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Abstract
A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of

matter transcends the microscopic material properties. For example, materials in the liquid phase

have certain common properties independent of the chemistry of the constituents: liquids take

the shape of the container; they flow; and they can be poured—alcohol, oil, and water as well as

a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here,

we identify a hitherto unstudied “phase” of matter, the elixir phase, in a simple model of a poly-

meric chain whose backbone has the correct local cylindrical symmetry induced by the tangent

to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side

spheres along the negative normal direction, as in proteins. This phase, nestled between other

phases, has multiple ground states made up of building blocks of helices and almost planar

sheets akin to protein native folds. We discuss the similarities of this “phase” of a finite size sys-

tem to the liquid crystal and spin glass phases. Our findings are relevant for understanding pro-

teins; the creation of novel bioinspired nanomachines; and also may have implications for life

elsewhere in the cosmos.
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1 | INTRODUCTION

Polymer science,1–4 the study of chain molecules (linear polymers), is

a flourishing subject that has led to path-breaking advances in plastics,

textiles, and a variety of other technologies. There are simple, yet

powerful, paradigms for understanding chain molecules. A polymer

chain is composed of many interacting monomers that are tethered

together to form a linear array. If the only interaction is excluded vol-

ume or self-avoidance, a single chain is in a self-avoiding coil phase

whose large scale behavior is distinct from that of a fully non-

interacting chain in both two and three spatial dimensions. Upon

adding self-attraction between pairs of non-adjacent monomers pro-

moting chain compaction, there is a phase transition from a random

coil phase at high temperatures to a highly degenerate compact phase

at low temperatures.1–3 Note that the notion of phases and phase

transitions for a polymeric chain at non-zero temperatures strictly

refer to a chain with an infinite number of monomers. Indeed, it is only

in that limit that singularities in the thermodynamic potentials arise.

However, real systems, and the polymer chain is no exception, are

never infinite. Thus, we expect that, for long enough chains, we can

identify the memory of the phases and the associated phase transi-

tions in the infinite size limit. For finite size systems including an inter-

acting many-body linear chain of finite length, phases as well as

transitions between them can and do exist at zero temperature as

some parameters of the system are varied. The existence of a first-

order phase transition at zero temperature is typically signaled by the

existence of metastable states at non-zero temperature that can per-

sist for long time scales depending on the temperature and on the

chain length. This is the context within which we carry out our analy-

sis of a model of a protein, a finite length biopolymer.
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A globular protein is a heteropolymer—a linear chain whose

monomers can be of 20 types of naturally occurring amino acids

with distinct side chains.5 Thus, the number of possible

sequences of a protein just 40 amino acids long is 2040, an astro-

nomically large number. Not all these sequences exhibit archetyp-

ical protein like behavior—folding rapidly and reproducibly under

physiological conditions to their native state structures.6 This is

typically described in terms of two phases, the unfolded and

folded, separated by a first-order transition, with the implicit

meaning described above. Interestingly, protein structures are fre-

quently tolerant to changes in amino acid sequence with muta-

tions often causing only modest local changes in structure.7

Remarkably, the total number of distinct protein native state folds

is limited and only of the order of a few thousand.8 This follows

from the fact that native state folds are made of building blocks

of tightly curled helices and strands assembled into almost planar

sheet-like motifs. The number of distinct topologies in which

these motifs can be assembled is limited.9,10 The existence of

these secondary motifs follows from two independent consider-

ations: scaffolding provided by hydrogen bonds11,12; and the ste-

ric requirement to avoid atomic overlaps.13

Flory1 wrote in 1969, Synthetic analogs of globular proteins are

unknown. The capability of adopting a dense globular configuration stabi-

lized by self-interactions and of transforming reversibly to the random coil

is characteristics peculiar to the chain molecules of globular proteins

alone. We note however that modern chemistry has made the engi-

neering of synthetic analogs of globular proteins possible. The model

proposed here provides a route for creating synthetic analogs of glob-

ular proteins and provides a bridge between polymer science and bio-

molecular science.

We begin with a standard classic homopolymer model. The linear

chain comprises N main chain spheres of diameter σ in a railway train

topology with, for simplicity, the distances between the centers of

successive monomers set to be exactly b. To avoid spurious symme-

tries, we allow for the overlap of adjoining spheres (σ ≥ b). Symmetry

plays a key role in determining the phases of matter. For example,

sensitive liquid crystal phases14 form when a collection of spheres is

replaced by a collection of anisotropic objects such as pencils or ellip-

soids. The liquid crystal phase occurs at nonzero temperatures close

to the liquid phase.

