having the same sequence pertaining
to Protein G (PDBid 3GB1). We then performed unconstrained
molecular dynamics simulations in explicit solvent up to 2 ms
using the GROMACS package49,50 and compared the root-mean-
square-deviation (RMSD) (a), as well as the fraction of native
states (b), from Protein G (PDBid 3GB1) native state. In both
cases, the optimal value is achieved for the 2b + a + 2b decoy, as
expected. Note that the RMSD does not eventually go to a lower
value, due to the frustrating effect played by the shortcomings of
the elixir ground states discussed in Fig. 11–14. A possible
remedy to this drawback might stem from the addition of
binormal–binormal adjustments between the Frenet reference
frames of main chain spheres in proximity to each other, as
recently discussed in ref. 38–40.

The ordering trend of the other transitions agrees with those
found in real proteins. This can be best represented in terms of
the contact order parameter51,52

CO ¼
1

NNc

X

Nc

j4 iþ1

DSij (11)

where Nc is the total number of contacts and N is the number of
residues (beads) in the chain and the sum is over pairs of
amino acids in contact. Here DSij is the sequence separation
between i and j residues.

The contact order CO has been shown51 to be E10% in
helical proteins, and E17% in b-sheet proteins. The corresponding
folding temperatures were found to be E30 1C and E25 1C in the
two cases, respectively. Both trends can be rationalized in terms of
the entropic advantage of breaking non-local contacts (occurring in b

sheets) as compared to local contacts (occurring in a helices). Hence
a lower temperature is sufficient to have the same contribution to
the free energy difference for a larger entropy change.

Notwithstanding the aforementioned differences with real
proteins, the same trend is observed in our model, with the
transition temperature for the single b conformation (kBT/e E
0.4, Fig. 3b) being lower than that of the single helix conformation
(kBT/eE 0.6 Fig. 3a). A measure of the contact order parameter (11)
gives CO E 16% in the single b and CO E 9% in the single helix
cases. Interestingly, the average contact order found in the elixir
phase is found to be CO E 16% closer to the single b than the
single helix phases, similar to that in real proteins (see Table 1
in ref. 51).

While interesting on its own right, the existence of the elixir
phase is relevant to the self-assembly of many such chains. The
present model is greatly simplified and more ingredients will
need to be added to understand the detailed behaviour of
proteins.41,42 However, this is not the case when it comes to
de novo protein design through a self-assembly process of short
peptides.7–11 Indeed, such self-assembly can be facilitated by
exploiting general physical and symmetry principles such as
those presented here.

A simple example in the framework of amyloid formation53

might be useful to highlight this point. Consider a short chain (say
comprised of 20monomers) with parameters such that the ground
(folded) state of the chain is a single helix. From Fig. 8a, we know
that it is possible to control the parameters to guarantee that this
is the case. When a sufficiently large number of such chains are
assembled together in a given volume, there is a known strong
tendency to form b-sheet assemblies via a nucleation-and-growth
mechanism11 that can be captured by a model like ours that does
not require a detailed knowledge of the specific chemical
interactions,53 Work along these lines is underway and will be
presented elsewhere.

4 Conclusions

In this paper, we discussed how a simple modification of a
conventional homopolymer model provides a very rich and
informative protein-like phase diagram. The model relies on

Fig. 19 (a) Comparison of the root-mean-square-deviation (RMSD) from
the native conformation of Protein G (PDBid 3GB1) starting from the 2b +
a + 2b ground state obtained in Fig. 18, as well as from three other
alternative decoys: the 6b, the 2a, and the a/b. In all cases, the ground state
was dressed with full atomistic details from the specific sequence of
Protein G (PDBid 3GB1), and a isobaric–isothermal molecular dynamics
simulations was performed in explicit water using the GROMACS package
up to 2 ms. Snapshots corresponding to relevant times of the trajectory of
the 2b + a + 2b evolution are also displayed. (b) Same calculation
comparing the fraction of native contacts. Here, snapshots of all original
four ground states structures are also depicted as insets.
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a two-beads representation of each amino-acid, one for the
backbone and one of the side chain. In addition to excluded volume
interaction, a short range attraction between non-consecutive back-
bone beads is enforced to mimic the hydrophobic interactions as in
conventional polymers. Unlike conventional polymers, consecutive
backbone beads are allowed to partially interpenetrate thus result-
ing in the removal of the original spurious spherical symmetry in
favour of a uniaxial, cylindrical, symmetry. As in liquid crystals, this
symmetry breaking opens an intermediate phase, the marginally
compact phase, where conformations formed by single helices and
single b-strands are found in distinct regions of parameter space.
The addition of a single side chain bead located in a specific
direction (the negative normal in the Frenet frame) in a plane
perpendicular to the chain axis further reduces the symmetry from
uniaxial to biaxial and results in the onset of the elixir phase, where
multiple folds have essentially the same energy and one can switch
from one to another due to thermal fluctuations.

