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Correlations between distant particles are central to many puzzles and paradoxes of quantum mechanics
and, at the same time, underpin various applications such as quantum cryptography and metrology.
Originally in 1935, Einstein, Podolsky, and Rosen (EPR) used these correlations to argue against the
completeness of quantum mechanics. To formalize their argument, Schrödinger subsequently introduced
the notion of quantum steering. Still, the question of which quantum states can be used for EPR steering
and which cannot remained open. Here we show that quantum steering can be viewed as an inclusion
problem in convex geometry. For the case of two spin-1=2 particles, this approach completely characterizes
the set of states leading to EPR steering. In addition, we discuss the generalization to higher-dimensional
systems as well as generalized measurements. Our results find applications in various protocols in quantum
information processing, and moreover they are linked to quantum mechanical phenomena such as
uncertainty relations and the question of which observables in quantum mechanics are jointly measurable.
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In the simplest setting, the argument can be explained
with two spin-1=2 particles, also called qubits, which are
controlled by Alice and Bob at different locations [1,2].
The particles are in the singlet state,

jψiAB ¼ 1ffiffiffi
2

p ðj01i − j10iÞ; ð1Þ

where j0i ¼ j↑iz and j1i ¼ j↓iz denote the two possible
spin orientations in the z direction. If Alice measures the
spin of her particle in the z direction, then, depending on the
obtained result, Bob’s state will be in either state j0i or state
j1i, due to the perfect anticorrelations of the singlet state.
On the other hand, if Alice rotates her measurement device
to measure the spin in the x direction, Bob’s conditional
states are accordingly rotated to states j↑ix¼ð1= ffiffiffi

2
p Þðj0iþ

j1iÞ or j↓ix ¼ ð1= ffiffiffi
2

p Þðj0i − j1iÞ (see Fig. 1). So, by
choosing her measurement, Alice can predict with certainty
both the values of z and x measurements on Bob’s side.
According to Einstein, Podolsky, and Rosen (EPR), this
means that both observables must correspond to “elements
of reality.” As the quantum mechanical formalism does not
allow one to assign simultaneously definite values to these
observables, EPR concluded that quantum mechanics is
incomplete. As Schrödinger noted, Alice cannot transfer
any information to Bob by choosing her measurement
directions, but she can determine whether the wave
function on his side is in an eigenstate of the Pauli matrix
σx or σz. This steering of the wave function is, in
Schrödinger’s own words, “magic,” as it forces Bob to
believe that Alice can influence his particle from a
distance [3,4].

The situation for general quantum states other than the
singlet state can be formalized as follows [5]: Alice and
Bob share a bipartite quantum state ϱAB and Alice performs
different measurements. For each of Alice’s measurement
setting s and result r, Bob remains with a conditional
state ϱrjs. These conditional states obey the conditionP

r ϱrjs ¼ ϱB, meaning that the reduced state ϱB ¼
TrAðϱABÞ on Bob’s side is independent of Alice’s choice
of measurements. However, after characterizing the states

FIG. 1. Visualization of the steering phenomenon. Alice (in the
forefront) measures the spin of her particle in an arbitrary
direction. Because of the quantum correlations of the singlet
state, Bob’s state (in the back) is projected onto the opposite
direction. Bob cannot explain this phenomenon by assuming
preexisting states at his location, so he has to believe that Alice
can influence his state from a distance.
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ϱrjs, Bob may try to explain their appearance as follows: He
assumes that initially his particle was in some states σλ with
probability pðλÞ, parametrized by some parameter λ. Then,
Alice’s measurement and result just gave him additional
information on the probability of the states. This leads to
states of the form [5]