A sphere is isotropic and looks the same when viewed from any

direction. In contrast, there is a preferred axis at the location of each

main chain sphere corresponding to the tangent along the chain or

the direction along which the chain is oriented at that location. Allow-

ing adjoining spheres to overlap breaks the spherical symmetry of an

individual main chain sphere. The overlap between adjoining main-

chain spheres results in an entropic stiffness because of the reduction

in the ability to bend the chain.15 A hint that such symmetry breaking

could be important is provided by the extreme case of a chain of

coins, which, in the continuum limit, has a tube-like geometry.16,17

And, as is well-known, a garden hose is often wound into a helical

geometry in a hardware store. Quite remarkably, a tightly wound tube

has roughly the same pitch to radius ratio18 as an α-helix in a protein

and two tightly wound tubes in a double helix have the same geome-

try19 as a DNA double-helix. We further break the resulting cylindrical

symmetry by having side spheres of diameter σsc sticking out on each

main sphere in the negative normal direction. Our model is achiral, for

simplicity. A chiral version of the model would have the side spheres

in the plane perpendicular to the tangent and sticking out at a nonzero

angle to the negative normal of the chain. The side spheres not only

break the cylindrical symmetry of the overlapping spheres but also

provide additional steric hindrance. The need to have the correct sym-

metry of a chain molecule has often been overlooked in the vast poly-

mer science literature.

The main chain monomers are subject to a generic short-range

all/nothing attractive interaction. Any pair of monomers lying within a

threshold distance, Rc, of each other is assigned a favorable unit of

energy. To determine the ground state, one seeks to find the confor-

mation with the minimum energy or, equivalently, the largest number

of contacts within the threshold distance. There is one energy scale

and four length scales in the model. The magnitude of the energy

scale plays no role in determining the ground state phase diagram.

Without loss of generality, we set the diameter of the main chain

sphere to be 1 and measure the three other length scales in units of

the main chain sphere diameter. The model that we study is entirely

standard except for the somewhat unusual self-avoidance geometrical

conditions, dictated by symmetry considerations. These alone lead to

a rich and surprising phase diagram.

2 | MATERIALS AND METHODS

In this section, we shall provide the details of the formalism and the

simulation protocol that have been used in the simulations.

2.1 | The model

Figure 1A gives a sketch of our model. It consists of N tethered

spheres located at positions {r1, …, rN}, each having diameter σ and

a consecutive sphere-sphere distance along the chain of b ≤ σ. The

case b = σ corresponds to neighboring spheres along the chain just

touching each other. Here, consecutive main-chain spheres are in

general allowed to interpenetrate to respect the correct (cylindrical)

symmetry imposed by the local tangent to the curve and in this

case b/σ < 1. Non-consecutive spheres have hard core interactions,

as well as an attractive square-well interaction of range Rc captur-

ing non-directional generic hydrophobic interactions. Side spheres

of diameter σsc are added to each of the N – 2 internal spheres

along the negative normal direction, −N̂i , in the Frenet frame (see

Figure 1B) to capture the steric hindrance of the side chains and to

break the cylindrical symmetry in an achiral manner.

2.2 | The Frenet formalism

The Frenet frame is defined by a tangent vector20

T̂i ¼ Δi +Δi+1

Δi +Δi+1j j , ð1Þ

where Δi = ri − ri − 1, so that jΔ j = b. For each of the non-terminal

backbone spheres, one defines a normal vector
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N̂i ¼ Δi+1−Δi

jΔi+1−Δi j , ð2Þ

where i = 2, …, N − 1. The corresponding binormal vector is then

given by

B̂i ¼ T̂i × N̂i: ð3Þ

These equations are discrete versions of the continuum Frenet

frame frequently used in polymer theory.20

Apart from their excluded volume, the side spheres do not inter-

act either with the backbone spheres or with each other. The side

spheres merely have steric interactions with main chain spheres and

with each other.

The position of the side sphere is defined by

r scð Þ
i ¼ ri−N̂i

σ + σscð Þ
2

; ð4Þ

the side chain sphere and the backbone sphere are tangent to each

other. Amino acids in real proteins have an average tilt of roughly 41�

with respect to the negative normal direction and have different sizes.

Our model does not have any chirality built into it.

2.3 | Simulations protocol

We have studied the zero-temperature phase diagram using microca-

nonical Wang-Landau21 and parallel tempering (also known as replica

exchange) canonical Monte Carlo simulations,22 always with consis-

tent results. In the Wang-Landau simulations, we sample polymer con-

formations according to the microcanonical distribution by generating

a sequence of chain conformations A ! B, and accepting the new

configuration B with the microcanonical acceptance probability

Pacc A!Bð Þ¼ min 1,
wBg EAð Þ
wAg EBð Þ

� �
, ð5Þ

where wA and wB are weight factors ensuring the microscopic revers-

ibility of the moves. The set of MC moves, that are accepted or

rejected according to the probability (5) includes both local-type

moves, such as single-sphere crankshaft, reptation, and end-point, as

well as nonlocal-type moves, such as pivot, bond-bridging, and back-

bite moves, randomly sampled so that on average N spheres (or a mul-

tiple of it) are moved to complete a MC step.

The density of states g(E) is then constructed iteratively by filling

suitable energy histograms and controlling their flatness. However, to

compute the ground state energy, the lowest energy was consecu-

tively selected using the acceptance probability (5) with a bias toward

less populated energy states. This corresponds to the usual prelimi-

nary calculation carried out without a low-energy cut-off in the usual

Wang-Landau scheme. In the full Wang-Landau calculation, we typi-

cally assume convergence after 30 levels of iterations, corresponding

to a multiplicative factor value of f = 10−9. For the ground state calcu-

lation, each run is composed of at least 109 Monte Carlo moves per

sphere.