In term of comparison with real proteins, the elixir phase is
centred at values (3.81 Å for the Ca–Ca distance, 2.5 Å for the
diameter of the average van der Waals sphere associated with
side chains, and 6 Å for the range of the hydrophobic box) that
are characteristic of real proteins and emerge as an output of
the calculation, rather than as an input as in many coarse-
grained models similar in spirit to the present one. Recall that
our calculations explored the phase diagram for the model for
all sets of parameters in an unprejudiced manner. The origin of
this can be traced back to the fact that, only within this elixir
phase, the helices and the b-strands acquire geometries matching
those occurring in real proteins and are able to compete in
energy. In addition to the important applications that this can
have in terms of conformationally based nanomachines relying
on switching from one conformation to another, the existence of
the elixir phase unambiguously shows that a protein can fold to a
limited number of possible conformations belonging to one of
the four paradigmatic classes (all-a, all-b, a/b, a + b), driven by
general considerations of geometry and the absence of spurious
symmetries that reduce the conformational entropy in a way akin
to that given by directional interactions, hence mimicking the
presence of hydrogen bonds.

In the elixir phase, all four characteristic topologies (all-a,
all-b, a/b, and a + b) found in real proteins are present. The
elixir phase is surrounded by other phases, the single helix, the
single b, the coil, and the globule, where a single unique ground
state is found for each specific state point (i.e. for specific values of
the parameters). In the single helix phase, the radius and the pitch
of the helix smoothly changes on changing the parameters, still
preserving the single helix character, and the helix geometry is quite
distinct from that of a standard protein helix. Likewise, the single b
phase has the same topology as the all-b phase found in the elixir
phase but with incorrect geometrical parameters (the i� i + 2 angle,
and the length of each strand). Both units self-tune themselves to
the correct values only when the parameters have values such that
they are located within the elixir phase. By doing this, they are able
to compete in energy and to form combined structures.

There are three lessons that we can learn from these findings.
The first lesson is related to the minimal representation of a

protein within a homopolymer coarse-grained model. Our results
indicate that a Ca–Cb two beads representation of each residue is
required, a single Ca bead representation, frequently encountered
in the literature, being not sufficient. The introduction of the Cb

is necessary to provide the model with the broken symmetry, and
this drastically reduces the conformational entropy of the chain
from an astronomically large number characteristic of the glassy
ground state of globule, to a finite (albeit large) number of local
minima out of which the sequence can select the final native
structure. This is not the only possible way of achieving this task.
Other possibilities are the introduction of directional interactions
(e.g. hydrogen bonds), as well as the introduction of sequence
heterogeneity (in the form, for instance, of hydrophobic–hydro-
philic character). They are not mutually exclusive -indeed natural
proteins exploit a harmonious combinations of all of them, and
this explain why models with different ingredients are able to
display similar folds. This is lesson two from our results. The
final lesson that can be inferred from our results is related to the
conventional view of the funnel hypothesis in the energy landscape
theory that ascribes the capability of avoiding kinetic trapping
occurring in the pathway toward the native state uniquely to the
sequence. We showed that it is possible to progress considerably
down in the funnel without any information regarding the
sequence. The correct symmetry as well as directional interactions
(i.e. hydrogen bonds) are two other ways to achieve the same goal.
This view is also shared in recent studies44 that explore the
designability of protein structures. It would be very interesting to
perform a kinetic study of our model to see whether the elixir
phase is reached through the assembly of small cooperative
units, as the present study seems to suggest, and as expected in
the so-called foldon representation.54,55 However, the greatest
interest in a coarse-grained model as that presented here stems
from applications. The remarkable simplicity of the model,
combined with its capability of predicting protein-like folds,
may pave the way for controlled colloidal experiments56,57 and
artificial self-assembly processes.58 In particular, the multichain
version of the present model could be used in designing and
guiding self-assembling peptide-based processes that are currently
of great interest for its biomedical applications.7–11

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are indebted toMichele Cascella, Ivan Coluzza, BrianMatthew,
Flavio Romano, George Rose, Francesco Sciortino, Luca Tubiana,
and Pete von Hippel for useful discussions. The use of the SCSCF
multiprocessor cluster at the Università Ca’ Foscari Venezia and
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