ϱrjs ¼ pðrjsÞ
Z

dλpðλjr; sÞσλ: ð2Þ

This can be interpreted as if the probability distribution
pðλÞ is just updated to pðλjr; sÞ, depending on the classical
information about the result and setting r, s. If a repre-
sentation as in Eq. (2) exists, Bob does not need to assume
any kind of action at a distance to explain the postmeasure-
ment states ϱrjs. Consequently, he does not need to believe
that Alice can steer his state by her measurements, and one
also says that the state ϱAB is unsteerable or has a local
hidden state (LHS) model. If such a model does not exist,
Bob is required to believe that Alice can steer the state in
his laboratory by some action at a distance. In this case, the
state is said to be steerable.
So far, EPR steering has been observed in several

experiments [6–13], but the question of which states can
be used for EPR steering and which cannot remained,
despite considerable theoretical effort [14–28], open. It is
known that the set of steerable quantum states is strictly
smaller than the set of entangled states and strictly larger
than the set of states leading to a Bell inequality violation.
But both entanglement and Bell nonlocality are not well
understood [29,30]; only for the case of small dimensions
or special families of states does the famous Peres-
Horodecki criterion provide an exact characterization of
the entangled states [31,32]. In this Letter we present a
solution to the problem of steerability for the case of
projective measurements carried out on two qubits. The
generalization of the technique to higher-dimensional
systems as well as taking into account generalized mea-
surements is possible.
Conditional states and LHS models.—Let us characterize

the conditional states and possible LHS models. For the
former, we note that any bipartite quantum state ϱAB defines
a map Λ from operators on Alice’s space to operators on
Bob’s space via

ΛðXAÞ ¼ TrAðϱABXA ⊗ 1BÞ: ð3Þ

This map characterizes the conditional states as follows:
A result of a measurement setting is described by an effect
Erjs which is an operator with positive eigenvalues not
larger than one. The conditional state is then just given
by ϱrjs ¼ TrAðϱABErjs ⊗ 1BÞ ¼ ΛðErjsÞ.
For our approach it is important that Λ has a clear

geometrical meaning (see Fig. 2). The set of measurement

effects on Alice’s side, denoted by MA ¼ fErjsj0 ≤
Erjs ≤ 1Ag, is a four-dimensional double cone, where 0
and 1A correspond to the south and north pole, and the pure
effects of the form Erjs ¼ jψihψ j constitute the equator,
which is nothing but Alice’s Bloch sphere. The map Λ is
linear and maps this double cone to a smaller double cone,
denoted by ΛðMAÞ, which we call the set of steering
outcomes [20]. For our purposes, we can assume without
loss of generality that the map Λ is invertible; the proof of
this and all forthcoming mathematical statements can be
found in the Supplemental Material [33].
Let us now characterize the set of all possible LHS

models. We first restrict our attention to projective mea-
surements on two qubits; later we discuss the general case.
Projective measurements are described by two orthogonal
projectors Eþjs and E−js summing up to the identity
Eþjs þ E−js ¼ 1A. It is known that the LHS model
Eq. (2) can be rewritten as [27]

ϱ�js ¼ ΛðE�jsÞ ¼
Z
σ∈BB

dμðσÞG�jsðσÞσ; ð4Þ

with an integration over a probability distribution μ over all
pure and mixed states in Bob’s Bloch ball BB. The so-called
response functions G�jsðσÞ are positive and normalized as
Gþjs þG−js ¼ 1, which implies that they always have to
obey the minimal requirement

ϱB ¼ Λð1AÞ ¼
Z
σ∈BB

dμðσÞσ: ð5Þ

In this scenario the set of all conditional states ϱ�js that can
be modeled with a LHS model is characterized by the
probability distribution μ only. We call this set the capacity
of μ and denote it by [20,27]

FIG. 2. Geometrical view of the map Λ. The set of measure-
ment effects MA on Alice’s side is a four-dimensional double
cone, where 0 and 1A correspond to the south and north pole and
the equator is formed by the Bloch sphere. Under the action of the
linear map Λ, this double cone is mapped onto a subset of itself,
with Λð0Þ ¼ 0 and Λð1AÞ ¼ ϱB. The resulting set of steering
outcomes is completely characterized by ϱB and the image of the
equator under Λ.
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KðμÞ ¼
�
K ¼