In the parallel tempering simulations, we carried out individual

canonical Monte Carlo simulations within a Metropolis scheme at

fixed temperature, with periodic swapping between neighboring tem-

peratures within a prescribed annealing schedule. The acceptance

probability for the exchange between two replicas Γi and Γj at tem-

peratures Ti and Tj, respectively, is given by the acceptance probability

Pswap ¼ min 1,exp
1

kBTi
−

1
kBTj

� �
Ei−Ej
� �� �� �

: ð6Þ

Twelve replicas were used with the replica temperatures expand-

ing from those of the swollen phase to those of the compact phase.

The total number of steps ranged from 108 to 109 sweeps per replica,

depending on the system size, one step corresponding to N attempted

MC moves, where N is the number of main chain spheres. A replica

exchange is attempted every 10 Monte Carlo steps. The move sets

include pivot, crankshaft, and reptation moves with probabilities 0.2,

0.7, and 0.1, respectively.

The results obtained are robust and independent of the

technique used.

3 | RESULTS

The self-avoidance is unusual (and motivated by protein chemistry)

compared to previous studies because of the absence of spurious

FIGURE 1 (A) Chain model. Each main chain sphere has diameter σ. The side sphere is in the negative normal direction and has a diameter σsc.

The distance between successive main chain spheres is b ≤ σ—consecutive spheres can, in general, partially overlap. Nonconsecutive main chain
spheres experience a short range attractive constant potential if their separation is within the range of the attraction Rc. The atoms of glycine
amino acids are shown as a guide. (B) Side sphere positions in Frenet frame [Color figure can be viewed at wileyonlinelibrary.com]
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symmetries, which is a feature that has been often overlooked. The

phase diagram is a result of the competition between the large num-

ber of self-avoiding conformations (entropy) and the few self-avoiding

compact conformations, which avail of the attractive interactions and

is a transition driven by temperature. The elixir phase persists over a

range of temperatures and is a low temperature phase. Our model is

for a single chain. Unlike a system of hard spheres where packing frac-

tion is a key parameter, the density does not play a role here. The

microcanonical Wang-Landau calculations allow one to measure the

density of states and hence the free energy from which all thermody-

namics can be obtained. The same method also provides a direct way

to access the ground state of the system. In parallel tempering, we

gradually lower the temperature and monitor the energy. Below the

folding transition temperature, this is taken as the ground state energy

and matches the value obtained via the Wang-Landau calculation.

Taken together, these methods confirm that the elixir phase is stable

over a range of low temperatures. When the system is cooled below

the folding transition temperature, it achieves the analog of the native

state in real proteins. We denote this as a ground state and Figure 2

displays the corresponding phase diagram. In addition to conventional

polymer phases, the phase diagram has regions with a unique ground

state including a single β-sheet, a single helix, and two helices

wrapped around each other. Nestled between these phases lies a

particularly interesting phase, that we have denoted as the elixir phase,

whose ground states are assembled structures of helices and strands.

The elixir phase is degenerate with the assembled structures having

nearly the same energy (see below). Intriguingly, the geometries of the

building block strands and helices in the elixir phase, as well as those

in a larger surrounding region identified by dotted lines in Figure 2D,

are statistically the same as those of strands and helices in protein

native state structures. Each ground state in the phase diagram was

assigned to a specific phase on the basis of suitable order parame-

ters15 that includes the twist (for the helices) and the average triple

scalar product of normal Frenet unit vectors (for the sheets). An addi-

tional fingerprint of the secondary structures stems from their charac-

teristic representations in the contact maps. The figures label the

phases and also depict the types of structures supported in each of

the phases. The entire region between the coil and the globule phases

shrinks to a single point for a conventional chain model with no over-

lap between consecutive main chain spheres and with no side spheres.

This underscores the key roles of breaking, first, the spherical symme-

try (capturing the correct local cylindrical symmetry associated with

any chain molecule through the overlap) and then the cylindrical sym-

metry (through the side spheres). The phases labeled as helix and beta

has ground states of a single helix and a single beta sheet,

respectively.

FIGURE 2 Phase diagram of chain model. The main chain sphere diameter σ sets the characteristic length scale of the model and is taken to be

5Å. The three dimensionless variables studied are: (1) the ratio of the diameters of the side-chain (σsc) and main chain (σ) spheres; (2) the ratio of
the range of the attractive interaction (Rc) to the diameter of the main chain sphere (σ); and (3) the degree of overlap of consecutive main chain
spheres measured by the difference between the diameter of the main chain sphere (σ) and the distance between the centers of consecutive

main chain spheres along the chain (b) normalized by the diameter of the main chain spheres (σ). Plots A-C display the ground state phase
diagrams in the three corresponding planes for a chain of length 40. Plot 2A: side-chain size σsc/σ-overlap 1 − b/σ plane. The range of interaction

has been fixed at Rc/σ = 1.16, corresponding to Rc≈6Å. Plot 2B: range of attraction Rc/σ- overlap 1 − b/σ plane. The side chain sphere size has

been fixed to σsc/σ = 0.5 corresponding to σsc≈2:5Å. Plot 2C: range of attraction Rc/σ-side-chain sphere size σsc/σ plane. The overlap value has

been fixed at 1 − b/σ = 0.25 corresponding to b≈3:8Å. In all cases, the central enclosed phase, denoted as the elixir phase, include nearly
degenerate (in energy) conformations comprised of combinations of α helices and β strands. The larger dotted enclosed region, contain, in
addition, conformations having either α helices or β strands with geometries matching those appearing in real proteins. These also include all-β
and all-α conformations that are not part of the elixir phase (plot D) [Color figure can be viewed at wileyonlinelibrary.com]
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The elixir phase is remarkable in several ways: it is stable for mod-

erate length chains—we find no significant change in the nature of the

phase on varying the chain length between 20 to around 200; the

nearly degenerate ground state structures are geometrical sculptures

assembled from building blocks of helices and sheets allowing for

geometry based lock-key interactions so ubiquitous in living systems;

the assembled structures in the elixir phase have topologies similar to

the observed folds in proteins—α + β and α/β23,24 (see Figure 3A,B for

a gallery of conformations); and the elixir phase is surrounded by

other phases and thus the structures within it are poised in the vicinity

of phase transitions albeit for small systems.

Figure 4 shows the total number of ground state contacts, Nc, as

a function of the three characteristic length scales of the model. The

boundaries of the elixir phase in Figure 2A-D correspond to the verti-

cal dashed lines reported in Figure 4. For positive increasing Rc/σ, the

number of contacts Nc monotonically increases from very small values

characteristic of the coil phase until a threshold value sufficiently large

to form a β phase as shown in Figure 4C. The geometry of the strands,

FIGURE 3 Plot A is a gallery of ground state structures found in the elixir phase and in the extended region surrounding it. All helices have radii

2:4�0:1ð ÞÅ and pitches 5:5�0:5ð ÞÅ matching those of protein helices within error bars. Likewise, all strands have distances between Ci
α and

Ci+2
α ≈6Å, as in proteins. A tube-like representation of the chain has been used for better visualization. Plot 3B is the same as plot 3A, but with

full display of the spheres. The ground state structures within the elixir phase and those shown in plots 3A and 3B are low energy structures with
approximately the same number of contacts [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Number of ground state contacts Nc as a function of 1 − b/σ (A), σsc/σ (B), and Rc/σ (C) for a chain of length 40. The vertical lines

indicate transitions to the phases housing conformations shown in the snapshots, and are consistent with the transitions of the phase diagrams in
Figure 2. The transition helix I ! helix II appearing in the central Plot is a structural transition between two different type of helices, and, for
simplicity, is not explicitly displayed in the phase diagram of Figure 2. In all cases, the remaining two parameters have been set to the center of
the elixir phase, as in Figure 2: 1 − b/σ = 0.25, σsc/σ = 0.5, and Rc/σ = 1.16. Figure 4D shows the number of ground state contacts Nc as a
function of 1 − b/σ for different chain lengths (N = 20, 30, 40, 56). Each point is the average over 5 − 10 independent runs, with errors bars of
the order of the size of each point. For N = 40 the range of the elixir phase is highlighted. Figure 4E shows the number of ground state contacts
per sphere Nc/N for large N, showing that it tends to a value of ≈4. Note that the all β conformations tend to extrapolate to the same value,
whereas the all-α conformations approach a slightly higher value of ≈4.5 [Color figure can be viewed at wileyonlinelibrary.com]
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as measured by the angle subtended at each main chain sphere with

its adjacent spheres along the chain, changes smoothly until it

becomes similar to that of a protein strand at Rc/σ ≈ 1.1. Upon

increasing Rc/σ further, one enters the degenerate elixir phase with

combined α–β structures, where the number of contacts is essentially

independent of Rc/σ as indicated by the flatness of Nc in this region.

At Rc/σ ≈ 1.20, an abrupt upswing of Nc signals the end of the elixir

phase and entry into a single helix phase.

A similar phenomenology is observed along the σsc/σ axis, as

shown in Figure 4B. Here, Nc monotonically decreases from the globu-

lar phase until it becomes flat upon entering into the elixir phase. The

discontinuities seen within the helix phase correspond to a structural

transition between two different geometries of helix (that we denote

as helix I and helix II). The behavior of Nc as a function of 1 − b/σ,

shown in Figure 4A, has a single beta phase for all 1 − b/σ > 0 (with

σsc/σ = 0.5 and Rc/σ = 1.16). Again, the strand geometry changes

smoothly and matches that of protein strands around 1 − b/σ ≈ 0.18,

as one approaches the elixir phase. The initial assembled topology is

an all-β conformation (see Figure 2D), and Nc progressively increases

until a combined α–β ground state conformational topology is

achieved, where Nc is again approximately flat. At 1 − b/σ ≈ 0.29, a

drastic conformational change to a single helix is observed, where Nc

becomes flat again in the range 0.29 ≤ 1 − b/σ ≤ 0.39 characterized

by maximally packed helices with consecutive turns lying one on top

of the other.

Movies 1-3 included in the Supporting Information show how the

final ground state is eventually achieved upon decreasing the energy.

Movies 1 and 2 refer to state points corresponding to single β and sin-

gle α conformation, respectively, none of which have the correct

parameters matching those in real proteins. Movie 3 shows how one

of the possible ground states in the elixir phase is reached, usually

through multiple conformational changes.