Z
σ∈BB

dμðσÞgðσÞσ∶0 ≤ gðσÞ ≤ 1

�
: ð6Þ

Geometric approach.—In order to decide steerability,
one has to compare the set of steering outcomes with the
possible capacities. If one finds a LHS ensemble μ for
whichΛðMAÞ is a subset ofKðμÞ, then ϱAB is not steerable.
On the other hand, if KðμÞ does not cover ΛðMAÞ for all μ,
then ϱAB is steerable.
Checking the inclusion relation between these sets is

simplified by geometry; see Fig. 3. KðμÞ is a convex set
which contains 0 and ϱB. The double cone ΛðMAÞ is
contained in this set if and only if its equator is contained in
KðμÞ. If we choose the metric appropriately, the equator
of ΛðMAÞ is a ball of radius one. Whether KðμÞ contains
the ball or not can thus be determined by calculating the
principal radius, defined as the minimal distance from the
boundary ofKðμÞ in the equator hyperplane to the center of
the ball [22].
Our first main result is that the principal radius for a

given probability distribution can be computed as a simple
optimization problem, given by

rðϱAB;μÞ¼min
C

1ffiffiffi
2

p kTrB½ϱ̄ð1A⊗CÞ�k

Z
σ∈BB

dμðσÞjTrBðCσÞj;

ð7Þ

where ϱ̄ ¼ ϱAB − ð1A ⊗ ϱBÞ=2, the norm is given by
kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðX†XÞ

p
, and the minimization runs over all

single-qubit observables C on Bob’s space. The proof of

Eq. (7) relies on the Bloch representation and is given in the
Supplemental Material [33].
Equation (7) allows us to compute the principal radius

for a given distribution μ over states in Bob’s Bloch ball. It
remains to maximize this over all possible probability
distributions. This leads to the critical radius,

RðϱABÞ ¼ max
μ

rðϱAB; μÞ: ð8Þ

In this way, we have reduced the characterization of
steering to the computation of the critical radius and we
can formulate: A two-qubit state can be used for EPR
steering, if and only if the critical radius is smaller than one.
All that remains to be done is to characterize the critical
radius and to provide efficient methods for computing
it. Showing the existence of the maximum in Eq. (8)
requires careful continuity arguments as explained in the
Supplemental Material [33].
Properties of the critical radius.—The first interesting

property of the critical radius is its scaling. Given a two-
qubit state, we can consider a family of states by mixing it
with a special kind of separable noise,

ϱnoiseα ¼ αϱAB þ ð1 − αÞ 1A
2

⊗ ϱB; ð9Þ

where 0 ≤ α ≤ 1. For these states, we can show that

Rðϱnoiseα Þ ¼ 1

α
RðϱABÞ: ð10Þ

This implies that computing the critical radius for ϱAB
also gives its values on the entire line in the state space
parametrized by ϱnoiseα . This scaling sheds light on the
operational meaning of the critical radius: 1 − RðϱABÞ
measures the distance from ϱAB along this line to the
border between steerable and unsteerable states relatively
to ð1A ⊗ ϱBÞ=2.
The second important property is the symmetry of the

critical radius. Given a state ϱAB, we consider the family of
states

ϱ̃ ¼ 1

N
ðUA ⊗ VBÞϱABðU†

A ⊗ V†
BÞ; ð11Þ

where UA is a unitary matrix on Alice’s side, VB is an
invertible matrix on Bob’s side, and N denotes the
normalization. For this family of states one can show that
RðϱABÞ ¼ Rðϱ̃Þ. This symmetry of the critical radius thus
generalizes and formalizes quantitatively the early obser-
vation that the existence of a LHS model is invariant under
Alice’s local unitary and Bob’s local filtering operations
[18,19,45]. One may ask to what extent a mixed two-qubit
state can be simplified with transformations as in Eq. (11).
The answer is that any entangled state can be brought into a
canonical form without changing its critical radius. In the

FIG. 3. Left: The geometrical interpretation of the critical
radius. The capacity KðμÞ is a convex set containing 0 and
ϱB. The double cone ΛðMAÞ has 0 and ϱB as south and north
pole, so ΛðMAÞ is contained in KðμÞ if and only if its equator
(cyan) is inKðμÞ. This can be checked by computing the radius of
KðμÞ in the appropriate plane and metric (red). Right: Operational
meaning of the critical radius. 1 − RðϱABÞ measures the distance
from ϱ to the surface of unsteerable or steerable states relatively to
ð1A ⊗ ϱBÞ=2.
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canonical form, ϱB ¼ 1B=2 is maximally mixed and, in
addition, all two-body correlations vanish, up to the
diagonal ones, si ¼ TrðϱABσi ⊗ σiÞ for i ¼ x, y, z. So
the critical radius of a state is uniquely determined by six
parameters, coming from the reduced state of Alice, para-
metrized by ai ¼ TrðϱABσi ⊗ 1BÞ and by a diagonal 3 × 3
matrix T.
Some facts about steering follow directly from the two