A characteristic feature of the elixir phase is its approximate

degeneracy, with many different ground state conformations with

Nc ≈ 130 for chain length N = 40 (see Figure 4D for different chain

lengths N going beyond the boundaries of the elixir phase). Figure 4E

shows that the number of ground state contacts per main chain

sphere, Nc/N, tends to a value of ≈4 in the elixir phase, in the limit of

large N. Having building blocks (helices and beta strands) with the cor-

rect interplay between the geometries and range of interactions,25

distinct self-assembled ground state topologies have comparable

energies. Thus, one can construct a library of many different topologi-

cal folds in the elixir phase, all having energies within a small interval

of ≈10% spread (see Figure 3A,B for a representative sample).

Figure 5 illustrates the remarkable similarity between the native-

fold of a protein and the corresponding ground state found in the

elixir phase. Here, we have taken Protein G as representative example,

but this result is valid for essentially any topology. The left plot of

Figure 5 represents its real native state. The right plot of Figure 5

shows the ground state conformation in the elixir phase, where the

specific sequence pertaining to protein G has been inserted by using

the PULCHRA tool.26 The central plot shows the overlap of the single

units, both the α helix and the β sheets, illustrating how they have the

correct geometries matching those of real proteins.

We stress the importance of selecting the correct value of Rc/

σ ≈ 1.16 (corresponding to Rc≈6Å for σ≈5Å) in order to observe the

elixir phase. For either larger or smaller values of Rc/σ, the elixir phase

FIGURE 5 An example of comparison between ground state

structures in the elixir phase and the native fold of a protein with
N = 56. Protein G (PDBid 3GB1), whose native state is formed by two
β antiparallel hairpins connected by a single α helix (left) and the
topologically similar ground state in the elixir phase (right) with

parameters: σ¼5Å, 1−b=σ¼0:25, σsc=σ¼0:416, and Rc/σ = 1.16.
The root-mean-square deviation (RMSD) between the native state of

the protein and the ground state of the model is ≈7Å. The central
plot shows the fidelity of the overlap of the building blocks of the
protein structure (α helices and β hairpins) to those in the elixir phase

(RMSD) ≤2:0Å. Structural units of the real protein is shown in red;
those from the model are in cyan

FIGURE 6 (A) Schematic view of the gradual shrinking of the elixir phase for a chain of length 40 upon decrease of the attraction range, Rc. The

largest loop corresponds to the boundary of the elixir phase of Figure 2D. Note, the tendency to form a vertical line rather than a point in the
limit Rc/σ ! 1. (B) Same upon increasing Rc. Here, unlike in the opposite limit, the elixir phase tends to shrink to a point and eventually disappear
[Color figure can be viewed at wileyonlinelibrary.com]
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gradually shrinks until it eventually disappears, as displayed in

Figure 6. In the three-dimensional parameter space, {1 − b/σ, σsc/σ,

Rc/σ}, the elixir phase is centered at the values of parameters found in

proteins, and has a lemon shape with its two ends forming a meeting

point for the helix, the beta, and the globular phases for large Rc/σ,

and a somewhat extended line (the origin and the explanation of this

line will be discussed elsewhere) for the helix, the beta, and the coil

phases for small Rc/σ. In essence, the elixir phase is an extended coex-

istence region with a degenerate ground state.

We note that, while helices and beta strands have the correct geom-

etries within the elixir phase (and not outside it), our simplified model

has shortcomings in capturing some of the details of real protein struc-

tures. One is the out-of-phase arrangement between parallel strands of

a β-sheet in contrast with the in-phase arrangement in the β-sheet of

real proteins. Another is the difference in the number of residues per

turn: 3.6 in real helices and 4 in elixir helices. Both discrepancies can be

cured by introducing a binormal-binormal interaction in the model

between the Frenet reference frames of main chain spheres in spatial

proximity with each other. We stress that our simple model is adequate

for identifying the elixir phase and our goal here is not to mimic the glori-

ous complexities of protein structures by adding more details.

Form determines function for proteins. Furthermore, many globu-

lar proteins serve as extraordinarily powerful machines and catalysts.

Bernal27 wrote, any effective picture of protein structure must provide at

the same time for the common character of all proteins as exemplified by

their many chemical and physical similarities, and for the highly specific

nature of each protein type. The amazing common characteristics of

proteins along with our observation of the elixir phase in a simple

chain model emboldens us to make a constructive hypothesis that pro-

tein native state structures may lie in a phase of matter, which confers

these properties and the attendant advantages on them. Our model

does not rely on quantum chemistry except in an emergent sense. It

does not incorporate hydrogen bonds, the approximate planarity of

the peptide bond, the heterogeneity of the side chains, the molecular

nature of the rich variety of amino acids and the important role played

by the solvent water molecules. A consequence of our hypothesis is

that the menu of protein native state structures is determined not by

chemistry but rather by general considerations of geometry and the

absence of spurious symmetries. The role of the sequence then would

be to choose its native-fold from this menu in a harmonious manner

accounting for the highly specific nature of each protein type. Unlike

an earlier study of Zhang et al.,28 here we do not consider either an

all-atom description of a protein or incorporate hydrogen bonds. It

would be interesting to study the coil phase to elucidate the effective

scaling exponent of the algebraic dependence of the radius of gyration

on chain length29 to assess whether the unfolded state of foldable

sequences is expanded to suppress misfolding and aggregation.