properties mentioned above. First, as any pure entangled
state jψi is equivalent to a Bell state in the sense of Eq. (11),
one can easily show that Rðjψihψ jÞ ¼ 1=2. Second, the
previous properties allow for characterizing the convex sets
Qt ¼ fϱAB∶RðϱABÞ ≥ tg and one can, for some cases,
compute the tangent hyperplanes, resulting in optimal
steering inequalities. Finally, generalizing Eq. (11), R is
also invariant under the inversion of the Bloch sphere of
either of the parties. This is rather surprising as entangle-
ment of two-qubit states is equivalent to the occurrence of
negative eigenvalues after partial transposition [31,32],
which can be seen as a local inversion of the Bloch sphere.
So, entanglement and quantum steering are, in fact, types of
quantum correlations with fundamentally different math-
ematical structures.
Computation of the critical radius.—For practical con-

venience, the calculation of the critical radius of a generic
state is carried out starting from its canonical form. Then, in
order to evaluate Eq. (8) one needs to characterize the
possible distributions μ. Instead of maximizing over all
probability distributions on the Bloch ball, we approximate
the ball by inner or outer polytopes as illustrated in Fig. 4.
Crucially, for the special function in Eq. (7) one can show

that optimizing over probability distributions supported at
the vertices of the outer (inner) polytope leads to an
upper (lower) bound Rout (Rin) for the critical radius.
One may even simplify the calculation: If the inner
polytope is chosen to have inversion symmetry, one has
Rin ≤ RðϱABÞ ≤ Rin=rin, where rin is the inscribed radius of
the polytope. Then the relative difference between the
bounds depends on the polytope only and not on details of
the state. This bound also shows that as rin converges to 1
one obtains an asymptotically exact value for RðϱABÞ.
For a given polytope with N vertices, the calculation of

the critical radius proceeds as follows: The capacityKðμÞ is
a polytope in the four-dimensional space with OðN3Þ
facets. When computing the critical radius, it suffices to
consider the finite set of operators C that correspond to
normal vectors of these facets, and these operators do not
depend on the probability distribution on the polytope. As a
consequence, the optimization over probability distribu-
tions is formulated as a linear program of finite size.
To illustrate the power of the method, we show examples

of two-dimensional random cross sections of the set of two-
qubit states; see Fig. 5. We observe that the computed upper
and lower bounds for the critical radius are very tight even
when a polytope with 252 vertices was used. A detailed
discussion including further examples of states is given in
the Supplemental Material [33].
Prior to our work, certain necessary and sufficient

conditions for steerability were proposed [25,26], but their
computability cannot be generally illustrated. There have
been also attempts in estimating the boundary of the set of
unsteerable states for special families of states with semi-
definite programming (SDP) [16,23,28,46]. However, the
SDP size increases exponentially with the number of

FIG. 4. Left: In order to characterize all probability distribu-
tions on the Bloch sphere, one can use inner and outer
approximations of the sphere by polytopes. For the polytopes
and the optimization problem in Eq. (7) it suffices to consider
probability distributions supported at the extremal points. Right:
For a given polytope, the capacity KðμÞ is a polytope again.
Consequently, when computing the principal radius it suffices to
consider the (finite) set of directions corresponding to the faces of
the capacity polytope.

FIG. 5. Two two-dimensional random cross sections of the set
of all two-qubit states. As EPR steering is not symmetric under
the exchange of Alice and Bob, one can distinguish different
classes of steerable states. The colors denote the set of separable
states (characterized by the partial transposition [31,32]), en-
tangled states that are unsteerable, one-way steerable states (Alice
to Bob or vice versa), and two-way steerable states (Alice to Bob
and vice versa). The very thin gray areas denote the states where
the used numerical precision was not sufficient to make an
unambiguous decision.
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measurements used to approximate the set of all measure-
ments. This limitation hinders the accurate locating of the
boundary even for special choices of cross sections.
Contrary to that, here we obtained a linear program, of
which the size increases cubically with the number of
approximated points. Both lower bound and upper bound
with a predefined difference less than 1% for the critical
radius of a generic state can be easily obtained in a
reasonable computational time. Our implementation is
available at a public repository [47].
Finally, we note that certain analytical bounds for the

critical radius can also be derived from our approach. For
example, for a state in the canonical form, it can be shown
that