4 | DISCUSSION

We find that the library of observed protein folds is a consequence of

basic physical law rather than deriving from the considerations of

sequence diversity and chemistry. The finiteness of the number of

folds allows for conservation of the geometrical lock-key mechanism

central to ligand binding, protein-protein interactions and functionality

even as sequence evolution takes place. Our work suggests that Dar-

winian evolution shapes sequences and functionalities within the con-

straints of the immutable Platonic folds in the elixir phase. While

many aspects of living systems here on earth can be understood

within the framework of the theory of evolution, there are important

constraints, enormous simplicities, as well as huge advantages deriving

from the fact that basic physical law governs living matter.

Physical systems in the vicinity of a phase transition exhibit exqui-

site sensitivity to small perturbations of the right kind. Being poised in

the vicinity of transitions to other phases affords significant advan-

tages to proteins accounting for their power as molecular machines.

We wish to emphasize that while our model is motivated by symmetry

considerations and is generic and simple, it is directly inspired by pro-

tein chemistry. In the protein context, the absence of spurious sym-

metries arise from the presence of side chains, the self-attraction is

mediated by water and the effect of hydrophobicity and the overlap

of neighboring main chain spheres is a direct consequence of quantum

chemistry and covalent bonding. What is truly remarkable is the stun-

ning convergence (or fit) of the chemistry into the simple model we

have studied. A corollary of our study is that protein-like behavior

ought to be realizable in multiple unrelated ways opening a potential

frontier in the creation of nifty machines and even artificial life. In

summary, we find a new phase of matter, which has many attributes

similar to those found in proteins. The elixir phase is observed over a

range of temperatures. The ground state structures are zero tempera-

ture structures. The structures are not the same as protein native

state structures. Rather, the elixir phase has certain features that

make it a truly novel phase: it is a phase that is observed for a moder-

ate length chain; the structures within it are comprised of helices and

sheets; the phase is nestled between other phases and this confers

exquisite sensitivity to this phase, which, in turn, makes it suitable for

housing machines; the phase exhibits multiple nontrivially connected

ground states allowing for switching between them; the ground states

are geometrical structures allowing for a lock-key relationship that

underlies life; the phase is observed with just self-avoidance and a

simple self-attraction regardless of how they arise; the self-avoidance

does not have spurious symmetries and the self attraction can be

mediated by water molecules and hydrophobicity; hydrogen bonds

and all-important chemical details including amino acid specificity are

not considered but it is quite remarkable how well they fit into the

generic scheme; the notion of a phase means that there may be a

plethora of ways in which a system can be generated that is housed

within the phase; our work therefore transcends the glories of pro-

teins but includes it as a special case.

While, to the best of our knowledge, the elixir phase has not been

identified in any previous studies, the model studied here, but with

parameters poising the system outside the elixir phase, has been

found to exhibit the characteristics of a machine by spontaneously

switching between two distinct geometries, a single helix, and a dou-

ble helix, merely because of thermal fluctuations.17 A consequence of

the existence of the elixir phase is that it can be exploited for the cre-

ation of nifty artificially made interacting nanomachines.

The elixir phase is distinct from conventional phases of matter in

that the variety of ground state structures is geometry-based and
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occurs for finite size systems. Our model may be thought of as a gen-

eralization of the liquid crystal phase in a chain topology. Just like liq-

uid crystals, the elixir phase structures are stable yet sensitive. Unlike

liquid crystals, which occur at nonzero temperatures, the sculptures in

the elixir phase are ground states. The elixir phase structures are nei-

ther relatively open structures (as in the coil phase) nor are they maxi-

mally compact (as in the globular phase). They lie within a marginally

compact phase. The ground states in the elixir phase are neither non-

degenerate (as in the helix phase) nor do they have a huge degeneracy

(as in the globular and especially the coil phases). The elixir phase has

an intermediate degeneracy. These “Goldilocks”-like just-right charac-

teristics make the elixir phase, an attractive candidate for facilitating

functionality.

The elixir phase is distinct from what is known as the molten glob-

ule that is believed to be an intermediate state of the folding pro-

cess.30 Rather, the elixir phase ground states are the counterparts of

the native states of globular proteins.

The elixir phase has characteristics vaguely similar to spin

glasses.31 Both a spin glass and the elixir phase have energy land-

scapes with multiple stable minima with barriers between them. This

property of spin glasses arises from frustration in conflicting interac-

tions and has been invoked to model content addressable memories32

and prebiotic evolution.33,34 The protein free energy landscape has

been described to be minimally frustrated leading to a folding funnel

geometry.35–37 Of course, in the extreme limit of an unfrustrated sys-

tem, one obtains, in standard spin models, a unique ground state along

with its symmetric partners (e.g., all up spins or all down spins for an

Ising ferromagnet). The elixir phase is novel in that there is no conven-

tional frustration—rather, there are geometrical constraints that allow

for distinct chain conformations (multiple ground states) to avail of

roughly the same attractive energy; the system is not infinitely large;

and the ground states are modular, geometry-based structures related

by the distinct topologies of the assembled secondary structures. In

fact, the presence of these ground state folds in a homopolymer

model suggests that the top of the folding funnel is engineered with

no sequence information into many broad basins and the latter part of

dynamical folding entails the harmonious fitting of a minimally frus-

trated sequence into its native state basin. Our picture leads to addi-

tional simplicities for understanding and exploring the relative ease of

the folding dynamics of globular proteins.38,39 It would be interesting

to look for experimental verification of the existence of the elixir

phase in colloidal systems where exquisite control can be

achieved.40,41

The elixir phase is the ground state of our highly simplified model.