2πNT jdetðTÞj ≥ RðϱABÞ ≥
2πNT jdetðTÞj
1þ kT−1a⃗k ; ð12Þ

where a⃗ ¼ ðax; ay; azÞ is the Bloch vector of Alice’s
reduced state, N−1

T ¼ R
dSðn⃗Þ½n⃗TT−2n⃗�−2 and the integra-

tion runs over the surface of the unit sphere. If a⃗ ¼ 0, these
bounds recover the exact formula for the critical radius of
Bell diagonal states [21,22].
Generalized measurements and higher-dimensional

systems.—A similar formula for the principal and critical
radius can be derived for generalized measurements [i.e.,
positive operator-valued measures (POVMs)] and higher-
dimensional systems, despite their more complicated
geometry. As we explain in the Supplemental Material
[33], many properties of the critical radius, such as its
scaling and its symmetry, still hold. The fundamental
question arises of whether generalized measurements are
more useful for steering than the standard projective
measurements considered so far. For two qubits, numerical
estimation of the principal radii for POVMs provides clear
evidence that, for a generic probability distribution μ,
the principal radius for POVMs is the same as that for
projective measurements. This encourages us to conjecture
that POVMs do not give any advantage in EPR steering for
the case of two-qubit states.
Discussion.—EPR steering is an asymmetric phenomenon

where Bob, contrary to Alice, has well-characterized mea-
surements. Consequently, the underlying correlations find
applications in nonsymmetric scenarios of quantum informa-
tion processing, such as one-sided device-independent quan-
tum key distribution [48] or subchannel discrimination [49].
Clearly, our solution to the steering problem helps to under-
stand and optimize these applications and their experimental
realizations.
In addition, there are far-ranging consequences. First, it

has been established that steering is in one-to-one corre-
spondence with the question of which measurements in
quantum mechanics can be jointly measured [45,50–52].
Second, recent works established close connections
between quantum steering and entropic uncertainty

relations [53,54]. Joint measurability and entropic uncer-
tainty relations are central for many applications of quan-
tum physics, such as the security of quantum key
distribution [55]. We expect that our results and methods
presented here may shed new light on these topics in the
near future.
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[19] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M.

Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92,
032107 (2015).

[20] H. C. Nguyen and T. Vu, Phys. Rev. A 94, 012114 (2016).
[21] S. Jevtic, M. J. W. Hall, M. R. Anderson, M. Zwierz, and

H.M. Wiseman, J. Opt. Soc. Am. B 32, A40 (2015).
[22] H. C. Nguyen and T. Vu, Europhys. Lett. 115, 10003

(2016).
[23] D. Cavalcanti and P. Skrzypczyk, Rep. Prog. Phys. 80,

024001 (2017).
[24] A. Rutkowski, A. Buraczewski, P. Horodecki, and M.

Stobinska, Phys. Rev. Lett. 118, 020402 (2017).
[25] B.-C. Yu, Z.-A. Jia, Y.-C. Wu, and G.-C. Guo, Phys. Rev. A

97, 012130 (2018).
[26] B.-C. Yu, Z.-A. Jia, Y.-C. Wu, and G.-C. Guo, Phys. Rev. A

98, 052345 (2018).
[27] H. C. Nguyen, A. Milne, T. Vu, and S. Jevtic, J. Phys. A 51,

355302 (2018).
[28] M. Fillettaz, F. Hirsch, S. Designolle, and N. Brunner, Phys.

Rev. A 98, 022115 (2018).
[29] R. Horodecki, P. Horodecki, M. Horodecki, and K.

Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[30] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Rev. Mod. Phys. 86, 419 (2014).
[31] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[32] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

A 223, 1 (1996).
[33] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.240401 for all the

rigorous statements, technical proofs, and generalization,
which includes Refs. [34–44].

[34] S. Jevtic (private communication).
[35] N. Gisin, Helv. Phys. Acta 62, 363 (1989).
[36] L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A

183, 14 (1993).
[37] V. Bogachev, Measure Theory I & II (Springer-Verlag,

Berlin, 2007).
[38] R. T. Rockafellar, Convex Analysis (Princeton University

Press, Princeton, NJ, 1970).
[39] S. Jevtic, M. Pusey, D. Jennings, and T. Rudolph, Phys. Rev.

Lett. 113, 020402 (2014).
[40] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, Phys.

Rev. A 93, 022121 (2016).
[41] K. R. Parthasarathy, Probablity Measures on Metric Spaces

(Academic Press Inc., New York, 1967).
[42] R. F. Werner, J. Phys. A 47, 424008 (2014).
[43] J. Barrett, Phys. Rev. A 65, 042302 (2002).
[44] R. H. Hardin, N. J. A. Sloane, and W. D. Smith, Tables of

spherical codes with icosahedral symmetry, http://
NeilSloane.com/icosahedral.codes/.

[45] R. Uola, T. Moroder, and O. Gühne, Phys. Rev. Lett. 113,
160403 (2014).

[46] D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk,
Phys. Rev. Lett. 117, 190401 (2016).

[47] Gitlab repository: https://gitlab.com/cn611340/epr-steering.
[48] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani,

and H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012).
[49] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404

(2015).
[50] M. T. Quintino, T. Vertesi, and N. Brunner, Phys. Rev. Lett.

113, 160402 (2014).
[51] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, Phys.

Rev. Lett. 115, 230402 (2015).
[52] T. Heinosaari, J. Kiukas, D. Reitzner, and J. Schultz, J. Phys.

A 48, 435301 (2015).
[53] A. C. S. Costa, R. Uola, and O. Gühne, Phys. Rev. A 98,

050104(R) (2018).
[54] T. Krivachy, F. Fröwis, and N. Brunner, Phys. Rev. A 98,

062111 (2018).
[55] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Rev.

Mod. Phys. 89, 015002 (2017).

PHYSICAL REVIEW LETTERS 122, 240401 (2019)

240401-6

https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.118.140404
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.88.032313
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevLett.112.200402
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.94.012114
https://doi.org/10.1364/JOSAB.32.000A40
https://doi.org/10.1209/0295-5075/115/10003
https://doi.org/10.1209/0295-5075/115/10003
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1103/PhysRevLett.118.020402
https://doi.org/10.1103/PhysRevA.97.012130
https://doi.org/10.1103/PhysRevA.97.012130
https://doi.org/10.1103/PhysRevA.98.052345
https://doi.org/10.1103/PhysRevA.98.052345
https://doi.org/10.1088/1751-8121/aad115
https://doi.org/10.1088/1751-8121/aad115
https://doi.org/10.1103/PhysRevA.98.022115
https://doi.org/10.1103/PhysRevA.98.022115
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.240401
https://doi.org/10.1016/0375-9601(93)90880-9
https://doi.org/10.1016/0375-9601(93)90880-9
https://doi.org/10.1103/PhysRevLett.113.020402
https://doi.org/10.1103/PhysRevLett.113.020402
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1088/1751-8113/47/42/424008
https://doi.org/10.1103/PhysRevA.65.042302
http://NeilSloane.com/icosahedral.codes/
http://NeilSloane.com/icosahedral.codes/
http://NeilSloane.com/icosahedral.codes/
http://NeilSloane.com/icosahedral.codes/
https://doi.org/10.1103/PhysRevLett.113.160403
https://doi.org/10.1103/PhysRevLett.113.160403
https://doi.org/10.1103/PhysRevLett.117.190401
https://gitlab.com/cn611340/epr-steering
https://gitlab.com/cn611340/epr-steering
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.113.160402
https://doi.org/10.1103/PhysRevLett.113.160402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1088/1751-8113/48/43/435301
https://doi.org/10.1088/1751-8113/48/43/435301
https://doi.org/10.1103/PhysRevA.98.050104
https://doi.org/10.1103/PhysRevA.98.050104
https://doi.org/10.1103/PhysRevA.98.062111
https://doi.org/10.1103/PhysRevA.98.062111
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002