Thus, it is the analog of the native state in real proteins. However, it

can also be thought of as an approximate description of the molten

globule in real proteins,30 that is a conformation within which second-

ary structures have still not been fully formed. Of course, this lack of

refinement of secondary structures is the result of an incomplete

model, for example, due to the absence of hydrogen bonds. Neverthe-

less, the approximate structures can be exploited by using the ground

states of the elixir phase may be used as computationally efficient

starting points for more refined calculations42,43 that introduce addi-

tional chemical details. It would be extremely interesting to combine

the present strategy with complementary coarse-grained approaches

that have been proposed recently in the literature44–47 to shed new

light on the nature of protein folding pathway.38,39

A cell is not just a container of ordinary molecules—rather, it con-

sists of incredibly powerful interacting molecular machines that

orchestrate life. Proteins are amazing catalysts that speed up reactions

by many orders of magnitude and carry out many of the functions of a

living cell. They are essential ingredients of life. Darwin wrote about

the origins of life: But if we could conceive in some warm little pond with

all sorts of ammonia and phosphoric salts, light, heat, electricity... present,

that a protein compound was chemically formed, ready to undergo still

more complex changes... Our work suggests that Nature may have

stumbled upon the elixir phase here on earth and eventually this

resulted in life as we know it. This opens up the intriguing possibility

that life elsewhere in our cosmos could well have a very different

chemical basis with some of its vital molecules populating the same

elixir phase of matter.

ACKNOWLEDGMENTS

We are indebted to Brian Matthews, Flavio Romano, George Rose,

Francesco Sciortino, and Pete Von Hippel for useful discussions. This

work was supported by MIUR PRIN-COFIN2010-2011 (contract

2010LKE4CC). The use of the SCSCF multiprocessor cluster at the

Università Ca’ Foscari Venezia is gratefully acknowledged.

T.X.H. acknowledges support from Vietnam National Foundation for

Science and Technology Development (NAFOSTED) under grant

No. 103.01-2016.61.

ORCID

Achille Giacometti https://orcid.org/0000-0002-1245-9842

REFERENCES

1. Flory P. Statistical Mechanics of Chain Molecules. New York: Inter-

science Publishers; 1969.
2. de Gennes P. Scaling Concepts in Polymer Physics. Ithaca: Cornell Uni-

versity Press; 1979.
3. Khokhlov AR, Grosberg AY, Pande VS. Statistical Physics of Macromole-

cules (Polymers and Complex Materials). 1994th ed. New York: Ameri-

can Institute of Physics; 2002:3.
4. Rubinstein M, Colby RH. Polymer Physics (Chemistry). 1st ed. London:

Oxford University Press; 2003:6.
5. Creighton TE. Proteins: Structures and Molecular Properties. New York,

2nd ed. W. H. Freeman; 1992:8.
6. Anfinsen CB. Principles that govern the folding of protein chains. Sci-

ence. 1973;181:223-230.
7. Baase WA, Liu L, Tronrud DE, Matthews BW. Lessons from the lyso-

zyme of phage T4. Protein Sci. 2010;19:631-641.
8. Chothia C. Proteins 1000 families for the molecular biologist. Nature.

1992;357:543-544.
9. Chothia C, Levitt M, Richardson D. Structure of proteins: packing of

alpha-helices and pleated sheets. Proc Natl Acad Sci USA. 1977;74(10):

4130-4134.
10. Przytycka T, Aurora R, Rose G. A protein taxonomy based on second-

ary structure. Nat Struct Biol. 1999;6:672-682.
11. Pauling L, Corey RB. The structure of synthetic polypeptides. Proc Natl

Acad Sci USA. 1951;37:205-211.
12. Pauling L, Corey RB. Configurations of polypeptide chains with

favored orientations around single bonds: two new pleated sheets.

Proc Natl Acad Sci USA. 1951;37:729-740.

ŠKRBI�C ET AL. 183

https://orcid.org/0000-0002-1245-9842
https://orcid.org/0000-0002-1245-9842


13. Ramachandran G, Sasisekharan V. Conformation of polypeptide
chains. Adv Protein Chem. 1968;23:283-437.

14. Chaikin P, Lubensky T. Principles of Condensed Matter Physics. London:
Cambridge University Press; 2000.

15. Škrbi�c T, Hoang TX, Giacometti A. Effective stiffness and formation of
secondary structures in a protein-like model. J Chem Phys. 2016;145:
084904.

16. Banavar JR, Maritan A. Physics of proteins. Annu Rev Biophys Biomol
Struct. 2007;36:261-280.

17. Banavar JR, Cieplak M, Hoang TX, Maritan A. First-principles design
of nanomachines. Proc Natl Acad Sci USA. 2009;106:6900-6903.

18. Maritan A, Micheletti C, Trovato A, Banavar J. Optimal shapes of com-
pact strings. Nature. 2000;406:287-290.

19. Stasiak A, Maddocks J. Mathematics - best packing in proteins and
DNA. Nature. 2000;406:251-253.

20. Kamien R. The geometry of soft materials: a primer. Rev Mod Phys.
2002;74:953-971.

21. Wang F, Landau D. Efficient, multiple-range random walk algorithm
to calculate the density of states. Phys Rev Lett. 2001;86:2050-
2053.

22. Frenkel D, Smit B. Understanding Molecular Simulation, Second Edition:
From Algorithms to Applications (Computational Science Series, Vol 1).
2nd ed. London: Academic Press; 2001:11.

23. Levitt M, Chothia C. Structural patterns in globular proteins. Nature.
1976;261(5561):552-558.

24. Richardson J, Richardson D, Tweedy N, et al. Looking at proteins -
representations, folding, packing, and design - biophysical-Sociaty
National Lecture, 1992. Biophys J. 1992;63:1186-1209.

25. Wang L, Qiao H, Cao C, Xu S, Zou S. An accurate model for biomolec-
ular helices and its application to helix visualization. PLoS One. 2015;
10:1-13.

26. Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full-
atom protein models from reduced representations. J Comput Chem.
2008;29:1460-1465.

27. Bernal J. Structure of proteins. Nature. 1939;143:663-667.
28. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. On the

origin and highly likely completeness of single-domain protein struc-
tures. Proc Natl Acad Sci USA. 2006;103(8):2605-2610.

29. Riback JA, Bowman MA, Zmyslowski AM, et al. Innovative scattering
analysis shows that hydrophobic disordered proteins are expanded in
water. Science. 2017;358:238-241.

30. Baldwin RL, Rose GD. Molten globules, entropy-driven conformational
change and protein folding. Curr Opin Struct Biol. 2013;23:4-10.

31. Edwards SF, Anderson PW. Theory of spin glasses. J Phys F: Metal
Phys Ther. 1975;5(5):965.

32. Hopfield JJ. Neural networks and physical systems with emergent col-
lective computational abilities. Proc Natl Acad Sci USA. 1982;79(8):
2554-2558.

33. Anderson PW. Suggested model for prebiotic evolution: the use of
chaos. Proc Natl Acad Sci USA. 1983;80(11):3386-3390.

34. Stein DL, Anderson PW. A model for the origin of biological catalysis.
Proc Natl Acad Sci USA. 1984;81(6):1751-1753.

35. Onuchic J, LutheySchulten Z, Wolynes P. Theory of protein folding:
the energy landscape perspective. Annu Rev Phys Chem. 1997;48:
545-600.

36. Dill KA, Ozkan SB, Shell MS, Weikl TR. The protein folding problem.
Annu Rev Biophys. 2008;37:289-316.

37. Wales DJ. Energy landscapes: calculating pathways and rates. Int Rev
Phys Chem. 2006;25:237-282.

38. Englander SW, Mayne L. The case for defined protein folding path-
ways. Proc Natl Acad Sci USA. 2017;114:8253-8258.

39. Baldwin RL. Clash between energy landscape theory and foldon-
dependent protein folding. Proc Natl Acad Sci USA. 2017;114:8442-8443.

40. Zerrouki D, Baudry J, Pine D, Chaikin P, Bibette J. Chiral colloidal clus-
ters. Nature. 2008;455:380-382.

41. Wang Y, Wang Y, Breed DR, et al. Colloids with valence and specific
directional bonding. Nature. 2012;491:51-U61.

42. Shaw D, Maragakis P, Lindorff-Larsen K, et al. Atomic-level characteri-
zation of the structural dynamics of proteins. Science. 2010;330:
341-346.

43. Ovchinnikov S, Park H, Vaghese N, et al. Protein structure determina-
tion using metagenime sequence data. Science. 2017;355:294-298.

44. Hoang T, Trovato A, Seno F, Banavar J, Maritan A. Geometry and sym-
metry presculpt the free-energy landscape of proteins. Proc Natl Acad
Sci USA. 2004;101:7960-7964.

45. Craig A, Terentjev E. Folding of polymer chains with short-range
binormal interactions. J Phys A Math Gen. 2006;39:4811-4828.

46. Coluzza I. A coarse-grained approach to protein design: learning from
design to understand folding. PLoS One. 2011;6:1-8.

47. Bore SL, Milano G, Cascella M. Hybrid particle-field model for confor-
mational dynamics of peptide chains. J Chem Theory Comput. 2018;14:
1120-1130.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-

porting Information section at the end of the article.

How to cite this article: Škrbi�c T, Hoang TX, Maritan A,

Banavar JR, Giacometti A. The elixir phase of chain molecules.

Proteins. 2019;87:176–184. https://doi.org/10.1002/prot.

25619

184 ŠKRBI�C ET AL.

https://doi.org/10.1002/prot.25619
https://doi.org/10.1002/prot.25619

	 The elixir phase of chain molecules
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  The model
	2.2  The Frenet formalism
	2.3  Simulations protocol

	3  RESULTS
	4  DISCUSSION
	4  ACKNOWLEDGMENTS
	  References


